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In their Comment, Greer et al. �i� put us in charge of a pretended wrong claim, which we never made in our
paper of Phys. Rev. B 78, 115315 �2008�, where we criticized a method �DG� proposed by two of them, �ii�
incorrectly claim that the DG method can reproduce the conductance quantum g0, but �iii� to deduce g0 for a
toy model, they carry out calculations within the standard Landauer method, which has nothing to do with the
DG’s. We present results for their model obtained within the DG method, which demonstrate that the DG
method fails as lamentably as in the examples we presented in our earlier work. We also analyze the physical
reasons why the DG method fails.
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I. INTRODUCTION

In their Comment,1 Greer, Delaney, and Fagas �henceforth
GDF� claim that they can resolve the conundrum expressed
in our paper2 �referred to as I below�, where we challenged a
method �DG� put forward by two of them in Ref. 3 and
subsequently used in their Refs. 4–6 Unfortunately, their at-
tempt to refute our criticism of I �a reference which GDF
even omit in their bibliography list� is based on a series of
inaccuracies and statements without any support. This starts
from the abstract of Ref. 1, wherein GDF incorrectly state
that we criticized a so-called MECS �many-electron corre-
lated scattering� approach, which was not even mentioned in
I, nor defined in the works3–6 that made the object of our
criticism. Before discussing the controversial issues in detail,
we emphasize the following:

�i� Using the acronym MECS, GDF obviously distract
attention from the fact that the �DG� method3–6 envisaged by
us is manifestly a variational one. In their “brief introduction
to the MECS approach” �Sec. II of Ref. 1�, they completely
omit to state that the variational ansatz �namely, the minimi-
zation of the total energy in the presence of an external bias
V� is an essential ingredient of the DG method; in that intro-
duction, they do not define a transport approach, but merely
review well-known properties of the Wigner function �WF�
f�q , p�.

�ii� With this acronym and “carefully” chosen quotations
from I, by only mentioning in passing “the variational struc-
ture of the MECS calculations performed to date…” �Sec.
V�, without noting that all their calculations criticized in I
are variational, they aim to convey the false impression that
the DG method merely consists of open boundary conditions
�OBCs� expressed in terms of the WF, and that I only criti-
cizes these WF-OBCs. We stress from the very beginning
that what we criticized in I is the DG variational approach as
such, and in particular the WF-OBCs in the specific context
of that method employed to a finite cluster; the DG approach,
as any transport theory, cannot be reduced to whatever
boundary conditions �BCs�.

�iii� None of the results of GDF �their Sec. IV� were ob-
tained within the DG method, but simply within the well-

established Landauer approach for an uncorrelated toy model
�GDF model hereafter�.7

GDF mainly claim that: our critique in I of the DG
method is invalid, and they present calculations within a
simple model that reproduce the conductance quantum g0.
The first claim is wrong, as explained in Sec. II. In Sec. III,
we show that the second claim is irrelevant, because their
derivation of g0 is done within the Landauer approach and
not within the variational DG approach criticized by us.
Some challenges to the results thus obtained by GDF are
presented in Sec. IV. Next, in Sec. V we present results for
the GDF model deduced within the DG method, which
clearly demonstrate the failure of that method. The other
issues raised by GDF are addressed in Sec. VI. In Sec. VII
we indicate the physical reasons why the DG method fails.
Conclusions are presented in Sec. VIII.

II. REFUTING THE GDF CRITICISM TO OUR WORK

The main presumptions made by GDF to refute the criti-
cism of I are that: �i� we incorrectly presumed an asymmetric
injection of momentum, �ii� we incorrectly assumed that
there is no chemical potential difference when applying
OBCs, and �iii� we appear to be confusing in the application
of OBCs when using either momentum or energy distribu-
tions.

All these claims are wrong. To arrive at our basic Eqs.
�19�–�21�, which yielded the results presented in Figs. 2–5,
and 7, demonstrating the lamentable failure of the DG
method, we made exactly what that method prescribes: en-
ergy minimization, Eq. �1�, with WF-OBCs, Eqs. �5� and �6�,
wave function normalization, Eq. �9�, and, if not otherwise
specified, current conservation, Eq. �8�. More specifically:

To �i�: A momentum asymmetry was assumed neither in
the analytical results of Eqs. �19�–�21�, nor in the numerical
results of Figs. 2–5, and 7. In our WF-OBCs, Eqs. �5� and
�6�, the “momenta” pL,R in the LHS and RHS are the same.
Otherwise, we should have written, e.g., f�qL,R , pL,R��p�
= f0�qL,R , pL,R�, �p=O�V�.

To �ii�: This is wrong, we do assume a nonvanishing
chemical potential difference �eV�. The bias V enters our
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calculations because the quantity to be minimized of Eq. �1�
does depend on it via W. Consequently, the wave function �
obtained within the DG procedure does contain an asymme-
try between the left and right electrodes for V�0, and this
asymmetry reflects itself in the WF at the boundaries. With-
out this dependence, e.g., the quantity �f = f − f0�0 for elec-
trons flowing from the device into electrodes displayed in
Fig. 2 would have been zero.

To �iii�: By faithfully applying the DG method to well-
defined models in I, we were simply faced with a mathemati-
cal problem whose solution is exact and unique within the
linear response theory, and unambiguously yields unphysical
results. We needed not explicitly discuss, e.g., the distinction
between momentum and energy distributions.

The numerical results presented in I, which are com-
pletely unphysical, are nothing but the results of the varia-
tional DG method, because in I we did nothing else than
exactly what that method prescribes. Therefore, any critique
to I represents in reality a critique of the DG method itself.

III. REBUTTAL OF THE CLAIM ON THE
REPRODUCTION OF THE CONDUCTANCE QUANTUM

GDF write: “In practice, the” WF “is used to constrain the
momenta flow out of the electron reservoirs and into the
scattering region” �Sec. II�. This “practice” does not obvi-
ously refer to the Comment; simply, GDF use Eqs. �3�–�5�
nowhere in calculations �not even in their envisaged works�.
Relevant for the present debate would have been to apply the
variational DG approach �including its original WF-OBCs�
and see whether it is able to correctly describe the transport,
and not to show that another �Landauer’s� approach can re-
produce correct results �conductance or WF�.

In the Comment, GDF do nothing else than apply the
standard Landauer approach to deduce the conductance �see
their Eqs. �12� and �13�� and to compute the WF in elec-
trodes’ middle. So, they cannot pretend that the variational
DG approach correctly reproduces the conductance of their
simple uncorrelated model. Their statement in the Introduc-
tion that in “Section IV a calculation of conductance
quantization…is given using the MECS construction” is not
true. Equally wrong is their claim that the BCs “as formu-
lated in MECS applied to” their “model reproduces the well-
known result of conductance quantization.” We did not chal-
lenge the Landauer approach, and the fact that using it GDF
can deduce a correct result �g0=e2 /h� for an uncorrelated
model, which is trivial from the point of view of the Land-
auer approach, is not at all astonishing: the transmission
through a barrier of vanishing height �V→0� is equal to
unity. This correct result, deduced within a correct approach,
has absolutely no relevance for the validity of the variational
DG method, and our critique of the latter is not in the least
affected. In the GDF calculations, BCs are imposed not by
using the WF but by simply postulating standard scattering
forms of the asymptotic single-electron wave functions �Eqs.
�7� and �11��. They use these forms, in a kind of a posteriori
check, to show that the WFs computed within the Landauer
approach, in and out of equilibrium, at carefully chosen
boundaries behave as expected physically. Computing the

WF within the Landauer approach �and not within the DG’s�
and claiming that “indeed it is observed that in the single
particle case constraining the incoming momentum inflow
via the Wigner function implies solving the Schrödinger
equation…” �Sec. IVA of GDF� is totally unfounded. The
GDF calculation represents in itself a logical inconsistency
hard to understand: within Landauer calculations, they as-
sume Fermi distributions �shifted in energy by �R−�L=eV
for V�0� in electrodes, and show that the WFs �approxi-
mately� just look like the Fermi functions already postulated.
Within this philosophy, one can solely infer that the Land-
auer approach is indeed self-consistent, but this is trivial and
irrelevant for the validity of the DG’s.

As noted in the Introduction, GDF wish to reduce the
whole debate to the WF-OBCs, but no transport theory can
be solely reduced to a certain type of BCs. In I we criticized
the WF-OBCs in the specific context of the variational DG
method, and did not challenge the WF-OBCs in general. See
the end of the third paragraph on page 2 of I and the lines
after Eqs. �3� and �4� in I�, or what we explicitly wrote �last
paragraph of I�: “While the idea of formulating boundary
conditions in terms of the Wigner function for correlated
many-body systems is interesting, the manner in which it
was imposed in” Ref. 3 “turns out to be inappropriate.”

By deducing a simple result within the Landauer approach
and not within the DG’s, GDF raise very serious doubts that
they can also derive the correct result within the latter. Con-
firming these doubts, we shall demonstrate in Sec. V that for
the simple model of their choice, the DG approach fails as
lamentably as in the cases presented in I.

IV. CHALLENGES TO THE GDF CALCULATIONS

The GDF’s Landauer calculations affect in no way our
critique to the DG method. However, especially because
GDF attempt to present these results as if they were related
to Ref. 3, we note several errors of Ref. 1.

For the GDF model, the transmission can be trivially ob-
tained analytically, T���=4kLkR / �kL+kR�2, kL��2m� /�, and
kR��2m��−eV� /�,8 and it yields the following exact ex-
pression of the current

I�V� = −
e

h

8�F

nF
2 �

nL�nV

nF nL
2xR

�nL + xR�2 +
e

h

8�F

nF
2 �

nR=1

nF xLnR
2

�xL + nR�2

→
L→�

VgL�eV/�F� ,

gL�x� � g0
8

3x3� x3

2
+ �1 + x − �1 − x + x��1 + x

+ �1 − x − 3�	 ; lim
x→0

gL�x� = g0,

xL,R � �nR,L
2 � nV

2 ,nV � nF
�eV/�F. �1�

The above nV coincides with the RHS of GDF’s Eq. �16�.
Instead of giving these simple formulas, GDF present

some qualitative considerations aiming to show that �i� the
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conductance quantum is correctly reproduced, and �ii� this
result has something to do with the results and the electrode
sizes �L
2 nm� of their controversial works.3–6 To deduce
g0 in Sec. IVB, they approximate T����T��F��1; this
amounts to implicitly assume the linear response limit �eV
	�F�. In the last paragraph of Sec. IVA, GDF claim that
their considerations to deduce g0 “apply well to electrode
lengths as small as 1 nm”�=L /2�. They assume that nF is
large and 
k=2� /L is small �this should mean that nF
=kFL /2��1 and 
k=2� /L	kF, cf. Eq. �7� of GDF�. For
L=2 nm and their completely unphysical value kF
=0.12 nm−1 �cf. Fig. 3 of Ref. 1�, one gets nF=0.0038�!� and

k=3.14 nm−1�kF�!�. In reality, to mimic gold electrodes
�Fermi velocity vF�1.4106 m /s, �F=mvF

2 /2�5.6 eV�,
one needs a kF-value hundred times larger, kF�12 nm−1.
Even then, one gets nF=3.8, and satisfying the above condi-
tions is problematic. In fact, to derive Eq. �18� from Eq. �17�
in Ref. 1, GDF need not a large nF, but rather a large nV,
which should obviously be much smaller than nF. If we ad-
mit that nV=2 is a number “much” larger than unity and
much smaller than the other “large” number nF�4, Eq. �1�
leads to V�1 volt.

How poor is the linear approximation in this range and
how bad is the description based of electrodes with L
=2 nm, exactly the linear sizes of the Au13 and Au20 clusters
used in GDF’s ab initio works,3–6 can be seen in Fig. 1, and
any further comments are superfluous. If, as in the present
case, the exact current for L→� is known, one may still
argue that the “correct” trend can be unraveled by a “clever”
inspection of the curve for very short electrodes �L=2 nm�
in Fig. 1. However, one may more legitimately ask how re-
liable could be considered a theoretical result obtained with
very short electrodes in implementations for complex realis-
tic cases �like those of Refs. 3–6� where neither the exact
values nor the electron spectrum details are known a priori.
From the curve for L=2 nm of Fig. 1 one deduces a linear
conductance �V→0� of �10−2g0, i.e., hundred times smaller
than the true value g0.

As their results on the WFs obtained within the Landauer
approach are irrelevant for the DG validity, we restrict our-

selves here to a few critical remarks. In Sec. II, GDF mention
that the WF, as a function of energy defined in the phase
space, tends rapidly toward the Fermi distribution with in-
creasing number N of particles in a confining potential. In-
deed, in their Ref. 9, Cancellari et al. showed that F��p�
��p,�p+��p

dq1
Ndp1

Nf �N��q1
N ,p1

N� behaves as the Fermi distribu-
tion f��p�. Notice that the system of that Ref. 9 is confined
�while GDF use periodic BCs, kn=2�n /L�, and Cancellari et
al. attribute a physical meaning to a function whose argu-
ment is the energy �p, which is unequivocally defined in the
uncorrelated case discussed by GDF, and not to a function of
momentum p. Contrary to them, GDF ascribe a physical
meaning to f�qL,R , p�, i.e., at fixed locations �without
q-integration� and interpret p as a physical momentum of
electrons, e.g., which move toward right for p�0 and to-
ward left for p�0. We do not analyze here f�q , p� at V�0.10

We only point out an error in the Comment for V=0. The
exact expression of their Eq. �10� deduced from their formu-
las for finite L is

f0�−
L

4
,p� =

2

L
�
n=1

nF � sin��p/� + kn�L/2�
p/� + kn

+
sin��p/� − kn�L/2�

p/� − kn
�

=
sin �P

�
�
n=1

nF

�− 1�n� 1

P + n
+

1

P − n
� , �2�

where P�nFp / ��kF�. Inspecting Eq. �2�, one can immedi-
ately see that the RHS vanishes for p=0. Therefore, their
formula and the curves for L=2 nm and L=20 nm of their
Figs. 3�a� and 3�b� are incompatible �the case qR=+L /4 is
similar�. The Wigner function computed by means of Eq. �2�,
i.e., GDF’s own formula for their sizes is shown in Fig.
2�a�.11 As visible there, the dip around p=0 �of a width �p
=2�kF /nF�1 /L, cf. Eq. �2��, becomes narrow only at larger
L. If GDF used their formula to compute the WF at qL,R
= �L /4, they would have shown the curve of our Fig. 2�a�,
not too much resembling a Fermi distribution for L=2 nm,
which mimics their gold electrodes.3

Limitations of the physical meaning of the WF are well
known.12–14 Noteworthy, in emphasizing these limitations
even at equilibrium, textbooks �see, e.g., Ref. 12, chap. 3.7,
pp. 202–203� choose typical examples just like the one in-
voked by GDF �cf. Sec. IVA� to claim that the WF is physi-
cally useful. The fact that the boundary locations whereat the
WF was computed by GDF cannot be arbitrary and should
be “carefully” chosen �just in electrodes’ middle to GDF,
qL,R= �L /4� already raises warning bells on its appropriate-
ness for applying BCs. Generalizing Eq. �2� away from
qL,R= �L /4 by restricting the integration r-range to either
electrode in the GDF formulas is straightforward. To illus-
trate the sensitivity of f0�qL , p� to the boundary location, we
depict in Fig. 2�b� the component p=0, a classical textbook’s
example �e.g, Chap. 8.8, p. 327 of Ref. 14�, which defies a
simple physical interpretation. Noteworthy, our results of the
genuine DG calculations in I are quite unphysical even with
this choice �boundaries exactly in electrodes’ middle�: this is
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FIG. 1. �Color online� I-V characteristics obtained exactly from
Eq. �1� for infinite electrodes with kF=12 nm−1 �as in gold�, and for
two finite sizes L �given in the legend�.
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just the choice in Fig. 7, this choice also qualitatively
changes nothing in Fig. �3�.

V. RESULTS OF THE VARIATIONAL DG METHOD FOR
THE GDF MODEL

We proceed by showing what GDF should have shown,
namely, the results of the variational DG method for the
chosen model. To obtain the linear response of the GDF
model, the working Eqs. �5�–�21� of I �which yield an exact
and unique solution� deduced from the faithful implementa-
tion of the variational DG method without any other extra
assumption �cf. Sec. II�, can be straightforwardly used. Only
a minor adaptation is needed in Eqs. �7�, �10�, and �12�,
namely, to consider a continuous-space coordinate −L /2
�x�L /2 instead of a discrete lattice, and this will be briefly
indicated below. An important strong point of the approach
of I is that it allows to determine self-consistently the limit of
its applicability, namely, the highest bias V�Vlr compatible
with the linear response approximation. For this, the expan-
sion coefficients An=O�V� ��=A0�0+�n�0An�n, A0=1
−O�V2�� should satisfy the condition S��n�An�2	1. As a

practical numerical criterion we imposed S=0.01, which
typically yielded Vrl�1 volt. Therefore, all numerical results
presented in this section for V�0 are for V=1 volt.

Without applied bias �V=0�, an eigenstate k of each elec-
tron out of the N noninteracting electrons considered is char-
acterized by a wave function �k�x� and an energy �k satisfy-
ing the Schrödinger equation

h�x��k�x� � �−
�2

2m

d2

dx2 + v�x�	�k�x� = �k�k�x� . �3�

The second quantized electric current ĵ�x� and Fano F̂�q , p�
operators needed to compute the linear response read

ĵ�x� = �
k,k�

Jk,k��x�ck
†ck�;

Jk,k��x� = i
e�

2m
��k

��x�
��k��x�

�x
−

��k
��x�

�x
�k��x�	; �4�

F̂�q,p� = �
k,k�

Fk,k��q,p�ck
†ck�;

Fk,k��q,p� =� dr�k
��q − r/2��k��q + r/2�e−ipr/�. �5�

The action of an applied voltage V�x� is expressed by

Ŵ = �
k,k�

Vk,k�ck
†ck�; Vk,k� = − e�

−L/2

L/2

dx�k
��x��k��x�V�x� .

�6�

For the GDF potential, the antisymmetric form V�x�=V /2 if
−L /2�x�0, and V�x�=−V /2 if 0�x�L /2 is more conve-
nient, because it permits to separate the even ��g� and odd
��u� many-body eigenstates, as discussed in I. For this, it is
necessary to further assume a symmetric potential barrier
v�−x�=v�x�, which can be also included to make the calcu-
lations a bit more realistic. This �let us call it statical� barrier
should not be confused with the barrier V�x� related to the
applied bias. For the GDF model, v�x��0, and �k
=�2k2 / �2m�. Within the DG approach, the system is confined
within −L /2�x�L /2, �k��L /2��0, and therefore �kn

g �x�
=�2 /L cos�knx� and �kn

u �x�=�2 /L sin�knx�, where kn

��n /L. For even eigenstates �superscript g�, n=1,3 ,5 , . . . is
odd, while for odd eigenstates �superscript u�, n=2,4 ,6 , . . .
is even. In the ground state �0, the highest occupied single
electron level has k=kF=�N /L. GDF’s electron orbitals
�kn

�x�=exp�iknx� /�L satisfy periodic BCs, kn=2�n /L,
where n is a signed integer �−nF�n�nF�. Without asking
whether it makes sense to consider systems which are not
confined within the original variational DG approach, for
completeness and for comparison with the exact results for
the GDF model �Sec. IV�, we carried out calculations for
both cases �termed confined and periodic below�.

Because the operators Ŵ, ĵ, and F̂�q , p� are bilinear, all
their matrix elements ��n� . . .ck

†ck���0� needed as input into
the working Eqs. �12�–�21� of I can be obtained exactly. All
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FIG. 2. �Color online� Equilibrium Wigner function computed:
�a, b� using the GDF formulas, and �c� for a confined system for
two sizes L �given in the legend� and kF= pF /�=12 nm−1.
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the exact excited many-electron eigenstates �n that contrib-
ute are particle-hole excitations, ��n�→ ��k,k��
= �−1�Sk,k�ck

†ck���0�. Here, the sign factor accounts for the
ordering adopted to fill the Fermi sea. So, exactly as in I, we
can present exact full CI calculations done within the DG
approach, and the results should be exact if that approach
were valid.

Within its variational scheme, the DG approach deter-
mines the steady state � at V�0 by constraining the WF of
incoming electrons at the electrode-device boundaries �at
qL,R= �L /4, as by GDF� to that of the ground state �0

f�qL,R, � p � 0� � ���F̂�qL,R, � p � 0����

= ��0�F̂�qL,R, � p � 0���0�

� f0�qL,R, � p � 0� . �7�

The constrained minimization of the total energy allows the
system �−L /2�x�L /2� to optimize the WF of outgoing
electrons and therefore the differences below are allowed to
be nonvanishing

�f�qL,R, � p � 0� � f�qL,R, � p � 0� − f0�qL, � p � 0�

= ���F̂�qL,R, � p � 0����

− ��0�F̂�qL,R, � p � 0���0� � 0. �8�

Due to this fact, by mathematical construction, the DG
steady state breaks the time reversal. In Fig. 2�c�, we present
results for the WF f0�qL , p�= f0�qR , p� in the ground state �0
of the confined system. Comparing panels a and c of Fig. 2
one can see that, as expected for any physically relevant
quantity, the equilibrium WF saturates at sufficiently large
sizes L and becomes independent on the BCs, let they be
periodic or open. Notice that these results are for equilibrium
�V=0� and have nothing to do with the DG method.

Let us now examine the numerical results15 for the differ-
ences of Eq. �8� computed within the DG approach �Fig. 3�.
Being for outgoing electrons that are unconstrained, they are
indeed nonvanishing. Because �f�qL , p�0� �=�f�qR=−qL ,
−p� for linear response� are real, we note that both the real
and imaginary parts of Au’s of I contribute to �f�qL,R , � p
�0�. The latter contribution, denoted by �f i, does not vanish,
as visible in Fig. 3�a�, which reveals that Im Au’s related to
the current �cf. Eqs. �18� and �21� of I� do not vanish. This
holds both for the confined and for the periodic case. So, in
principle, the DG approach can allow a current flow. The
crucial point is now whether the electric current associated
with the time reversal driven �or, “mimicked,” cf. Sec. VII�
by these �f �0 is appropriately described within the DG ap-
proach. Our exact calculations demonstrate that, as in the
two cases presented in I, the DG approach is invalid: al-
though �f�qL,R , � p�0��0 and Im Au�0, both in the con-
fined and the periodic cases, imposing current conservation
or not, the linear conductance gDG computed within the DG
scheme vanishes within numerical accuracy or, to be on the
safe side, gDG�10−7g0 for the investigated sizes 2 nm�L
�400 nm.15,16

In fact, this result is not at all astonishing; on the contrary,
it should have been expected. The GDF model is nothing but

the continuous version of the discrete model of Eq. �22� of I,
for the particular choice tL= tR= td,L= td,R, �L=�R=�g, U=0.
As seen on the SWF-curve in Fig. 3 of I, at resonance ��L
=�R=�g�, the DG-conductance also vanishes. In this context,
what is worth emphasizing is not that the DG approach
yields a �an almost� vanishing conductance. In fact, the
present calculations confirm the analysis Sec. VI of I that the
situation at resonance is particularly favorable for the DG
approach to predict a vanishing current. But, as shown in I,
gDG can also be nonvanishing. Figure 3 of I depicted situa-
tions where gDG�0. But, completely unphysically, as seen in
that figure, the farther away from resonance, the larger is the
conductance gDG. Although more tedious, exact DG calcula-
tions are also straightforward for the continuous-space coun-
terpart of the uncorrelated discrete model of I: to this, one
should include in Eq. �3� a statical rectangular barrier v�x�
=�g���x�− l�, wherein � is the Heaviside function and 0� l
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FIG. 3. �Color online� �a� Deviation from equilibrium of the
Wigner function at the boundaries �f�−L /4, p�=−�f�+L /4,−p� for
the confined and periodic cases �superscripts o and p, respectively�
�see the main text and Eq. �8��; �b, c� The very slow convergence of
�f�−L /4, p� by increasing all the exact multielectronic eigenstates
up to high excitation energies 
�=r�F �r is given in inset� substan-
tially larger than the metallic electrode bandwidth ���F�. Because
of rapid oscillations, only the range around the Fermi momentum
pF is shown in �b�.
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�L /4.10 As far as the exact Landauer approach is concerned,
the only difference from the uncorrelated model of I is that
the Lorentzian decay �cf. Fig. 3 of I� of the exact transmis-
sion �Landauer conduction� away from resonance there is
replaced by an exponential decays with �g and l here.

To demonstrate the failure of the DG approach, we have
chosen above the same method pursued in I, of faithfully
applying the DG method. Due to its extreme simplicity, the
GDF model also offers another alternative decisive way to
challenge the DG method. Owing to the fact that the analyti-
cal exact scattering solutions of the single particle
Schrödinger equation are known for arbitrary V, one can
pursue a different route. Namely, one should consider small
deviations of the single electron wave functions with respect
to the exact ones ��k→�k+��k�, and investigate their im-
pact on the DG-functional

H � ���Ĥ + Ŵ��� − ������ − �pL�0�pL
���F̂�qL,pL����

− �pR�0�pR
���F̂�qR,pR���� − � j� j���� ĵ�xj� − ĵ�0�����;

it should be minimum if the DG method were correct. That
is, one should examine whether �H=O���k� or �H=
+O����k�2�. The expressions thus obtained are somewhat
similar to those worked out in our approach of the DG linear
response,2 but are obviously no longer limited to the linear
response.10 Moreover, one can thus directly scrutinize the
validity of the variational approach itself, by constraining
instead of the WF other properties, which are less sensitive
to the boundary locations and, highly desirably, have a
clearer physical meaning. Thus, one can indeed exploit an-
other “advantage of an analysis based upon an analytical
model…” that “avoids issues associated with linear response
approximations, perturbation theory, variational methods in a
finite basis, specific implementations of electronic structure,
or other numerical approximations, thereby allowing a clear
focus on the physical assumptions made when using the” DG
“method” �cf. Sec. V of GDF�.

The results obtained as described above deserve a sepa-
rate analysis, which is beyond the scope of this Reply. What
is important for the present purpose is the unambiguous dem-
onstration that the variational DG method �without any other
assumptions� lamentably fails even for the model chosen by
GDF themselves.

VI. FURTHER ISSUES

In Sec. V, GDF claim that we criticized “the use of a
configuration expansion to describe transport properties.”
Such a statement cannot be found in I. GDF should not re-
duce the transport theories based on a configuration expan-
sion �CI� to the DG method. What they actually mean is our
clear statement that, even if the DG method were sound, it
would be impractical. We showed that even if very many
exact eigenstates were included, the current within the DG
approach would very slowly converge; for a correlated sys-
tem, the first 300 exact eigenstates out of a total of 1225 are
insufficient. One may think that the convergence is an issue
only for correlated systems. Indeed, in correlated systems,

for which the DG method was designed, the convergence is
extremely poor.

But let us examine the convergence in the uncorrelated
GDF model. Because the current �practically� vanishes, let us
inspect the quantity �f�qL,R , � p�0� that is directly related
to it via time-reversal breaking. To exemplify, along with the
convergent results, we present in Figs. 3�b� and 3�c� those
obtained by including all exact eigenstates with excitation
energies 
� below a given value 
��r�F. Both for sizes
where ab initio DG computations were attempted �L
=2 nm�,3 and for those �L�20 nm� where they are hope-
less, all exact eigenstates with very high excitation energies
�r�1� much larger even than the metallic electrode band-
width ���F� have to be included to reach convergence. Defi-
nitely, this was a serious challenge even for trivial uncorre-
lated systems and even if this approach were valid. From the
perspective of the severe limitations of the number N of
multielectronic configurations in nontrivial ab initio calcula-
tions, the very slow convergence of the DG-results observed
for the GDF model, for the two models of I, and many
others10 also becomes an important issue because, e. g., in-
creasing N by �50% at the limit of feasibility and obtaining
a change �3% in the investigated properties, one can erro-
neously conclude that the results almost converged. Indi-
rectly referring to the poor convergence of the DG method
demonstrated in I, GDF claimed in Sec. V that “integrated
quantities such as the energy may be better approximated
compared to local properties such as…current density.” But
in reliable transport treatments the convergence is needed
just for the latter. Letting alone that, if current conservation
were correctly accounted for, the �position-independent� cur-
rent would also be an “integrated quantity,” I=L−1dxj�x�,
let us illustrate the effect of a truncated CI for a case relevant
just for the electrode size L /2�1 nm of Ref. 3. To compare
the convergence of the DG method to that of a standard
calculation, we consider the change in the total energy

caused by V�0 in the DG-state, 
EDG����Ŵ���, and in
the state ��1� obtained in the first order �O�V�� of the per-
turbation theory �without any WF- and current-constraints�

E�1�����1��Ŵ���1��. By including all exact eigenstates up
to an excitation energy 
�=8 eV, we got within obvious
notations 
Eapprox

DG =0.18
Econv
DG and 
Eapprox

�1� =0.94
Econv
�1� .

The convergence is an issue for the DG method, not for a
certain particular model. Notice that �i� we considered all
aforementioned exact eigenstates, �ii� this 
�-value is four
times larger than that of the states considered relevant by
DG,3 for which DG mentioned �without any detail� an inac-
curacy factor �3,3 and �iii� the convergence dramatically
deteriorates for a real correlated system. Contrary to DG,3 we
cannot see any justified manner to evaluate the inaccuracy
factor related to a CI truncation from Figs. 3�b� and 3�c�.

It is obvious that the variational DG approach does not
determine the wave function of an eigenstate �cf. Sec. V of
GDF�, no transport theory should attempt to do this; other-
wise, the current would be identically zero unless the sys-
tems �e.g., superconductors� sustain persistent currents. We
can find neither in Ref. 3 nor elsewhere a mention that the
central variational DG ansatz would be an approximation.
One deduces that the results are exact if one is able to con-
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sider sufficiently large sizes in full CI calculations. This is
the case of the uncorrelated discrete model of I. In a valid
transport through uncorrelated systems genuinely based on
the WF, the current conservation is exact �provided that the
Fourier completeness is satisfied if spatial and momentum
grids are used�.13 We demonstrated in I that the DG method
does not automatically satisfy the current conservation,
which needs be explicitly imposed. We did not misinterpret
anything, as GDF argue, we criticized the DG claim that this
constraint is necessary only for other approaches, which use
nonlocal interactions, truncate the molecular orbital basis set
or the CI �second paragraph of Sec. VI in I�, but not for the
DG method, as if that method were so good and automati-
cally accounted for it. The current conservation is trivial, it is
satisfied by construction in the calculations where the current
is constrained to be position independent, as we also did in I.
It is true “that…considerable care is needed in defining finite
expansions that are current conserving” �cf. Sec. V of GDF,
emphasized by us�, but this does not affect the results of I,
which demonstrate that without explicit imposition, the DG
method violates the current conservation: they are deduced
within the linear response limit �O�V�� and full CI calcula-
tions. One should not confuse the two issues addressed in I:
the violation of the current conservation, which is demon-
strated by full CI calculations, and the very poor conver-
gence, which is demonstrated by studying �as also done
above� the effect of progressively increasing the number of
exact eigenstates up to values beyond the reach of any fea-
sible ab initio calculations.

In several places of their Comment, by using the terms
“linear response approximation” and “perturbation theory,”
GDF indirectly mean criticism to I, e.g., in Sec. V, where
they mention “the advantage of an analysis based upon an
analytical model…that…avoids issues associated with linear
response approximations, perturbation theory….” GDF
should have noted that, as emphasized in Sec. IV, their deri-
vation of g0 of Sec. IVB is also based on the linear response
approximation: the difference is that they employ it implic-
itly and heuristically, while our approach uses a systematic
O�V� expansion spanning the whole Hilbert space �full CI�.

The current oscillations mentioned by GDF in Sec. V
�which are rather irregular fluctuations10� have neither to do
with the simplicity nor with the dimensionality �d=1� of the
models of I. As noted there, for the uncorrelated model and
the sizes considered by us, the time-dependent density matrix
renormalization group �t-DMRG� yields the correct physical
result, while the DG method lamentably fails either with or
without imposing current conservation. Likewise, the correct
result is obtained within the standard Keldysh formalism,17

despite the fact that the electrodes are modeled by the same
tight-binding model used in I, and the employed Green func-
tions G�x ,x� ,�� should have been more affected by “near-
sightedness” than the density matrix ��x ,x��: they depend
not only on the difference x−x�, but also on energy. The
exponent d of the density matrix decay given by GDF is
wrong; the correct one is �1+d� /2.18 GDF should have also
noted that, for their Au13- or Au20-“electrodes,” each of
L /2�1 nm, the spatial variation of the density matrix
within L�0.5 nm �their Ref. 20� to which they refer is im-
portant, and the invoked “nearsightedness” problematic.

Concerning this, noteworthy, the above L-value is deduced
by calculating ��x ,x�� in very large systems of sizes much
longer that L, and not employing short DG-like electrodes,
each of L /2�1 nm.

The simple uncorrelated model of I, which is a textbook’s
example, correctly describes the major features of nanotrans-
port, if the well-established approaches mentioned above are
applied, but not within the DG method. Definitely, the failure
is of the DG method itself and has nothing to do with the
simplicity of the model. This issue regards the GDF model as
well, for which their Landauer-type calculations and ours �cf.
Sec. IV� also yield the correct conductance, Kohn’s principle
notwithstanding. Of course, Kohn’s principle is relevant for
realistic systems, but, curiously, GDF did not note that
Kohn’s tight-binding prediction provides the best overall fit
of realistic calculations of the density matrix decay, as shown
in the work to which they refer �Ref. 20�.

Contrary to the GDF’s claim, I is not a comment on the
validity of the DG method. In I we simply checked whether
the DG method is able to describe the most simple uncorre-
lated and correlated systems. If we wrote a comment, we
would certainly have raised even more questions than on the
fundamental issues of the next section. Letting alone minor
issues �e.g., the missing value of V in Fig. 1 of Ref. 3�, we
would have asked, e.g., how did DG conceive to apply their
method to the Kondo effect �cf. last but one paragraph of
Ref. 3�. For typical Kondo temperatures TK�1 mK−1 K,
this would imply to handle electrodes longer than the Kondo
cloud length, L��K��vF / �kBTK�
103–106 nm within a
CI expansion capable to very accurately describe a huge
number of excited eigenstates, especially the very low exci-
tations related to coherent spin fluctuations of energies
�kBTK�10−4–10−7 eV.

VII. DISCUSSION: WHY DOES THE VARIATIONAL DG
METHOD FAIL?

As already stressed in Sec. I, in I we criticized the WF-
OBCs in the specific context of the variational DG method
�which means more than WF-OBCs� and not otherwise. Let
us assume that GDF could have demonstrated that the WF-
OBCs are correct. What would be the implication on the
�in�validity of the DG? None, since our calculations were
done just by imposing WF-OBCs �i.e., they were assumed to
be “correct”�, and the fact that the results obtained within the
DG approach presented in I are unphysical remains unal-
tered. The only implication would be that one could formu-
late more precisely: the DG method fails not because the
WF-OBCs per se are wrong, but because, with these OBCs,
imposing one or more conditions prescribed by the DG to
determine the steady state is unphysical.

Even if �hypothetically� examples could be found where
results of a certain approach �in our case, the DG’s� were
acceptable, a single counterexample suffices to demolish it.
The results for two examples presented in I as well as those
for the GDF model of Sec. V unambiguously demonstrate
the lamentable failure of the DG method both for uncorre-
lated and for uncorrelated transport. This is an irrefutable
mathematical demonstration for the simplest correlated and
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uncorrelated, for discrete and continuum-space models, since
their derivation uses nothing else than the variational DG
method prescribes. Consequently, the main objective of the
present Reply has been achieved.

The problem that is really important is not whether the
DG approach fails, but rather why it fails. We do not present
here a comprehensive analysis,10 but for the benefit of a
reader interested in this method, we briefly note the follow-
ing. Besides WF-OBCs, the DG method prescribes the total
energy minimization and the usage of a normalized many-
electron wave function � to describe a nonvanishing steady-
state current. Noteworthy, both conditions refer to a finite
isolated system. So, within this philosophy, it could be pos-
sible to obtain a nonvanishing steady-state current, i.e., phe-
nomenon that is manifestly irreversible, by merely examin-
ing a cluster which is not only finite �and even very small, cf.
Ref. 3� but also isolated, by imposing certain constraints at
certain �very special� locations inside this cluster. The DG
method uses absolutely no other information than that per-
taining to a finite isolated system: this system is completely
decoupled from the world, and there is absolutely no source
of dissipation. At this point, it is important to emphasize that,
basically, valid approaches to transport fall into two classes:

�i� Most widely used are transport theories, e.g., based on
the Keldysh NEGF or master equations, which also consider
a finite cluster �wherein possible electron correlations are
treated within DFT or more accurately17,19,20�, but this finite
cluster is linked to infinite electrodes. It is this latter ingredi-
ent that accounts for irreversibility in a physically justifiable
manner: the imaginary parts of the embedding �contact� self-
energies become nonvanishing only in infinite electrodes.21

On the other side, that the DG approach can lead to a non-
vanishing current is solely a lucky mathematical conse-
quence: certain matrix elements of the Fano operator �not
directly related to an observable with an unequivocal physi-
cal meaning, like, e.g., the electronic number operator� com-
puted somewhere inside of a finite isolated cluster happen to
have nonvanishing imaginary parts, a fact by no means re-
lated to a true physical dissipation. Therefore, although by no
means critically related with the failure of the DG method
demonstrated unambiguously mathematically, we reiterate
our claim of I, that imposing WF-OBCs within the DG pre-
scription is not physically justified. WF-OBCs can be used,
but within other approaches �e.g., by solving the Liouville
equation for the WF �Ref. 13��, for which the present con-
siderations do not in the least apply. Consequence of an ad
hoc mathematical constraint without a precise physical
meaning, the predicted DG current �vanishing or not� exhib-
its, not coincidentally, completely unphysical trends �cf. Sec.
V, and Figs. 3 and 7 of I�. Summarizing, in this paragraph we
have indicated one serious flaw of the DG method.

�ii� Another class of transport treatments deduces the
steady-state current by examining the long time �t→�� be-
havior of the wave function ��t� at zero temperature �e.g.,
the already mentioned t-DMRG� or the statistical �density
matrix� operator �̂�t� at finite temperatures.22 In the former,
starting from x�−L /2 �in the present notations� the many-
body wave packet is monitored a sufficiently long time t, but
before the packet reaches the other end �x�+L /2�, since in
the absence of any dissipation it will be reflected, a reversed

current will appear, and current oscillations will last forever.
Mathematically, this amounts to derive steady-state proper-
ties �e.g., electric current� by approaching the limit L→�
first, and only then t→�. The clear physical analysis of Ref.
22 explicitly emphasizes the importance of the correct order
of these two limits for reaching the steady state; see Eq. �6�
there. This represents the counterpart of the fact well known
in solid state physics on the calculation of the dc-
conductivity �dc from the frequency- and wave-vector-
dependent conductivity ��q ,��. To obtain the correct result,
it is mandatory to take the limits q→0 and �→0 �the coun-
terparts of L→� and t→�, respectively� in that order,

�dc = lim
�→0

lim
q→0

��q,��;

see, e.g., chap. 3.8 of Ref. 12. The above considerations can
be rephrased perhaps in a more direct manner as follows.
The current operator ĵ does not commute with the hermitian

Hamiltonian Ĥ of a nondissipative system, and consequently

� ĵ

�t
= i�Ĥ�t�, ĵ�t�� � 0.

A steady state limt→� ��t� characterized by a stationary cur-
rent

lim
t→�

� I�t�/�t = 0, and lim
t→�

I�t� = I � 0

can only be obtained because, after averaging the commuta-

tor �a nonvanishing operator�, ����Ĥ , ĵ����t, the average can
vanish if one first takes the infinite “volume” limit L→� and
then t→�.

In examining a steady state transport, two general prin-
ciples of the thermodynamics of irreversible processes are
mostly discussed in the literature: the minimum entropy
production23 and the entropy maximization.24 Prigogine’s
discussion of the steady state within the former principle23

clearly revealed that the aforementioned order of the two
limits is essential. Within the same principle, the same fact
was nicely illustrated in the particular case of the flow
through a capillary tube connecting two containers with ideal
gas at different pressures.25 Were the system finite, the flow
would be no more irreversible: after some time, the gas
would flow back to higher pressure. In Ref. 3, DG claimed
that they can deduce the variational ansatz, which they used
to compute the steady-state wave function �, from the
maximum-entropy principle. Except for citing Ref. 26, nei-
ther in Ref. 3, nor in later works,4–6 or in the Comment any
detail on this derivation was provided. In Ref. 26, Jaynes
presented quantitative considerations emerging from that
principle applied to systems of very large number of degrees
of freedom based on Shannon’s entropy for statistical equi-
librium; a steady state is not even mentioned. In a subsequent
paper,24 cited in a later work by DG,5 Jaynes further ana-
lyzed the time-dependent case in detail from the perspective
of a single basic principle �entropy maximization� applied to
all cases, equilibrium or otherwise. Again, the case of a
steady state was not explicitly considered, and consequently
the issue of the correct limit order to reach a steady state
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within the principle of entropy maximization was not ad-
dressed. Prior to the DG work, there has been attempted to
recover the standard Landauer results from the maximum-
entropy inference,27 and it turned out that schemes based on
that principle encounter notable difficulties even if the limits
L→� and t→� are taken in the correct order. Ignoring these
difficulties and without validating their variational scheme
against any well-established theoretical result �as done by us
in I�, DG put forward an approach, wherein, implicitly, the
limit order is exactly opposite to the correct one: they con-
sider a time-independent wave function � �amounting to
take t→��, and then �by taking the largest cluster it can
handle, which is in fact very small� attempt to mimic the
limit L→�. This was the physical reason why in I we em-
ployed the acronym SWF �stationary Wigner function� for
what we now called the DG method. Therefore, within this
physical context we do not think, contrary to GDF �cf. their
Ref. 4�, that the term SWF is misleading. Summarizing, in
this paragraph we have indicated another serious flaw of the
DG method, which represents the fundamental physical rea-
son why it fails.

VIII. CONCLUSION

GDF seem to have realized that their claim is wrong; in
Sec. III, they write that our conclusion “that an asymmetric
injection of electrons is needed to obtain a current is incor-
rect, if injection refers to incoming electron momentum dis-
tributions…” �emphasized by us�. However, the above con-
ditional clause does not apply and therefore our critique of I
is not in the least affected.

To conclude, in this Reply we have demonstrated that in
their Comment GDF could neither show that the critique is
incorrect, nor give even a single example where the DG
method can correctly describe a transport property. We used
their model to complete the evidence on the failure of the
DG method presented in I. Letting alone the fundamental
reasons against this method �cf. Sec. VII�, because the failure
of the DG method,3–5 which is a unequivocal mathematical
prescription, comprises the simplest uncorrelated and corre-
lated systems described within discrete �Ref. 2� and con-
tinuum �Sec. V� spaces, it would be a utopia to presume that
real systems could be correctly described.

Most importantly for readers interesting in the DG
method, we have presented not only further exact results

showing that this method fails, but also indicated the basic
physical reasons why it fails.

DG argued that their essential ingredient, the variational
ansatz, is deduced from the maximum-entropy principle. In
Ref. 24 cited by DG,5 the author asserted that “if it can be
shown that the class of phenomena predictable by maximum-
entropy inference differs in any way from the class of experi-
mentally reproducible phenomena, that fact would demon-
strate the existence of new laws of physics, not presently
known.” This statement may apply to the results deduced
within the DG method: neither the prediction of the present
Sec. V �a vanishing conductance on resonance�, nor a con-
ductance increasing if one moves away from resonance �Fig.
3 of I�, or conductance maxima of the Coulomb blockade
peaks becoming higher and even exceeding g0 with decreas-
ing dot-electrode coupling td �Fig. 7 of I� have been observed
so far. These trends are just opposite to those of the available
experiments…, so should one still await the advent of new
physical laws in the sense quoted above from Ref. 24? Until
then, one should not be too surprised if the DG predictions
are also at odds with other existing experiments of molecular
electronics. Until recently,9 although being unable to demon-
strate that their theory is sound, DG could claim that their
method3 produces current values better agreeing with experi-
ment than the other theoretical estimations. The accurate data
of the beautiful experiment of Ref. 9 have clearly demon-
strated that just the opposite is true. To see this, one can
simply compare Fig. 2a of Ref. 9, Fig. 2 of Ref. 3, and, e.g.,
Fig. 4 of Ref. 28 among themselves. For instance, at V
=1;1.5 V, the currents in �A are �1.7;6,9 �0.09;0.13,3

and �6;9.7.28 So, without any special fine tuning �e. g.,
contact geometry�, a standard NEGF-DFT approach28 can
reasonably describe the experimental data, while the DG’s
cannot.

As a matter of principle, we end by reiterating that
whether �un�luckily results obtained within a certain theoret-
ical �DG’s or whatsoever� method �dis�agree with experi-
ment is neither the only nor the decisive point to assess its
validity: a comparison with experiment is meaningful only if
its physical basis is sound.
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