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A one-dimensional acoustic negative refractive index metamaterial based on the transmission line approach
is presented. This structure implements the dual transmission line concept extensively investigated in micro-
wave engineering. It consists of an acoustic waveguide periodically loaded with membranes realizing the
function of series “capacitances” and transversally connected open channels realizing shunt “inductances.”
Transmission line based metamaterials can exhibit a negative refractive index without relying on resonance
phenomena, which results in a bandwidth of operation much broader than that observed in resonant devices. In
the present case, the negative refractive index band extends over almost one octave, from 0.6 to 1 kHz. The
developed structure also exhibits a seamless transition between the negative and positive refractive index bands
with a zero index at the transition frequency of 1 kHz. At this frequency, the unit cell is only one tenth of the
wavelength. Simple acoustic circuit models are introduced, which allow efficient designs both in terms of
dispersion and impedance, while accurately describing all the physical phenomena. Using this approach, a
good matching at the structure terminations is achieved. Full-wave simulations, made for a 10-cell-long
structure, confirm the good performances in terms of dispersion diagram, Bloch impedance, and reflection and
transmission coefficients.
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I. INTRODUCTION

Metamaterials are broadly defined as artificial composite
materials specifically engineered to produce desired unusual
properties not readily available in nature. This research area
has been first extensively developed for electromagnetic
waves, resulting, for instance, in structures with simulta-
neous negative permittivity and permeability, thereby en-
abling new intriguing phenomena such as negative
refraction.1,2 Recently, the analogs of such structures for
acoustic and elastic waves have received considerable inter-
est. The resulting acoustic �respectively, elastic� metamateri-
als are composite structures obtained by loading a host fluid
medium �respectively, elastic solid� with subwavelength
elastic and/or fluid inclusions, for which effective parameters
such as the mass density and the bulk modulus can be de-
fined and possibly take negative values. When these two pa-
rameters are simultaneously negative, negative acoustic re-
fraction and subwavelength focusing can be achieved,3 as
reported in electromagnetics for the perfect lens proposed by
Pendry.4

It is worth noticing that negative acoustic refraction can
also be achieved with phononic crystals from band-folding
effects due to Bragg scattering5–9 but some distinctions are
usually drawn. On one side, phononic crystals are operated
in a frequency range where the lattice constant is on the
order of half a wavelength or more, which prevents an
effective-medium description. On the other hand, metamate-
rials comprise subwavelength unit cells and can be thus as-
cribed effective-medium parameters.3,10,11

Most of the acoustic metamaterials with negative param-
eters reported to date are based on localized resonances in
the unit cell, hence the name “locally resonant sonic mate-
rial” �or “locally resonant phononic crystal”�.10 From a gen-
eral perspective, the particles forming the composite material

should exhibit monopolar and/or dipolar resonances in order
to give rise to a negative bulk modulus and/or a negative
mass density, respectively, in a small band above the reso-
nance frequency.12,13

Various structures have been proposed to achieve negative
parameters for acoustic and elastic metamaterials. For in-
stance, an elastic metamaterial with negative effective-mass
density was achieved with an array of hard spheres coated
with a soft cladding embedded in a stiff host medium.13–15

Similar effects have been observed for coated cylinders in a
fluid medium �acoustic metamaterial�.16 A negative bulk
modulus was achieved for an elastic metamaterial with an
array of bubble-contained-water spheres,13 and for acoustic
metamaterials with an array of subwavelength Helmholtz
resonators,17–19 as well as with Helmholtz-type resonators
with slits20 or side holes in a host waveguide.21 Similar struc-
tures had also been previously investigated in a different
context, such as in Ref. 22 where the purpose was to achieve
spectral gaps.

However, only a few double negative acoustic and elastic
media have been reported to date. A crystal consisting of soft
rubber spheres in water was reported as a double negative
acoustic medium,12 for which both the monopolar and dipo-
lar resonances required for negative parameters were ob-
tained from the same particle. This approach has been criti-
cized in Ref. 13, where the use of two distinct resonance
mechanisms �bubble-contained-water spheres and rubber-
coated-gold spheres� has rather been proposed to achieve
double negativity, in this specific case for an elastic metama-
terial.

In the realm of electromagnetics, there is a common dis-
tinction between two types of metamaterials: arrays of reso-
nant inclusions, such as the split-ring resonator and wire
medium,23 and transmission line �TL� based
metamaterials.2,24–26 While the materials of the first kind are
inherently narrow band and lossy due to their resonant na-
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ture, the latter can exhibit the desired metaproperties, such as
negative refraction, over a much larger bandwidth and with
lower losses since they do not explicitly rely on resonance
phenomena. It appears that most of the acoustic metamateri-
als reported to date belong to the category of resonant inclu-
sions, whereas very few works on the acoustic counterparts
of TL-based metamaterials have been reported. In this work,
we fill in this gap by proposing a negative refractive index
acoustic metamaterial based on the dual TL concept. This
requires the realization of acoustic or mechanical elements
which implement shunt “inductances” �i.e., acoustic masses�
and series “capacitances” �i.e., acoustic compliances�. Pre-
liminary works have shown how to achieve shunt acoustic
masses with short tubes connected to a host waveguide, re-
sulting in a metamaterial with negative bulk modulus,21 but
clear guidelines on how to realize a series compliance in
such a system are still missing.

This paper presents a possible realization of acoustic dual
TL in which the series compliances are realized with mem-
branes and the shunt masses with short open channels. To
introduce and develop these concepts we make an extensive
use of circuit modeling, which is shown to be a powerful tool
for both understanding and design purposes.

Recent publications, found during the review process, re-
port the use of thin membranes to achieve a medium with
negative effective density,27 as well as the combination of
membranes and side holes to achieve a negative index
medium.28 The experimental demonstrations reported in
these references support the theoretical model and the nu-
merical results presented in this paper. Thanks to our com-
prehensive approach, we are able to propose an improved
design which exhibits not only a negative index band, but
also a zero index frequency with nonzero group velocity and
a good impedance matching. A time dependence in exp�
+j�t� is assumed in all the paper.

II. TL MODELING OF CONVENTIONAL AND
METAMATERIALS

TLs are circuit-based concepts that can be used to de-
scribe the propagation of waves in different systems. This
section describes the adopted conventions associated with
this formalism when used for acoustic waves in a fluid and
introduces the concept of TL-based metamaterial. In the
acoustic circuit modeling used in this work, the voltage cor-
responds to the acoustic pressure p and the current to the
volume velocity q flowing through a surface S. This repre-
sentation is often used for waveguide related problems,
where S is naturally the waveguide cross-sectional area,29,30

but it can also be applied to plane waves in an unbounded
medium, in which case S can be chosen arbitrarily.

A. Conventional materials

With the adopted convention, an incremental section dz of
a conventional fluid can be described by the model of
Fig. 1�a�, where ma= �� /S�dz is an acoustic mass, or iner-
tance �in �kg /m4��, and Ca= �S /K�dz is an acoustic compli-
ance �in �m3 /Pa��, and � and K are the density and bulk

modulus of the medium, respectively. The physical equations
corresponding to the adopted TL representation are

dp

dz
= − j�

�

S
q and

dq

dz
= − j�

S

K
p . �1�

The characteristic impedance of the TL whose incremen-
tal section is the one of Fig. 1�a� is given by Zac=Zc /S
�in ��a�Pa s /m3��, where Zc=��K is the characteristic
acoustic impedance of the considered medium. The corre-
sponding wave velocity is c=�K /� and the wave vector is
defined as k=� /c. In this work, the considered medium
is air with the parameters �=1.188 kg /m3, K=137.4 kPa,
Zc=404 Pa s /m, and c=340 m /s.31

B. Dual topology

Figure 1�b� shows the dual topology of the conventional
TL, which is often referred to as the dual TL. Such a struc-
ture is known to exhibit a negative refractive index over an
infinite bandwidth.2,25 However, the dual TL cannot be
implemented in practice in a fully distributed manner but
must be realized by periodically loading a host medium with
discrete shunt acoustic masses and series acoustic compli-
ances. Considering the natural contribution of the nonvanish-
ing connections between these elements, the resulting peri-
odic structure unit cell is the one shown in Fig. 2. At low
frequency, the response is dominated by map and Cas, result-
ing in a left-handed �LH� behavior ��negative refractive in-
dex�, whereas mas and Cap are predominant at higher fre-
quency, which then results in a right-handed �RH� behavior
��positive refractive index�. In microwave engineering, in-
teresting applications exist where both of these bands are
used, which is why this structure has been named the com-
posite right/left-handed transmission line �CRLH TL�.24,25

FIG. 1. Incremental circuit for �a� a conventional medium and
�b� a dual medium exhibiting a negative refractive index.

FIG. 2. Unit cell of the CRLH TL, a particular type of TL-based
metamaterial. The lattice constant is referred to as d.
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An interesting particularity of this structure is that a seamless
transition �i.e., without band gap� between the LH and RH
bands can be achieved under the so-called balanced
condition.25 The goal of this work is precisely to synthesize a
structure that implements the circuit of Fig. 2 for acoustic
waves.

It should be stressed here that the other types of acoustic
metamaterials reported in Sec. I can also be described by
circuit and TL concepts. However, the main characteristic of
TL-based metamaterials such as those based on the dual TL
concept �or more generally the CRLH TL� is that they ex-
hibit the desired metaproperties without explicitly relying on
resonance phenomena.

Finally, it must be pointed out that the circuits in Figs. 1
and 2 are lossless and hence correspond to ideal structures
made up with lossless materials. In practice, losses could be
represented by small equivalent resistances in the equivalent
circuit. However, since as already mentioned, losses can be
very small in TL-based metamaterials, their equivalent cir-
cuits can be assumed lossless in a first analysis.

III. DESCRIPTION OF THE PROPOSED STRUCTURE

The CRLH metamaterial implementation proposed in this
work is shown in Fig. 3. The host “medium” is an acoustic
waveguide with circular cross section and perfectly rigid
walls operated in its dominant mode region �plane waves�.
The realization of series compliances using only acoustic el-
ements is not obvious. Here, we propose to use mechanical
elements consisting of membranes, for which the restoring
force provides the required series compliance. It can be men-
tioned that membranes have already been proposed in a
metamaterial context as a mean to achieve negative dynamic
mass by operating them between two eigenmodes.32 Here,
the membranes are rather operated below and around their
first resonance.

Shunt acoustic masses can be simply achieved with trans-
versally connected open channels.30 Based on this concept,
the solution adopted here consists of radial channels operated

in the main waveguide structure, as shown in Fig. 3. A de-
tailed analysis of the two elements introduced above is pro-
vided in Secs. III A and III B, respectively.

A. Realization of series compliances with membranes

1. Description

The considered element is a circular membrane clamped
at its perimeter to a host waveguide, as illustrated in Fig.
4�a�. It is characterized by its Young’s modulus E, Poisson’s
ratio �, mass density �m, thickness h, and radius a, which is
also the radius of the waveguide. The surface of the mem-
brane is S=�a2. No tension is applied to the membrane.

2. Theoretical modeling

The membrane is modeled as a thin plate described by the
transverse displacement ��r�, which satisfies the flexural
waves equation29,33,34

�4� − km
4 � =

�p

D
with km

2 = ���m�

D
�2�

and where �m� =�mh is the surface mass density of the plate
and D designates its flexural rigidity, which is given by34

D =
Eh3

12�1 − �2�
. �3�

In Eq. �2�, �p represents the source term, which corresponds
to the net pressure on the plate. It can be written as
�p= p1− p2, where p1 and p2 are the acoustic pressure on the
two faces, as suggested in Fig. 4�a�. The general solution of
Eq. �2� in polar coordinates is derived in Ref. 34; only the
result is recalled here. Assuming a uniform pressure distribu-
tion over the plate, which is verified in case of plane-wave
incidence and small displacements, and considering only axi-
ally symmetrical modes, the following general solution for
��r� is obtained,

��r� = −
�p

km
4 D

+ AJ0�kmr� + BI0�kmr� , �4�

where Jn and In are the regular and modified Bessel’s func-
tions of the first kind of order n, respectively. The application
of the boundary conditions corresponding to a clamped
membrane ���r=a�=0, d�

dr �r=a=0� to Eq. �4� yields the two
constants,

FIG. 3. The proposed CRLH TL combining membranes
�in dark� and radial open channels. The main pipe has been cut in
the yz plane for visibility. Due to the perfect symmetry of revolu-
tion, all the relevant field quantities only depend on the longitudinal
and transverse coordinates z and r, respectively.

FIG. 4. Elastic circular membrane clamped to an acoustic wave-
guide. �a� Cut view. �b� Equivalent acoustic circuit.
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A =
�p

km
4 D

·
I1�kma�

J0�kma�I1�kma� + J1�kma�I0�kma�
,

B =
�p

km
4 D

·
J1�kma�

J0�kma�I1�kma� + J1�kma�I0�kma�
. �5�

The dynamic response of the plate to the resulting force can
be represented by the mechanical impedance Zm, defined as a
ratio force over velocity as follows:34

Zm =

� �
S

�p�r�dS

j��̄
, �6�

where �̄= �1 /S�		S��r�dS is the mean transverse displace-
ment over the plate surface. Assuming a uniform pressure
distribution over the plate and using Eqs. �4� and �5�, the
mechanical impedance Zm becomes34

Zm = − j�m ·
I1�kma�J0�kma� + J1�kma�I0�kma�
I1�kma�J2�kma� − J1�kma�I2�kma�

, �7�

where m=�m� S=�mSh is the mass of the plate.
Inside the acoustic waveguide, the elastic membrane can

be actuated by an incident acoustic field. The fluid pressure
represents a load on the membrane and the membrane in turn
provides an acceleration to the surrounding fluid. In such
acoustic-structure interactions, at any point on the membrane
the normal component of the acoustic velocity at both sides
is continuous across the membrane and is equal to the trans-
verse velocity of the membrane v�= j��. The volume veloc-
ity q generated by the pressure difference between the two
sides of the membrane is given by

q =� �
S

v��r�dS = v̄�S = j��̄S . �8�

Assuming a uniform pressure field on the membrane, the
effect of the latter on the acoustic field can be represented by
the acoustic impedance Zam defined as29,34

Zam =
�p

q
=

Zm

S2 , �9�

with Zm defined in Eq. �6� and expressed in Eq. �7�. As a
result, the equivalent acoustic circuit of a membrane in an
acoustic waveguide is a series impedance Zam loading the TL
representing the waveguide, as shown in Fig. 4�b�. Indeed,
the membrane introduces a discontinuity in the acoustic pres-
sure field, but the normal component of the acoustic velocity,
and thus the volume velocity q, is continuous across the
membrane.

At low frequency up to the first resonance of this dynamic
system, which is given by33

f r = 1.6259
1

a2� D

�m�
= 0.4694

h

a2� E

�m�1 − �2�
, �10�

the impedance given by Eqs. �7� and �9� can be approxi-
mated with very good accuracy by a series resonant circuit

comprising an acoustic mass mam and a compliance Cam, as
shown in Fig. 4�b�. The values of these two elements are
calculated such that the resulting impedance fits the original
impedance and its frequency derivative at the first resonance
f r, leading to the following expressions:

mam = 1.8830
�mh

�a2 and Cam =
�a6

196.51D
. �11�

3. Validation

In order to validate the presented theoretical modeling, we
consider a membrane made of DuPont™ Kapton® FPC
�E=2.758 GPa, �=0.34, and �m=1420 kg /m3� of thickness
h=125 	m and radius a=9.06 mm�. This membrane-loaded
waveguide has been simulated with COMSOL MULTIPHYSICS

and characterized in terms of reflection and transmission co-
efficients under plane-wave incidence, from which the series
impedance Zam of Fig. 4�b� could be extracted.35 Figure 5
shows the acoustic impedance of this membrane obtained
from theory and full-wave simulation, and Table I reports the
corresponding values for the elements of the approximate
series resonant circuit of Fig. 4�b�, for both theory and simu-
lation. An excellent agreement is observed between theory

TABLE I. Acoustic mass and compliance for the considered
membrane, calculated so that the approximate circuit of Fig. 4�b�
fits the original impedance at the first resonance f r.

mam

�kg /m4�
Cam

�10−12 m3 /Pa�
f r

�Hz�

Theory, Eqs. �10� and �11� 1296 17.42 1059

Full-wave simulation 1312 17.43 1052
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Simul. − mC circuit approx.

FIG. 5. Acoustic impedance �imaginary part� of the considered
membrane. The “Theory—exact impedance” curve corresponds to
Eq. �9� �using Eq. �7��, the “Simul.—extracted impedance” curve is
the impedance directly extracted from simulation results, and the
two “mC circuit approx.” curves correspond to the circuit of Fig.
4�b� with the parameters given in Table I.
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and simulation, as well as between the original impedance
and its “mass-compliance” circuit approximation. Figure 5
also confirms that the membrane impedance is dominated by
a compliance below the resonance frequency f r.

B. Realization of shunt acoustic masses with open channels

1. Description

Shunt acoustic masses can be realized with short open
tubes transversally connected to the main host waveguide.30

Such structures are often referred to as “stubs” in microwave
engineering. This principle has been used in Ref. 21 to obtain
an acoustic metamaterial with negative bulk modulus with-
out using resonant elements such as Helmholtz resonators.17

We consider here a modified version of this structure that
exhibits a perfect symmetry of revolution. It consists of a
short radial waveguide of length L and width b connected to
a main acoustic circular waveguide of radius a, as shown in
Fig. 6�a�. The considered stub is physically open at its ter-
mination, which approximately corresponds to a condition
p=0.29 As a result, the stub is approximately short circuited
according to the chosen TL modeling, hence the name
“shorted stub” that will be used thereafter.

2. Theoretical modeling

It can already be anticipated that such a stub represents an
admittance Yat in parallel loading the TL representing the
host waveguide, as shown in Fig. 6�b�, since a certain
amount of volume velocity is deviated into the stub, while
the pressure does not experience any significant discontinu-
ity. The admittance Yat corresponds to the input admittance
of a short-circuited radial waveguide supporting only its axi-
ally symmetrical fundamental mode. Radial TL equations are
similar to uniform TL equations with the particularity that
propagation constant and characteristic impedance depend
on the radial distance r, and therefore the solutions are ex-
pressed in terms of Bessel functions instead of exponential
functions of the type exp�
jkz�. A detailed formulation of
the radial TL theory developed in electromagnetics can be
found in Ref. 36, which also applies to acoustic waves. Us-
ing this theory, the input acoustic impedance of a shorted
radial stub, referred to here as Zat�=1 /Yat�, is given by

Zat = jZac�a�tn�ka,k�a + L�� , �12�

where tn�x ,y� is the small radial tangent function given by

tn�x,y� =
J0�x�N0�y� − N0�x�J0�y�
J1�x�N0�y� − N1�x�J0�y�

, �13�

Nn being the Bessel’s function of the second kind of order n
and Zac�r� the acoustic characteristic impedance of the radial
TL at a given radial distance r, given by

Zac�r� =
Zc

2�rb
. �14�

It can be mentioned that the small radial tangent function
“tn” is defined such that the expression for the input imped-
ance is similar to that of a uniform TL, which is of the form
Zat= jZac tan�kL�.

The impedance in Eq. �12� exhibits a complex frequency
dependence, but it can be approximated at low frequency by
an acoustic mass, after

Zat 
 j�mat0, with mat0 =
�

2�b
ln�1 +

L

a
� . �15�

When the frequency increases the impedance quickly devi-
ates from this simple model, which is thus accurate only for
very small stubs compared to the wavelength. At higher fre-
quency, the model can be improved by adding an acoustic
compliance in shunt with the acoustic mass, as shown in Fig.
6�b�. For a maximal accuracy of the model at a given fre-
quency, it is useful to determine the mat and Cat to fit the
impedance, Eq. �12�, and its frequency derivative at that fre-
quency.

3. Termination effects

In practice, the stub termination is physically open and
thus radiates into the surrounding medium. As a result, the
impedance connected at the end of the stub is not exactly a
short circuit but it exhibits a real part which accounts for
radiation and an imaginary part representing the termination
effects. For the narrow stubs considered in this work, the real
part can be neglected and the remaining imaginary part is
commonly ascribed to an increase in the stub length �L.29

Full-wave simulations are used to assist in the determination
of the physical stub length L corresponding to the desired
effective length Le=L+�L.

4. Validation

In order to validate the presented theoretical modeling, we
consider a radial stub with b=1 mm and L=48.95 mm con-
nected to an acoustic circular waveguide of radius
a=9.06 mm. Figure 7 shows the input acoustic impedance
of this stub and Table II reports the corresponding values for
the elements of the approximate parallel resonant circuit of
Fig. 6�b�. The stub-loaded waveguide has been simulated
with COMSOL MULTIPHYSICS and characterized in terms of
reflection and transmission coefficients under plane-wave in-
cidence, from which the shunt impedance Zat�=1 /Yat� of Fig.
6�b� could be extracted.35 To compensate for the increase in

FIG. 6. Shorted radial stub connected to an acoustic circular
waveguide. �a� Cut view. �b� Equivalent acoustic circuit.
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the effective length due to the open termination effects, the
physical length of the stub has been decreased to approxi-
mately obtain the same acoustic mass as the perfectly short-
circuited stub. The resulting actual stub length is
L=42.67 mm. The simulated performances of this stub are
also shown in Fig. 7 and Table II.

A good agreement is observed between theory and full-
wave simulation, as well as between the original impedance
and its mass-compliance circuit approximation. It can be
noted that the approximate expression �15� for the acoustic
mass provides the value mat0=351.1 kg /m4, hence a differ-
ence inferior to 1% with the values given in Table II. Figure
7 also confirms that the impedance is dominated by an
acoustic mass, as is the case for small stubs, although the
shunt capacitance Cat should be taken into account for pre-
cise modeling.

5. Effect of viscous losses

Narrow acoustic channels may be subject to viscous
losses, a phenomenon which is assessed here for the consid-
ered stub. Viscous losses can be taken into account in the
model of Fig. 6�b� by adding an acoustic resistance Rat in
series with the acoustic mass mat. Based on the Hagen-

Poiseuille assumption of laminar viscous fluid, the Rat for a
short radial stub can be approximated at low frequency
by29,34

Rat0 =
6�

�b3 ln�1 +
L

a
� , �16�

where � is the dynamic viscosity ��=18.6 	Pa s for air�.
With this model of viscous fluid, the effective acoustic mass
mat0� is slightly higher than the original value mat0 in Eq. �15�,
that is, mat0� =1.2mat0.29 We further introduce the quality fac-
tor

Q =
�mat0�

Rat0
=

��b2

10�
. �17�

For the considered stub �b=1 mm� we have Q=40 at 1 kHz,
therefore the resistance Rat0 is 40 times smaller than the as-
sociated reactance �mat0� . This value has been considered
sufficiently large for neglecting, in a first approximation, the
effect of viscous losses.

If viscous losses become a limiting factor for some spe-
cific applications, alternative stub topologies such as cylin-
drical tubes �one or several in parallel� shall be considered.
Indeed, for the same targeted acoustic mass value, the re-
quired tubes diameter is less critical regarding this issue than
the required width for radial stubs. For the concept validation
presented here, whose goal is to demonstrate the capability
of a stub to realize a shunt acoustic mass, the radial topology
was chosen mostly for its symmetry of revolution since this
property greatly simplifies the numerical modeling. Viscous
losses are thus not a fundamental limitation, and we have
provided here a simple way of addressing this issue in order
to keep the associated effects below a prescribed level.

IV. CRLH TL MODELING AND DESIGN

A. Modeling

Using the developments of Sec. III, the unit cell of the
considered TL-based metamaterial introduced in Fig. 3 can

TABLE II. Acoustic mass and compliance for the considered radial stub, calculated so that the approxi-
mate circuit of Fig. 6�b� fits the original impedance at 1 kHz.

mat

�kg /m4�
Cat

�10−12 m3 /Pa�

Theory �perfect shortcut, L=48.95 mm� 348.3 9.138

Full-wave simulation �open end, L=42.67 mm� 350.1 6.897
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FIG. 7. Input acoustic impedance �imaginary part� of the con-
sidered radial stub. The Theory—exact impedance curve corre-
sponds to Eq. �12� �ideal shortcut with L=48.95 mm�, the Simul.—
extracted impedance curve is the impedance directly extracted from
simulation results �open end with L=42.67 mm�, and the two mC
circuit approx. curves correspond to the circuit of Fig. 6�b� with the
parameters given in Table II.

FIG. 8. Equivalent acoustic circuit for the symmetrical �-type
unit cell of the considered acoustic CRLH TL.
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be modeled by the circuit of Fig. 8. Zam is the impedance of
the membrane and Yat is the admittance of the radial stub, as
described in Secs. III A and III B, respectively. The connec-
tions between these elements are modeled by TL sections of
characteristic impedance Zac=Zc /S and phase constant k. The
unit-cell boundaries are placed across the stubs positions in
order to obtain a �-type network symmetrical unit cell. This
is the reason why there is one half of Yat at each side of the
cell. The circuit of Fig. 8 can be further simplified as fol-
lows: �1� Zam and Yat are approximated by their mass-
compliance circuits of Figs. 4�b� and 6�b�, respectively. �2�
The effect of the TL sections is represented as shown in Fig.
1�a� by a series acoustic mass and a shunt acoustic compli-
ance, denoted here maTL and CaTL. For both TL sections con-
sidered together, we have maTL= �� /S��d−h� and CaTL
= �S /K��d−h�. This approximate representation is accurate
provided that the unit cell is small compared to the wave-
length. �3� All the series and shunt elements are grouped
together.

With these simplifications, we obtain the lumped element
model of Fig. 9 with the parameters given by


mas = mam + maTL

Cap = Cat + CaTL
� and 
 map = mat

Cas = Cam.
� �18�

B. Characterization

The periodic metamaterials considered in this work are
characterized using the Bloch theory, whose basis are briefly
recalled thereafter.37,38 Periodic structures support the propa-
gation of eigenwaves often called Bloch waves. Looking at
discrete locations corresponding to the boundaries of the
cells �z=nd , n�Z�, these waves exhibit a spatial depen-
dence of the form exp�

Bz�. The quantity 
B is referred to
here as the Bloch propagation constant �i.e., the dispersion
diagram�. A characteristic impedance associated with the pe-
riodic structure can also be defined: it corresponds to the
ratio between voltage and current at the boundaries of the
cells for a purely traveling Bloch wave. This quantity is re-
ferred to here as the Bloch impedance ZB. Therefore, a peri-
odic structure is fully characterized by its Bloch parameters

B and ZB, which are the periodic structure counterparts of
the propagation constant and characteristic impedance de-
fined for continuous TLs or waveguides.

The Bloch parameters 
B and ZB are related to the eigen-
values and eigenvectors of the transmission matrix �or ABCD

matrix� of the unit cell, which links the voltage and current at
one side of the cell to those at the other side. In the case of
reciprocal and symmetrical unit cells, we obtain the relations

B=arcosh�Acell� /d and ZB=�Bcell /Ccell, where d is the
length of the unit cell.37–39 Application of this technique to
the unit cell shown in Fig. 9 can be found in Ref. 25 or in
Section 4.3 of Ref. 40, with all the corresponding expres-
sions for 
B and ZB in function of the circuit elements. The
refractive index n can be simply deduced from the Bloch
propagation constant using the relation n=
B / �jk�.

C. Design

For the considered validation example, the following con-
straints have been imposed for the design: �1� The CRLH TL
is balanced �closure of the stop band between the LH and RH
bands25� with a transition frequency between the two bands
f0=1 kHz. �2� The lattice constant d should be small com-
pared to the wavelength � in the host waveguide. In the
present case, we have imposed d /�=0.1 at f0. �3� The Bloch
impedance ZB at f0 should not be too far from the character-
istic impedance of the host waveguide �Zac�, in order to allow
for a good matching to an external waveguide of comparable
diameter.

The design has been performed using the lumped element
model of Fig. 9 with the corresponding analytical expres-
sions for the circuit elements �not detailed here�. The result-
ing structure is the one shown in Fig. 3, with a lattice con-
stant d=34 mm, a host waveguide radius a=9.06 mm, and
the membranes and radial stubs are the one already described
in Secs. III A 3 and III B 4, respectively. The associated val-
ues of the lumped elements involved in the model are re-
ported in Table III. It can be observed that the balanced con-
dition, which writes masCas=mapCap,

25 is verified. It should
be noticed here that perfect balance is difficult to achieve in
practice since this property is very sensitive to any parameter
fluctuation. Thus, although the structure is perfectly balanced
according to the simplified model of Fig. 9, fine tuning of
some parameters is often required to maintain the balanced
condition for the real implemented structure. In the present
case, this is the stub length L that has been tuned for this
purpose.

Using the detailed model of Fig. 8 with expressions �7�
and �9� for Zam and Eq. �12� for Yat, we found that L had to
be tuned from 48.95 to 46.80 mm �considering a perfect
shortcut� in order to maintain the balanced condition. Further

TABLE III. Values of the lumped elements associated with the
proposed CRLH TL design �see Fig. 9 and Eq. �18��.

ma

�kg /m4�
Ca

�10−12 m3 /Pa�

Membrane mam=1296 Cam=17.42

Radial stub mat=348.3 Cat=9.138

Host TL sections maTL=156.1 CaTL=63.60

Series elements mas=1452 Cas=17.42

Shunt elements map=348.3 Cap=72.73

FIG. 9. Lumped element model for the symmetrical �-type unit
cell of the considered acoustic CRLH TL �symmetrical version of
the unit cell shown in Fig. 2�.
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tuning based on full-wave simulations with the real open
stub termination led to the physical stub length
L=43.50 mm for perfect balance.

V. PERFORMANCES

A. Bloch parameters

The Bloch parameters 
B=�B+ j�B and ZB have been cal-
culated from the model of Fig. 8, referred to here as the
“detailed model,” from the model of Fig. 9, referred to here
as the “lumped model,” and from full-wave simulation with
COMSOL MULTIPHYSICS �see CAD model of Fig. 3�. In the
latter case, a single asymmetrical unit cell has been charac-
terized in terms of reflection and transmission coefficients
under plane-wave incidence, from which the Bloch param-
eters associated with the corresponding symmetrical �-type
unit cell have been deduced.41 The results are shown in Fig.
10.

It can be observed on the dispersion diagram of Fig. 10�a�
that the structure exhibits a negative refractive index band
�opposite phase and group velocities� over a 50% relative
bandwidth, from the LH cutoff fcL=0.61 kHz to the transi-
tion frequency f0=1 kHz, and a positive refractive index
band from f0=1 kHz to the RH cutoff fcR=1.64 kHz. There
is no band gap between these two bands �balanced condi-
tion�, which results in a frequency with zero phase constant
�and thus zero refractive index� and nonzero group velocity.
An excellent agreement is observed between the full-wave
results and the detailed circuit model �the curves are almost
superimposed�. The lumped element model also provides
good results and can thus be efficiently used for preliminary
designs.

The Bloch impedance at f0 is ZB0=4.192 M�a �horizon-
tal line in the ZB plot�. The structure can thus be matched at
that frequency to an acoustic circular waveguide of charac-
teristic acoustic impedance Zace=ZB0, which corresponds to a
radius ae=5.54 mm �Zace=Zc / ��ae

2��. Moreover, the Bloch

impedance around the transition frequency f0 is smoothly
varying with frequency, which is favorable for wideband
matching.

B. Equivalent medium parameters

Although the periodic structure is completely character-
ized by its Bloch parameters 
B and ZB, equivalent medium
parameters can also be derived by analogy with a plane wave
propagating in an equivalent fluid. This formal analogy con-
sists in mapping the impedance of the series branch of the
unit-cell circuit with the impedance associated with an
equivalent mass density �eq and the admittance of the shunt
branch with the one associated with an equivalent bulk
modulus Keq. For a CRLH TL, a simple comparison of the
circuits of Figs. 1�a� and 2 yields
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FIG. 10. Bloch parameters extracted from full-wave simulation results �COMSOL MULTIPHYSICS� and circuit models for the implemented
CRLH TL. fcL and fcR are the LH and RH cut-off frequencies, respectively, f0 is the transition frequency between the LH and RH bands, and
f1 and f2 are the limits of the fast-wave band �see Sec. V D�. The “light lines” correspond to the dispersion in air �k= 
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with the terminology used in photonic crystals. The real part of 
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��eq =
Zas

j�
·

S

d

Keq
−1 =

Yap

j�
·

1

Sd
� with � Zas = j�mas +

1

j�Cas

Yap = j�Cap +
1

j�map
.�

�19�

Therefore, this is as if the same host waveguide was filled
with an homogeneous medium characterized by �eq and Keq.
For convenience, we define the corresponding relative quan-
tities �r,eq=�eq /� and Kr,eq

−1 =Keq
−1 /K−1, which are plotted in

Fig. 11 for the considered CRLH TL. It can be observed that
they exhibit a nonresonant behavior with negative values
over a relatively large bandwidth below the transition fre-
quency f0. It confirms that a series compliance is needed to
make the mass density become negative, as the shunt mass
does for the bulk modulus. This motivates the developments
and use of circuit models as an efficient tool to achieve nega-
tive parameters.

This analogy only makes sense provided that the lattice
constant d is small compared to the wavelength in the
equivalent medium, thus around the transition frequency,
where this wavelength approaches infinity. Outside this band,
periodicity effects such as the occurrence of the stopbands
below fcL and above fcR begin to play an important role,
which prevents a meaningful effective-medium description.

C. Scattering parameters for a 10-cell-long structure

The performances of the proposed CRLH TL are further
validated by considering a 10-cell-long structure character-
ized in terms of reflection and transmission coefficients � and
�, respectively �or scattering parameters�, under plane-wave
incidence from an external waveguide of radius
ae=5.54 mm �see Sec. V A�. As the unit cell is symmetrical
of the � type �see Fig. 8 or 9�, the structure should be ter-
minated at both sides with an admittance Yat /2, or equiva-
lently an acoustic mass 2mat and an acoustic compliance
Cat /2. This is approximately achieved using a stub of half
width b /2, as shown in Fig. 12.

The resulting scattering parameters obtained from full-
wave simulations and circuit models are shown in Fig. 13.
As imposed in the design, the CRLH TL is well matched
over a large part of its passband �����−10 dB from about
0.7 to 1.45 kHz� and the transmission phase is 0 around 1
kHz. Globally, a good agreement is observed between full-
wave and circuit model results, the detailed model being
slightly more accurate with respect to the full-wave model
than the lumped model, as expected. However, it can be ob-
served that the simulated reflection coefficient � is not as low
as determined using the detailed model around the transition
frequency f0. This is attributed to radiation, as explained in
Sec. V D, a phenomenon which cannot be accounted for in
the considered circuit models since they only involve loss-
less elements.

D. Radiation losses

As all the materials in the proposed CRLH TL have been
considered as lossless in the full-wave simulations, the
losses, if any, can only be due to radiation from the stubs
apertures. To assess the importance of this phenomenon, the
“efficiency” defined as �= ���2+ ���2 has been calculated from
the full-wave simulation results of the 10-cell structure and is
plotted in Fig. 14. If no losses are present, we should have
�=1. It can be observed that radiation losses mostly occur
between f1 and f2, where about 25% of the power is lost by
radiation. This frequency range coincides with the so-called
fast-wave band observed in the dispersion diagram of Fig.
10�a�, in which the phase velocity in the periodic structure is
faster than the velocity of acoustic waves in the surrounding
medium �air� �light lines�. This effect is analogous to Cher-

FIG. 12. Modified half-width stub at the periodic structure ter-
mination �idem at the other side�.
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enkov radiation of a charged particle which exceeds the
speed of light in a medium. This peculiar feature for this type
of metamaterials has been extensively exploited in micro-
wave antenna engineering for the development of a different
type of leaky-wave antennas with full-space scanning capa-
bilities, from backfire �at f1� to endfire �at f2�, including
broadside �at f0�.2,24,25 The proposed structure thus represents
the analog for acoustic waves of these antennas, thereby
opening the door for the investigation of directive acoustic
sensors or sources based on this principle. Such structures
can also be seen as arrays of weakly radiating apertures fed
with the required phase shift by the periodic structure itself.

It can be finally mentioned that, although the considered
circuit models cannot directly account for radiation losses
due to their lossless nature, they can predict at which fre-
quency radiation will take place thanks to an accurate esti-
mation of the dispersion diagram. Indeed, the latter is not
significantly affected by losses, provided that the amount of
losses per cell remains small.

VI. CONCLUSION

Circuit-theory concepts have been efficiently used to con-
ceptualize and design an acoustic nonresonant TL-based
metamaterial. The particularity resides in using membranes

to implement the required series compliances, whereas the
shunt acoustic masses have been achieved with transversally
connected open channels. This structure presents interesting
properties in, at least, two regards. First, it exhibits a nega-
tive refractive index over almost one octave �0.6–1 kHz�,
which is considerably larger than what can be achieved with
locally resonant acoustic metamaterials. Second, the struc-
ture exhibits a balanced CRLH response, i.e., no band gap
exists between the positive and negative index frequency
bands which touch at a particular frequency with zero refrac-
tive index and nonzero group velocity. Moreover, the lattice
constant is ten times smaller than the wavelength, which
largely justifies an effective-medium description. The afore-
mentioned performances have been confirmed by full-wave
simulations in terms of dispersion diagram, Bloch imped-
ance, and reflection and transmission coefficients.

The radiation properties of this periodic structure have
also been investigated. They point out to interesting applica-
tions, in which the structure could be used as a directive
acoustic sensor or source with enhanced beaming character-
istics, by analogy with the metamaterial leaky-wave antennas
developed in microwave engineering.2,24,25

The developed structure might also find applications in
subwavelength resonant cavities based on phase compensa-
tion between negative and positive index media.42 Further
work should aim at the investigation of two-dimensional
structures based on the same principle. Here, targeted appli-
cations are wideband and well-matched negative index
acoustic lenses for acoustic imaging applications. The spe-
cific zero refractive index frequency may also find very in-
teresting applications43 and similar structures can also be
adapted to cloaking.44,45 Indeed, although cloaking does not
explicitly require negative refractive index media, the pro-
posed structures based on membranes and/or stubs can also
be operated in the band where they exhibit a positive but less
than one refractive index. In summary it is hoped that the
methods developed in this paper will pave the way for ex-
perimental validation of these exciting properties on real pro-
totypes, that should be obtained through a one-pass, pitfall-
devoid design process.
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