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The composition-dependent lattice parameters and elastic constants of In1−xTlx�0�x�0.4� alloy in face-
centered-cubic �fcc� and face-centered-tetragonal �fct� crystallographic phases are calculated by using the
first-principles exact muffin-tin orbitals method in combination with coherent-potential approximation. The
calculated lattice parameters and elastic constants agree well with the available theoretical and experimental
data. For pure In, the fcc phase is mechanically unstable as shown by its negative tetragonal shear modulus C�.
With Tl addition, C� of the fcc phase increases whereas that of the fct phase decreases, indicating that the fcc
phase becomes mechanically more stable and the fct phase becomes less stable. In addition, the structural
energy difference between the fcc and fct phases decreases with x. Both of these effects account for the
observed lowering of the fcc-fct martensitic transition temperature upon Tl addition to In. The density of states
indicates that the stability of the fct phase relative to the fcc one at low temperatures is due to the particular
electronic structure of In and In-Tl alloys.
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I. INTRODUCTION

Indium-thallium alloys in the composition range of
16–31 at. % Tl undergo a martensitic transition from the
high-temperature face-centered-cubic �fcc� phase to the low-
temperature face-centered-tetragonal �fct� phase.1,2 This tran-
sition is of particular interests since it exhibits distinct first-
order transition but nearly second order.1,3

The knowledge of the elastic constants in general is cru-
cial for understanding the structural transformation. The mar-
tensitic transformation �MT� in In-Tl is accompanied by a
pronounced softening of the shear modulus C�= 1

2 �C11
−C12�. This unusual softening behavior was proposed result-
ing from the combination of reversible twinning and changes
in the unit cell on a very fine scale in the alloy.4 Efforts have
been made to measure the elastic moduli of several In-Tl
alloys in either fct or fcc structures.4–6 According to the ex-
periments by Gunton and Saunders,5 at room temperature, C�
decreases from 2.7 GPa �corresponding to pure In� to 1.8
GPa �1.2 GPa� when 12 at. % �15 at. %� Tl is added to
body-centered tetragonal �bct� In. On the other hand, C� of
fcc In-Tl with 24–27 at. % Tl approaches zero.4,5 Despite
numerous experimental investigations, a systematic study of
the elastic parameters of In-Tl alloy in different lattice struc-
tures is still demanded in order to understand the
composition-dependent phase transition.

Nowadays, first-principles methods based on density-
functional theory7,8 are employed routinely to evaluate the
elastic constants of materials. Yang et al.9 and Do et al.10

have calculated the elastic constants of pure In using tight-
binding �TB� and plane-wave pseudopotential �PWPP� meth-
ods, respectively. The TB calculations by Yang et al.9 gener-
ated C44 and C66 almost twice the experimental values.11–13

The elastic constants from the PWPP calculation by Do et

al.10 are in a good agreement with the experimental measure-
ments. Unfortunately, due to the inconvenience of the first-
principles method in treating random alloy, the first-
principles investigation of the elastic properties of In-Tl
alloy has not yet been addressed. Recent implementation of
the exact muffin-tin orbital �EMTO� �Refs. 14–18� theory in
combination with the coherent-potential approximation
�CPA� �Refs. 19 and 20� describes reliably the elastic param-
eters of various random alloys such as Fe-Cr, Ag-Zn,
etc.18,21–27 Adopting the EMTO-CPA method, here we inves-
tigate systematically the composition-dependent elastic prop-
erties of In-Tl alloy in both cubic and tetragonal structures.

The rest of the paper is arranged as follows: in Sec. II, we
describe the theoretical methods employed in the present
work, i.e., ab initio EMTO-CPA method. In Sec. III, the
composition-dependent lattice parameters and elastic con-
stants of In1−xTlx �0�x�0.4� alloys are presented. The rela-
tive stability of the fcc and fct phases is discussed using the
calculated elastic constants, the total-energy difference, and
the electronic density of states �DOS�. Finally, we summarize
our main results in Sec. IV, and in the Appendix, we briefly
review the technique used to calculate the elastic constants of
cubic and tetragonal crystals.

II. METHODS AND CALCULATIONS DETAILS

All calculations were performed by using the first-
principles EMTO method.14–18 EMTO is an improved
screened Koringa-Kohn-Rostoker method. In contrast to the
usual muffin-tin-based methods, within EMTO theory, the
one-electron states are determined exactly �within the com-
mon numerical errors, such as the one cutoff, numerical in-
tegrations, etc.� for an optimized overlapping muffin-tin po-
tential. This potential is chosen as the best possible spherical
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approximation to the exact potential, compared to the con-
ventional muffin-tin or nonoverlapping approach.15,18,28 The
radii of the potential spheres, the spherical potential waves,
and the constant potential in the interstitial region are calcu-
lated by minimizing the deviation between the exact and
overlapping potentials and the errors coming from the over-
lap between spheres. With these improvements and with the
full charge-density technique for the total energy,29 the
EMTO method is suitable to describe accurately the total
energy with respect to anisotropic lattice distortions. Another
advantage of the EMTO method compared to other first-
principles methods such as plane-wave methods is that, the
CPA �Refs. 19 and 20� can be conveniently incorporated.
This greatly facilitates the calculations of the systems with
chemical disorder at first-principles level. The accuracy of
the EMTO-CPA method for the equation of state and elastic
properties of metals and disordered alloys has been demon-
strated in a number of former works.17,18,21–27

In the present application, the EMTO basis sets included
s, p, d, and f components. The Green’s function was calcu-
lated for 32 complex energy points distributed exponentially
on a semicircular contour. For the muffin-tin potential sphere
�Rmt�, the usual setup Rmt=Rws, with Rws being the Wegner-
Seitz radius, was selected. In the one-center expansion of the
full charge density, the number of components was truncated
at 8, and the scalar-relativistic and soft-core approximations

were adopted. The In 4d105s24p1 and Tl 5d106s26p1 states
were treated as the valence states. The exchange-correlation
term was described using the AM05 functional developed by
Armiento and Mattsson.30 For fcc and fct In and hexagonal-
close-packed �hcp� Tl, the ground-state properties obtained
using the local-density approximation �LDA� �Ref. 31� and
generalized gradient approximation by Perdew, Burke, and
Ernzerhof �PBE� �Ref. 32� are also presented. Throughout of
our calculations, the Brillouin zone was sampled by a 17
�17�17 uniform k-point mesh without any smearing tech-
nique. The error bars for the elastic constants are estimated
from the accuracy of the numerical fit for the energy change
versus distortion.

III. RESULTS AND DISCUSSION

A. Elastic constants of pure In

Table I lists the equilibrium lattice parameter, bulk modu-
lus of pure fct and fcc In and hcp Tl, and the total-energy
difference between fcc and fct In, in comparison with the
other theoretical and experimental values. As expected, LDA
underestimates the lattice parameters and overestimates the
bulk modulus for both fct and fcc In and hcp Tl. For fct In,
PBE generates c /a �1.132� in better agreement with the ex-
perimental value �1.076� than AM05 �1.151�. The AM05 c /a

TABLE I. Theoretical �present results obtained using the LDA, PBE, and AM05 approximations� equi-
librium lattice parameters �in Å�, bulk modulus �in GPa� of pure fct and fcc In and hcp Tl, and the total-
energy difference �E �in mRy/atom� between fcc and fct In ��E=Efcc−Efct�. For comparison the available
theoretical results and experimental data are also included. PAW stands for projector augmented wave and
PW91 is the exchange-correlation approximation by Perdew and Wang �Ref. 33�.

Phase Method a c c /a B �E

fct-In LDA 4.438 5.068 1.142 47.7

PBE 4.612 5.220 1.132 32.8

AM05 4.595 5.289 1.151 41.1

Expt.a 4.600 4.947 1.076 41.1

PAW-LDAb 4.473 4.923 1.101 50.6

PAW-PW91b 4.677 5.030 1.076 35.8

TBc 4.204 4.815 1.146 52.0

fcc-In LDA 4.646 46.4 +0.70

PBE 4.825 32.5 +0.37

AM05 4.706 40.7 +0.60

Expt.d +0.07

PAW-LDAb 4.620 49.1 +0.19

PAW-PW91b 4.792 35.7 +0.06

TBc 4.651 52.0 +3.68

hcp-Tl LDA 3.254 5.210 1.601 41.6

PBE 3.421 5.416 1.583 31.0

AM05 3.325 5.310 1.597 31.5

Expt.e 3.463 5.539 1.599 34.0

aReference 34.
bReference 10.
cReference 9.
dReference 35.
eReference 36.
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ratio, on the other hand, is in agreement with that from TB
calculation �1.146� �Ref. 9� but slightly larger than those
from the experiment34 and the first-principles projected aug-
mented wave �PAW� calculations.10 This discrepancy may
partly be ascribed to the muffin-tin approximation employed
in the present study. We note that the actual equilibrium c /a
sensitively depends on the potential sphere radii. For in-
stance, when setting the muffin-tin potential sphere to Rmt
=1.05Rws, the equilibrium c /a ratio of the fct In turns out to
be about 1.090. It is noted that for all the theoretical calcu-
lations, the fcc In is higher in energy than the fct one which
explains the stable fct structure of In at lower temperature.
For hcp Tl, PBE yields lattice parameters a and c in better
agreement with the experimental values36 than LDA and
AM05. However, the theoretical c /a from all three function-
als are close to each other, and in good agreement with ex-
perimental measurement.36

Table II presents the calculated elastic constants and De-
bye temperature ��� of the fct and fcc In in comparison with
those from other theoretical calculations and experimental
measurements. For both fct and fcc phases, the elastic con-
stants from AM05 are in between those from LDA and PBE.
PBE underestimates most of the elastic constants except C44
and C66 whereas LDA overestimates seriously C66. In gen-
eral, AM05 elastic constants are in better agreement with
those from experimental measurements at low temperature
�77 K� than those corresponding to the LDA and PBE ap-
proximations. The largest error is only about 14% for C13.
The AM05 elastic Debye temperature ��� for a polycrystal-
line In is about 113.1 K, which is very close to the experi-
mental value of 111.3 K.13 Because of these, for the alloys
we will present results obtained using this approximation
only.

For fcc In, we get negative C� from the three approxima-
tions since C11 is smaller than C12, which is in line with the
first-principles PAW calculations.10 The dynamical or me-
chanical stability condition of a lattice implies that the en-
ergy change �E�VCijeiej upon any small deformation is
positive. This condition can be formulated in terms of elastic
constants. The stability criteria for cubic crystals requires
that C11� �C12�, C11+2C12�0, and C44�0, and for tetrago-
nal crystals is that C11� �C12�, C33�0, C44�0, C66�0,
�C11+C33−2C13��0, and �2C11+C33+2C12+4C13��0.
From our calculations, the theoretical elastic constants of fct
In satisfy all of the conditions, whereas those of fcc In do not
meet the condition C11� �C12� since C� is minus. Therefore,
at 0 K, fcc In is not thermodynamically stable and the pure In
is stabilized by fct structure.

B. Lattice parameters of In-Tl alloys

In order to investigate the composition dependence of
elastic properties of In1−xTlx �0�x�0.4� random alloys, first
we calculate the equilibrium lattice parameters for both fct
and fcc phases as a function of the composition of the alloy.
Figure 1 displays the equilibrium a and c /a ratio of the fct
phase, in comparison with those from experimental
measurements.1,42 It is seen that with increasing x, a in-
creases whereas c /a ratio decrease almost linearly. The
trends of both a and c /a ratio are in accordance with the
experimental measurement. The calculated a values are in
perfect agreement with the experimental data whereas the
theoretical c /a ratios are slightly larger than those from ex-
periments.

TABLE II. Theoretical elastic constants �in GPa� and Debye temperature ��, in K� for pure fct and fcc In, respectively, in comparison
with the available theoretical results and experimental data. The estimated theoretical error bars are also shown.

Phase Method C11 C12 C13 C33 C44 C66 C� �

fct LDA 57.8�1.57 44.2�1.57 42.9�0.92 53.6�3.70 11.2�0.19 25.1�0.48 6.8�1.30 136.5

PBE 38.1�1.96 28.3�1.96 30.7�0.76 39.6�2.10 7.2�0.07 14.9�0.36 4.9�1.12 111.1

AM05 49.1�1.84 37.3�1.84 38.8�0.45 46.6�2.67 6.6�0.06 15.7�0.42 5.9�0.99 113.1

Expt. �298 K�a 44.4 39.4 40.4 44.3 6.5 12.2 2.5

Expt. �300 K�b 45.4 40.1 41.5 45.2 6.5 12.1 2.7

Expt. �77 K�b 52.6 40.6 44.6 50.8 7.6 16.0 6.0

Expt. �4.2 K�b 53.9 38.7 45.1 51.6 8.0 16.8 7.6

Expt. �0 K�b 111.3

PAW-LDA 69.6 36.2 46.2 57.5 13.7 17.6 16.7

PAW-PW91c 44.6 25.8 33.9 41.4 5.6 13.3 9.4

TBd 13.4 22.6 4.2

fcc LDA 40.9�2.09 49.1�1.05 14.9�0.54 −4.1�1.57

PBE 30.6�1.05 33.4�0.53 11.7�0.11 −1.4�0.79

AM05 35.9�1.99 43.1�0.99 13.0�0.48 −3.6�1.49

PAW-LDAc 42.4 52.5 10.2 −5.1

PAW-PW91c 35.1 36.0 5.5 −0.5

aReference 12.
bReference 13.
cReference 10.
dReference 9.
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The c /a ratio of the tetragonal phase has been related to
the martensitic transition temperature TM of the alloys such
as Ni2MnGa alloy undergoing the cubic to tetragonal phase
transition with lowering temperature.37,38 According to this
correlation, a larger �c /a−1� corresponds to a higher TM.
From our calculations, the �c /a−1� ratio of In1−xTlx alloys
decreases with increasing x, indicating that TM should de-
crease accordingly. This is in line with the experiments
showing that TM of In1−xTlx decreases from about 400 to 0 K
with x increasing from about 0.2 to 0.3.39–41

Figure 2 shows the composition-dependent lattice param-
eter a of the fcc In1−xTlx. As seen from the figure, a increases
almost linearly with increasing x. For x�0.2, the calculated
a values are in perfect agreement with those from
experiments.1,42 The experimental a of fcc In1−xTlx with x
� �0.2 is not available since in this composition range the
fcc phase is not stable.

C. Elastic constants of In-Tl alloys

Using the equilibrium lattice structures determined in Sec.
III B, we calculated the elastic constants of In1−xTlx alloys.
Figures 3 and 4 show the elastic constants relative to those of
the pure In for both fct and fcc phases, as function of x. As
shown in Fig. 3, for the tetragonal phase, C11, C33, and C66
decrease significantly with increasing x: for x=0.4, C11 is

FIG. 1. �Color online� Lattice parameters �a in angstrom and
c /a� of fct In1−xTlx �0�x�0.4� alloys as a function of x. The
experimental data are from Refs. 1 and 42.

FIG. 2. �Color online� Lattice parameter �a in Å� of fcc In1−xTlx
�0�x�0.4� alloys as a function of x. The experimental data are
from Refs. 1 and 42.

FIG. 3. �Color online� The relative change in the elastic con-
stants of fct In1−xTlx �0�x�0.4� alloys as a function of x. The
experimental results are from Ref. 5.

FIG. 4. �Color online� The relative change in the elastic con-
stants of fcc In1−xTlx �0�x�0.4� alloys with the composition x.
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20% smaller than that of pure In whereas C33 and C66 reduce
about 15%. C13 also decreases linearly with increasing x but
the decreasing is moderate compared to C11, C33, and C66:
with x up to 0.4, C13 decreases about 5%. The variation in
C12 and C44 with x is quite small and nonlinear. C12 de-
creases slightly with increasing x and remains almost con-
stant with x� �0.25. C44 increases slightly with x up to x
=0.25 and then decreases with increasing x for x� �0.25.

Figure 4 shows the variation in the elastic constants of fcc
In1−xTlx against x. It is seen that C11 increases whereas C12
decreases with increasing x. C44 first increases with x and
then remains almost unchanged for x� �0.25.

The MT of In-Tl alloys results from the soft-phonon
modes and their accompanying soft tetragonal shear modulus
C�= 1

2 �C11−C12� of the high-temperature fcc phase.6,43 For
alloys undergoing MT, the composition dependence of TM is
generally related to the composition dependence of C�: the
lower the elastic constant the higher the TM will be.44–46 This
relationship is confirmed for both TiNi-based shape memory
alloys and various kinds of off-stoichiometric Ni2MnGa
alloys.47–49 In order to correlate the elastic stability with the
MT, we calculated the tetragonal shear moduli C� of both fct
and fcc In1−xTlx alloys as shown in Fig. 5. C� of the fct phase
is larger whereas C� of the fcc phase is slightly smaller than
the experimental value. The reason is that our elastic con-
stants are calculated at 0 K but the experimental values were
measured at finite temperature. A typical feature of the In-Tl
alloys is that C� of the fct martensitic phase decreases and
that of the fcc austenite increases with increasing
temperature,4,13 such as shown in Table II, for pure In in fct
phase, C�=7.6 GPa at 4.2 K, whereas around room tempera-
ture �298 K�, C� turns out to be 2.5 GPa, only about one third
of that value corresponding to 4.2 K.

The present calculations reproduce well the experimental
trends of C� against the compositions for both phases: C� of
fct decrease and C� of the fcc phase increases with increas-
ing x. The fcc phase becomes mechanically stable for x�
�0.30, where C� becomes positive. These trends indicate
that the low-temperature fct phase becomes mechanically
soft �less stable� whereas the high-temperature fcc phase be-
comes more stable, corresponding to lowering MT tempera-
ture. This is in accordance with experimental measurements
of the MT temperature showing that the MT temperature
decreases from about 400 to 0 K with x increasing from
about 0.2 to 0.3.39–41

D. Phase stability

The relative phase stability can be measured by the total-
energy difference between the two competing phases:
�Etot

fcc-fct=Efcc−Efct with Efcc and Efct being the energies of
the fcc and fct phases, respectively. Figure 6 shows �Etot

fcc-fct

as a function of the concentration of Tl together with the
experimental martensitic transition temperature �right axis�.
It is seen that, with increasing x, �Etot

fcc-fct decreases, indicat-
ing the fct phase becomes thermodynamically less stable
relative to the fcc phase. This results in lowering martensitic
transition temperature, in agreement with the experimental
finding. We should also note that the �Etot

fcc-fct�0 for all com-
positions considered here, meaning that at static conditions
�without any phonon contribution� the fct structure remains
the stable phase.

Due to the softer C� of the fcc phase than that of the fct
phase, the fcc phase can be further stabilized by the lattice
vibration effect. At 0 K, the zero-point vibrational energy
difference is approximately �Fvib

fcc-fct� 9
8kB��, where �� is

the difference of Debye temperatures between the fcc and fct
phases, and kB the Boltzmann constant. For x=0.35, the De-
bye temperature evaluated from the calculated elastic con-
stants is about 82.3 K for the fct phase and 39.0 K for the fcc
phase as shown in the inset of Fig. 6. These yield a vibration
energy difference of �Fvib

fcc-fct=−0.31 mRy /atom. Thus, the
overall free-energy difference �Ftot

fcc-fct=�Etot
fcc-fct+�Fvib

fcc-fct re-

FIG. 5. �Color online� The composition dependence of shear
modulus C� of In1−xTlx �0�x�0.4� alloys with fct �upper panel�
and fcc �lower panel� structures. The experimental data are from
Refs. 5, 50, and 51.

FIG. 6. �Color online� The total-energy difference �Etot
fcc-fct be-

tween fcc and fct phases and the Debye temperature � in both fct
and fcc In1−xTlx alloy �in the inset� with respect to x �0�x�0.4�.
Presented also in the figure is the experimental martensitic transi-
tion temperature TM from Refs. 39–41.
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duces from +20 mRy /atom �corresponding to static condi-
tions� to −0.11 mRy /atom. Therefore, the fcc In1−xTlx with
x=0.35 turns out to be thermodynamically stable at 0 K, in
perfect agreement with experimental finding. It is interesting
to point out that the structural transition is realized by the
phonon terms. Taking into account the present theoretical
error bars for C� �Table II�, from Fig. 5 we can see that the
above transition might in fact occur already around 25–30 %
Tl.

E. Electronic structure

In order to investigate the electronic origin of the compo-
sition dependence of phase stability of In-Tl binary alloy, we
calculate the DOS for pure In and In1−xTlx �x=0.15 and x
=0.30� alloys. The components of s, p, and d states of the
total DOS are shown in Fig. 7. The DOS around the Fermi
level is mainly governed by the p states of In/Tl with a small
contribution from the s state. For the fcc phase of pure In
�x=0�, there exits a strong peak right at the Fermi level,
which is ascribed to the degenerated nonbonding p states of
the In atoms. The degenerated states split in the fct phase
�Peierls distortion�. Therefore, the Fermi level of fct In lo-
cates in a wide pseudogap from −0.05 to 0.05 Ry, indicating
further hybridization between the p states of fct In atoms and
stronger bonding between the In atoms than those in fcc
phase. This is why the fct phase is more stable than the fcc
phase of pure In at 0 K.

With increasing x, the number of p states at the Fermi
level of the fcc phase remains almost unchanged. For the fct
phase, however, the pseudogap becomes narrower, indicating

weaker hybridization between the electronic orbitals. On the
other hand, the Fermi level shifts away from the bottom of
the pseudogap and the DOS at the Fermi level increases.
Therefore, the fct phase becomes less stable �the kinetic en-
ergy increases�. We conclude that the trend of DOS against
the composition of the In1−xTlx alloy explains satisfactorily
the decreasing stability of fct phase relative to that of the fcc
one, in accordance with the calculated total-energy differ-
ence between these phases as shown previously in Fig. 6.

IV. CONCLUSION

Using the first-principles EMTO-CPA method, we have
investigated the composition-dependent lattice parameters
and elastic properties of In1−xTlx �0�x�0.4� random alloys
in fcc and fct structures. With increasing x, both the fcc and
fct lattice parameter a increases and the tetragonal c /a ratio
decreases. Pure fcc-In is mechanically unstable �possesses
negative tetragonal shear modulus C��. With increasing x, C�
of the fcc phase increases and that of the fct phase decreases,
indicating increasing stability of the fcc phase and decreas-
ing stability of the fct phase and, therefore, lowering critical
temperature of the fcc-fct martensitic transition temperature.
The instability of the fcc phase at low temperatures is due to
degenerated states near the Fermi level. These states split in
the fct phase which stabilizes the fct phase. With increasing
x, the fct phase becomes less stable �thermodynamically� be-
cause an alloying induced peak develops in the fct DOS near
the Fermi level.
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APPENDIX

At a fixed volume V, the elastic constants of a single
crystal can be evaluated by straining the lattice and calculat-
ing the variation in the total energy induced by the strain.
Applying a volume conserving strain tensor

D�e� =�
1 + e1

1

2
e6

1

2
e5

1

2
e6 1 + e2

1

2
e4

1

2
e5

1

2
e4 1 + e3

� �A1�

to a crystal lattice, the total energy of the strained crystal can
be written as

FIG. 7. �Color online� The DOS of In1−xTlx �x=0, 0.15, and
0.30� alloys for fcc �a� and fct �b� crystallographic phases. s, p, and
d denote the three decomposed states of the total DOS. The vertical
line indicates the Fermi level.
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�E�e1,e2, . . . ,e6� =
1

2
V �

i,j=1,6
Cijeiej + O�e3� . �A2�

With properly selected strain tensor, the elastic constants can
be conveniently evaluated by fitting the �E�e1 ,e2 , . . . ,e6� as
functions of ei. In the above equation, we adopt the Voigt
notation �xx, yy, zz, yz, xz, and xy are replaced by 1, 2, 3, 4,
5, and 6, respectively�.

For a cubic crystal, C11=C22=C33, C12=C13=C23, and
C44=C55=C66. Therefore, three different deformations are
needed to calculate the three independent elastic constants.
In the present work, we first determine the bulk modulus B
by fitting the calculated total energies versus volume �nine
data points� to a Morse function,52 from which we get the
equilibrium volume as well. B is related to C11 and C12 as
B= 1

3 �C11+2C12�. Then the shear moduli C�= �C11−C12� /2
and C44 are calculated by using the volume conserving ortho-
rhombic and monoclinic deformations, namely,

�
1 + � 0 0

0 1 − � 0

0 0
1

1 − �2
� , �A3�

which yields the energy change in �E���=2VC��2+O��4�,
and

�
1 � 0

� 1 0

0 0
1

1 − �2
� , �A4�

which results in the energy change in �E���=2VC44�
2

+O��4�. C11 and C12 is then derived from B= 1
3 �C11+2C12�

and the shear modulus C�.
For a tetragonal crystal, C11=C22, C13=C23, and C44

=C55. The six independent elastic constants C11, C33, C12,
C13, C44, and C66 are calculated as follows. First, since the
tetragonal axial ratio c /a generally changes with the volume,
by calculating the total energy E�V ,c /a� for a series of dif-
ferent c /a ratios at each volume V, we obtain the optimized
�c /a�0�V� from the minimum of E�V ,c /a�. The volume de-
pendence of �c /a�0�V� can be related to the difference in the
linear compressibilities along the a and c axes. Similarly to
the hexagonal case,53 we introduce a dimensionless quantity
R as

R = −
d ln�c/a�0�V�

d ln V
, �A5�

which in terms of tetragonal elastic constants becomes

R =
C33 − C11 − C12 + C13

C11 + C12 + 2C33 − 4C13
. �A6�

Second, at the optimized c /a ratio, the bulk modulus B for a
tetragonal crystal can be expressed as

B =
C33�C11 + C12� − 2C13

2

C11 + C12 + 2C33 − 4C13
, �A7�

which, when R is close to zero 	the volume dependence of
�c /a�0 is very small
, reduces to B= 2

9 �C11+C12+2C13
+C33 /2�. Then, in order to calculate the elastic constants of a
tetragonal crystal, we need to make another four independent
volume deformations. Here, we choose the two deformations
employed for the fcc crystal, i.e., Eq. �A3� corresponding to
the energy change in �E���=2VC��2+O��4� and Eq. �A4�
corresponding to the energy change in �E���=2VC66�

2

+O��4�. For other two deformations, we choose the ortho-
rhombic deformation

�
1 0 �

0
1

1 − �2 0

� 0 1
� , �A8�

leading to the energy change in �E���=2VC44�
2+O��4�, and

monoclinic deformation

�
1 + � 0 0

0 1 0

0 0
1

1 + �
� , �A9�

generating the energy change in �E���= 1
2V�C11−2C13

+C33��2+O��4�.
The tetragonal phase of In-Tl can be described either as a

fct or as a bct structure. In the present work, we calculate the
elastic constants in the bct structure. Then the elastic con-
stants for the fct structure are obtained by the following
transformations:54

C11�fct =
1

2
�C11 + C12 + 2C66��bct,

C12�fct =
1

2
�C11 + C12 − 2C66��bct,

C13�fct = C13�bct,

C33�fct = C33�bct,

C44�fct = C44�bct,

C66�fct =
1

2
�C11 − C12��bct. �A10�

Throughout of the present work, in order to get good fit-
ting coefficients, six strains from �=0 to �=0.05 with inter-
val of 0.01 are used to calculate the total energies.
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