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We consider the classical ballistic dynamics of massless electrons on the conducting surface of a three-
dimensional topological insulator, influenced by random variations in the surface height. By solving the
geodesic equation and the Boltzmann equation in the limit of shallow deformations, we obtain the scattering
cross section and the conductivity �, for arbitrary anisotropic dispersion relation. At large surface electron
densities n this geodesic scattering mechanism �with ���n� is more effective at limiting the surface conduc-
tivity than electrostatic potential scattering.
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I. INTRODUCTION

Topological insulators such as Bi2Se3 form a new class of
materials, characterized by an insulating bulk and a conduct-
ing surface.1,2 The surface states are massless Dirac fermions
with spin tied to momentum by spin-orbit coupling. Time-
reversal symmetry prohibits backscattering and prevents dis-
order from localizing the surface states. The surface conduc-
tivity can therefore be unusually large, offering potential
applications for electronics. The limitations on the conduc-
tivity of Dirac fermions imposed by random potential fluc-
tuations are well understood �mostly from extensive studies
of graphene3�. Here we study an altogether different nonelec-
trostatic scattering mechanism, originating from random sur-
face deformations.

The epitaxial growth of Bi2Se3 films is known to produce
random variations in the height profile z=��x ,y� of the
surface.4 These surface deformations correspond to terraces
of additional layers of the material �of typical height H
=2 nm and width W=10 nm�. Since the Dirac fermions are
bound to the surface, they are forced to follow its geometry.
Like photons in curved space time, the electrons follow the
geodesic or shortest path between two points, although here
the curvature is purely spatial.5 �The metric tensor of the
surface does not couple space to time.� The geodesic motion
around deformations constitutes a scattering mechanism that
by its very nature is energy independent and which therefore
is qualitatively different from potential scattering.

Our problem has no direct analog in the context of
graphene. Ripples of a graphene sheet do scatter the elec-
trons but this is not geodesic scattering: ripples in graphene
are described by gauge fields and scalar potentials in a flat
space.3 Space curvature effects may appear around conical
defects �pentagon and heptagon rings� but these are rare in
graphene.6 An early study of geodesic scattering in con-
densed matter that we have found in the literature is by Dug-
aev and Petrov7 with possible applications to intercalated
layered crystals. The present work goes beyond their analysis
by including the effects of an anisotropic dispersion relation,
which is a major complication but relevant for topological
insulators.

The paper is organized as follows. In Sec. II we investi-
gate the classical motion of the surface electrons in the pres-
ence of surface deformations. The geodesic equation is

solved in the regime H /W�1 of shallow deformations, to
obtain the differential scattering cross section S. In Sec. III
we use the linearized Boltzmann integral equation to com-
pute the conductivity tensor � from S. This is a notoriously
difficult problem for an anisotropic dispersion relation.8 In
the regime H /W�1 we are able to find a closed-form solu-
tion, by converting the integral equation into a differential
equation. Results are given in Sec. IV. In Sec. V we discuss
the experimental signatures that distinguish geodesic scatter-
ing from potential scattering.

II. GEODESIC SCATTERING

A. Geodesic motion

We consider the surface of a topological insulator in the
x-y plane, deformed by a locally varying height z=��x ,y�.
The dispersion relation of a locally flat surface is an elliptical
hyperboloid

E = �vx
2px

2 + vy
2py

2 + vz
2pz

2 + �2, �2.1�

where we have taken the x ,y ,z axes as the principal axes of
the elliptical cone. In general, all three velocity components
vx ,vy ,vz may be different. For an isotropic dispersion rela-
tion in the x-y plane we have in-plane velocities vx=vy =vF
but the out-of-plane velocity vz may still differ.

We have included a mass term � in Eq. �2.1� in order to
have a nonzero Lagrangian

L = �
i

ẋipi − E = − ��1 − �
i

�ẋi/vi�2 �2.2�

with ẋi=dxi /dt=�E /�pi and i=x ,y ,z. In the final equation of
motion � will drop out.

The constraint that the motion follows the surface implies
ż= ��� /�x�ẋ+ ��� /�y�ẏ, which can be used to eliminate ż
from the Lagrangian. The result can be written in the form

L = − ��1 − vx
−2g��ẋ�ẋ� �2.3�

with g�� the metric tensor �made dimensionless by pulling
out a factor vx

2�. Summation over repeated indices
� ,�=1,2=x ,y is implied and upper or lower indices distin-
guish contravariant or covariant vectors.

Explicitly, we find
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gxx = 1 + ���/�x�2vxz
2 , �2.4a�

gyy = vxy
2 + ���/�y�2vxz

2 , �2.4b�

gxy = gyx = ���/�x����/�y�vxz
2 , �2.4c�

where we have abbreviated vij =vi /v j. The inverse of the
tensor g��, denoted by g��, has elements

gxx = D−1�1 + ���/�y�2vyz
2 � , �2.5a�

gyy = D−1�vyx
2 + ���/�x�2vyz

2 � , �2.5b�

gxy = gyx = − D−1���/�x����/�y�vyz
2 , �2.5c�

D = 1 + ���/�x�2vxz
2 + ���/�y�2vyz

2 . �2.5d�

The Euler-Lagrange equation �L /�x�= �d /dt��L /�ẋ�

gives the inhomogeneous geodesic equation9,10

ẍ	 + 
��
	 ẋ�ẋ� = ẋ	

1

L

dL

dt
. �2.6�

The coefficients 
��
	 are the Christoffel symbols


��
	 �

g	�

2
� �

�x�g�� +
�

�x�g�� −
�

�x�g��	 . �2.7�

The nonzero right-hand side in Eq. �2.6� may be elimi-
nated by a reparametrization of time, from t to � such that
d� /dt=−L�t� /�. We thus arrive at the homogeneous geodesic
equation

d2x	

d�2 + 
��
	 dx�

d�

dx�

d�
= 0. �2.8�

Since � does not appear in this equation of motion, it holds
also in the limit of massless electrons.

B. Scattering angle

We consider the scattering from a surface deformation
��x ,y� of characteristic width W and height H large com-
pared to the Fermi wavelength 	F. The scattering may then
be described by the classical equation of motion, which is the
geodesic equation �2.8�.

An electron with wave vector k incident on the deforma-
tion with impact parameter b at an angle k with the x axis is
scattered by an angle �k ,b�, resulting in a differential scat-
tering cross section S�k ,�= 
db /d
. Multiple trajectories
may lead to the same scattering angle so that �k ,b� cannot
be inverted. Then the function has to be split into several
invertible branches i and the cross section becomes
S�k ,�=�i
dbi�k ,� /d
.

These quantities may be calculated by numerically solv-
ing the geodesic equation. Analytical progress is possible in
the physically relevant regime H /W�1 of shallow deforma-
tions. As shown in second section of the Appendix, the scat-
tering angle is then given by

�k,b� = − �
−�

�


̃xx
y �x̃,b�dx̃ . �2.9�

Here 
̃��
	 �x̃ , ỹ� is obtained from 
��

	 �x ,y� by a rotation of the
coordinate axes over an angle k �so that the electron is in-
cident parallel to the x̃ axis�. To leading order in H /W and
b /W the scattering angle scales as =O�H2b /W3�.

One simple example is the case of a Gaussian deforma-
tion

��x,y� = H exp�− �x2 + y2�/2W2� , �2.10�

which yields �see third section of the Appendix�

�k,b� = −
��

2

H2vyz

W3 be−b2/W2
� �cos2 k + vyx

2 sin2 k�

�2.11�

in the shallow deformation limit. The geometry is depicted in
Fig. 1. We will use this example throughout the paper to
illustrate our general results.

III. CALCULATION OF THE CONDUCTIVITY

A. Linearized Boltzmann equation

We investigate how geodesic scattering influences the sur-
face conductivity � of the topological insulator. We assume
��e2 /h so that we may use a semiclassical Boltzmann
equation approach. In the presence of an external electric
field E, the occupation fk= f0�Ek�+gk of the electron states
deviates to first order in E according to the linearized Bolt-
zmann equation

� f0

�Ek
evk · E = �

k�

Q�k,k���gk − gk�� . �3.1�

Here, vk=�Ek /��k is the velocity and Q�k ,k�� the scattering
rate from k to k� �equal to Q�k� ,k� because of detailed bal-
ance�. The sum over k� runs over all states of the
�d-dimensional� momentum space. In the continuum limit,
�k→V�dk / �2��d, where V is the d-dimensional volume
�d=2 in our case�. Spin degrees of freedom do not contribute
to the sum since the helical surface states have definite spin

FIG. 1. Geodesic trajectory of an electron deflected by a circu-
larly symmetric deformation �characteristic width W�. The impact
parameter b, incident angle k, and scattering angle  are indicated.
The gray scale background shows the height profile of the Gaussian
deformation in Eq. �2.10�.
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direction. Particle conservation leads to the normalization
condition

�
k

gk = 0. �3.2�

The electric field can be eliminated from Eq. �3.1� by
means of the vector mean-free path �k, defined by8,11

gk =
� f0

�Ek
eE · �k, �3.3�

�
k�

Q�k,k����k − �k�� = vk. �3.4�

For elastic scattering, Q�k ,k��=��Ek−Ek��q�k ,k��. Using
dk=dk�dSF=dEkdSF / 
�vk
, with dSF a Fermi surface ele-
ment, Eq. �3.4� can be rewritten in terms of the density of
states N�EF� at the Fermi energy

N�EF� = �2��−d dSF
�vk
−1. �3.5�

The integral �dSF extends over the Fermi surface. The result
is

VN�EF��q�k,k����k − �k���k� = vk �3.6�

with �¯ �k denoting the weighted average over the Fermi
surface

�f�k��k =
 dSFf�k�
�vk
−1

 dSF
�vk
−1

. �3.7�

The normalization condition in Eq. �3.2� becomes ��k�k=0.
At zero temperature, the conductivity tensor is given by

� =
e2

V
�

k
��Ek − EF�vk � �k = e2N�EF��vk � �k�k.

�3.8�

The direct product � indicates the dyadic tensor with ele-
ments �vk�i��k� j. Substitution of Eq. �3.6� for vk and the use
of q�k ,k��=q�k� ,k� shows that � is a symmetric tensor.

For a low density N of scatterers, the scattering rate
q�k ,k�� can be related to the differential cross section S of a
single scatterer �averaged over all scatterers�. In the two-
dimensional case of interest here, the relation is

N
vk
S�k,k��dk� = q�k,k��
V

�2��2

dSF�


�vk�

, �3.9�

where k is the angle between vk and the x axis. The Eq.
�3.6� which determines the vector mean-free path then takes
the form

N
vk
�
0

2�

dk�S�k,k����k − �k�� = vk. �3.10�

For the solution of this equation �and the interpretation of
the results�, it is convenient to follow Ziman8,12 and define an
anisotropic relaxation time ��k� by

1

��k�
= VN�EF���1 − v̂k · v̂k��q�k,k���k�. �3.11�

Using Eq. �3.9� this can be rewritten as

1

��k�
= N
vk
�

0

2�

dk�S�k,k���1 − cos�k� − k�� .

�3.12�

B. Isotropic dispersion relation

For isotropic dispersion relations �when Ek depends only

on 
k
 so that the velocity v=vFk̂ is aligned with the wave
vector�, the linearized Boltzmann equation can be solved
exactly.8 This applies, for example, to surfaces perpendicular
to the �111� direction of Bi2Se3. We consider this simplest
case first.

Since the deformations do not have a preferred orientation
and the dispersion is isotropic, the average scattering cross
section S�k ,k�� only depends on the scattering angle
=k−k�, independently of the incident direction. The so-
lution to Eq. �3.6� is then �k=�vk with a relaxation time �
given by

1

�
= NvF�

0

2�

dS���1 − cos � . �3.13�

Substitution into Eq. �3.8� leads to a scalar conductivity �
given by the Drude formula

� = e2N�EF�vF
2 �

d
=

e2

h

EF

�

�

2
. �3.14�

In the second equality we inserted the density of states
N�EF�=EF / �2��2vF

2� of a Dirac cone with a circular cross
section.

The regime H /W�1 of shallow surface deformations is
characterized by predominantly forward scattering �

�1�.
Then the relaxation time in Eq. �3.13� is given by the second
moment of the scattering angle

1

�
=

1

2
NvF� dS��2. �3.15�

We substitute the relation S��= �
d�b� /db
−1�, where �¯ �
indicates an average over the �randomly oriented� scatterers.
The integration over scattering angles  becomes an integra-
tion over impact parameters b

1

�
=

1

2
NvF�� db2�b�� . �3.16�

From Eq. �2.9� we infer the scaling 1 /��W� �H /W�4 of
the relaxation rate with the characteristic height and width of
the surface deformations. �The additional factor of W comes
from the integral over b.� This scaling was first obtained by

GEODESIC SCATTERING BY SURFACE DEFORMATIONS… PHYSICAL REVIEW B 82, 085312 �2010�

085312-3



Dugaev and Petrov.7 Eq. �3.14� then gives the scaling of the
conductivity

� = constant �
e2

h

EF

�

1

NvF

W3

H4 . �3.17�

C. Anisotropic dispersion relation

We now turn to the case of an anisotropic dispersion re-
lation. There is then, in general, no closed-form solution of
the linearized Boltzmann equation.13 One widely used ap-
proximation for the conductivity, due to Ziman,12 has the
form

�Ziman = e2N�EF��vk � vk��k��k �3.18�

with ��k� the anisotropic relaxation time in Eq. �3.11�. As we
will show in the following, this is a poor approximation for
our problem but fortunately it is not needed: In the relevant
limit H /W�1 of scattering from shallow surface deforma-
tions an exact solution becomes possible. For shallow defor-
mations forward scattering dominates, 

= 
k−k�
�1. This
allows for an expansion of �k� around k, which reduces the
integral equation �3.6� to a differential equation.

With the notation

Mp��� = �
0

2�

dS��,� + �p �3.19�

the expansion to second order of Eq. �3.10� can be written as

M1���
d

d�
	��� +

1

2
M2���

d2

d�2	��� = −
1

N
ei�. �3.20�

We introduced a complex variable 	=�x+ i�y to combine
the two components of the vector mean-free path. Denoting
the radius of curvature of the Fermi surface by
����=dSF /d�, the normalization condition in Eq. �3.2� be-
comes

�
0

2�

d�
����
v���

	��� = 0. �3.21�

Once we have the solution of Eq. �3.20�, the conductivity
tensor elements follow from

�xx � �yy =
e2

h
Re �

0

2� d�

2�
e�i�����	��� , �3.22a�

�xy = �yx =
e2

h

1

2
Im �

0

2� d�

2�
ei�����	��� . �3.22b�

A further simplification is possible if the average scatter-
ing angle vanishes, M1���=0. Then the second moment
M2��� of the scattering angle is, within the forward scatter-
ing approximation, directly related to the anisotropic relax-
ation time

1

����
=

1

2
Nv���M2��� . �3.23�

Equation �3.20� can now be solved in terms of the Fourier
transforms

�n = �
0

2� d�

2�
e−in�v������� , �3.24a�

�n = �
0

2� d�

2�
e−in����� , �3.24b�

	n = �
0

2� d�

2�
e−in�	��� �3.24c�

resulting in

	n =
�n−1

n2 + constant � �n,0. �3.25�

The normalization constant can be determined from Eq.
�3.21�.

Inserting the solution into Eq. �3.22� we obtain the con-
ductivity

�xx � �yy =
e2

h
Re �

n=−�

�
�n−1�−n�1

n2 , �3.26a�

�xy = �yx =
e2

h

1

2
Im �

n=−�

�
�n−1�−n−1

n2 . �3.26b�

For simplicity we have assumed an inversion symmetric
Fermi surface, for which ��1=0 so that the normalization
constant in Eq. �3.25� does not contribute to the conductivity.

In the case of an isotropic Fermi surface, only the Fourier
components l0=vF� and �0=kF are nonzero. From Eq.
�3.26�, we then find �xy =0=�yx, �xx=�yy = �e2 /2h�kFvF�, in
agreement with Eq. �3.14�.

Comparing with the Ziman approximation in Eq. �3.18�
for the conductivity in terms of the anisotropic relaxation
time, we see that it can be written in the same form, Eq.
�3.26�, but without the factor 1 /n2. It therefore deviates
strongly from our forward-scattering limit, except in the case
of an isotropic Fermi surface �when only n=1 contributes�.

IV. RESULTS

A. Isotropic dispersion relation

In the shallow deformation limit the conductivity is given
by Eq. �3.17�, up to a numerical prefactor of order unity. We
have calculated this prefactor for Gaussian deformations of
the form �2.10�, randomly distributed over the surface. We
assume that the deformations are shallow, H /W�1. For sim-
plicity, we also take the same parameters H and W for each
deformation. From Eqs. �2.11�, �3.14�, and �3.16� we obtain
the result
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� =
16�2

���

EF

�vFN
W3

�HvF/vz�4

e2

h
. �4.1�

The factor vF /vz is there to allow for an out-of-plane velocity
vz that is different from the in-plane velocity vx=vy =vF. The
result in Eq. �4.1� confirms the scaling behavior in Eq. �3.17�
and gives the numerical prefactor.

To relax the assumption H /W�1 of shallow deforma-
tions, we solved the geodesic equation �2.8� numerically for
the Gaussian case. The corresponding Christoffel symbols
were taken from Eq. �A2� with vx=vy =vF. Using the scatter-
ing angle �b� that we obtained from the numerics, we cal-
culated the conductivity following from Eqs. �3.13� and
�3.14�.

As shown in Fig. 2, the numerical results deviate from the
scaling in Eq. �4.1� only for relatively large ratios
H /W�0.5. The deviations are oscillatory, due to electron
trajectories that circle around the deformation as depicted in
the inset �b� of Fig. 2. Inset �a� shows generic trajectories for
electrons scattering off a shallow Gaussian deformation. No-
tice the focusing of trajectories as an analog of gravitational
lensing.

B. Anisotropic dispersion relation

As an example of an anisotropic dispersion relation, we
consider elliptic equienergy contours Ek=��vx

2kx
2+vy

2ky
2�1/2

with principal axes x and y. As in the previous section, we
investigate shallow Gaussian surface deformations. These
have zero average scattering angle, M1���=0, and second
moment

M2��� =
1

C
�sin2 � + vyx

2 cos2 ��2. �4.2�

The coefficient C is given by

C =
16�2

���

W3

H4vy
4/vz

4 . �4.3�

From Eq. �A12� we deduce that Eq. �4.2� actually holds more
generally for any circularly symmetric deformation, the only
difference being in the expression for C.

Using Eqs. �3.23� and �3.24a� one obtains the Fourier co-
efficients

��n =
C

N�1 − vyx

1 + vyx
	
n
/2 �1 + 
n
vyx + vyx

2 �
vyx

3 �4.4�

for n even, and zero for n odd. The elliptic dispersion rela-
tion leads to

���� =
EF

�vx

vyx

�sin2 � + vyx
2 cos2 ��3/2 . �4.5�

The Fourier coefficients �n are also nonzero only for n even.
�Since their expressions are rather lengthy, we do not list
them here.�

From Eq. �3.26� we find that the off-diagonal components
of the conductivity tensor vanish while the diagonal compo-
nents are given by

��xx

yy � =
e2

h
�
n�1

1

2n2 ��n+1 � �n−1���n+1 � �n−1� . �4.6�

The series converges rapidly.
The ratio �xx /�yy depends only on the anisotropy

vyx=vy /vx. It is plotted in Fig. 3. For comparison, we also
show the Ziman approximation �Ziman �obtained from the
forward-scattering limit in Eq. �4.6� without the 1 /n2 factor�.
As expected, it deviates substantially upon increasing the
anisotropy �notice the logarithmic scale�.

V. COMPARISON WITH POTENTIAL SCATTERING

A. Carrier density dependence

The energy independence of the mean-free path �=vF� is
the hallmark of geodesic scattering. It implies the square root
dependence ���n of the conductivity on the surface
electron density n. This follows from Eq. �3.17� with
EF=�vF

�4�n for an isotropic Dirac cone, or more generally
from the scaling ��SF for a noncircular Fermi surface �of
area SF��n�.

FIG. 2. �Color online� Surface conductivity of a topological in-
sulator as a function of the height H of randomly positioned
Gaussian deformations �width W=10 nm, density N=0.1 W−2�.
We took an isotropic dispersion relation, with in-plane velocities
vx=vy =vF=5�105 m /s, and a smaller out-of-plane velocity
vz=vF /3. The Fermi energy is fixed at EF=150 meV. As discussed
in Sec. V, these are realistic parameter values for the �111� surface
of Bi2Se3. Dots represent numerical results whereas the line shows
the shallow deformation limit in Eq. �4.1�.

FIG. 3. The solid line shows the ratio of conductivities �xx /�yy

as a function of anisotropy vy /vx, calculated from Eq. �4.6�. The
dashed line corresponds to the Ziman approximation.
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As discussed in the context of graphene,3,14 electrostatic
potential scattering typically gives a faster increase in the
conductivity with increasing carrier density. Coulomb scat-
tering from charged impurities and resonant scattering from
short-range impurities both give a linear increase ��n �up to
logarithmic factors�. Scattering from a potential landscape
with a Gaussian correlator gives an even more rapid increase
��n3/2. Geodesic scattering, with ��n1/2, would therefore
form the dominant conduction-limiting scattering mechanism
at high carrier densities.

For a quantitative comparison of geodesic and potential
scattering, we consider the �111� surface of Bi2Se3 with
Gaussian deformations given by Eq. �4.1�. We take isotropic
in-plane velocities vx=vy =vF=5�105 m /s and a smaller
out-of-plane velocity vz=vF /3.15,16 We adopt the following
numerical parameters for the deformations from an experi-
mental image:4 characteristic width W=10 nm and height
H=2 nm, covering 40% of the surface area so
N=1011 cm−2. The carrier density dependence of the con-
ductivity for geodesic scattering, following from Eq. �4.1�, is
plotted in Fig. 4 �solid curve�.

To compare the geodesic scattering to typical potential
scatterers, we also show the corresponding results for scat-
tering from charged impurities �dashed� and Gaussian poten-
tial fluctuations �dotted� in Fig. 4. For charged impurities
�charge Q=e� we considered the unscreened Coulomb poten-
tial U�r�= �Qe /4��0�r�
r
−1, as the extreme case of a long-
ranged potential. We took �r=80 as a typical value for the
dielectric constant and kept the other parameter values as
before. The semiclassical conductivity is then given by3,17

� =
e2

h

n

Nc

2��2vF
2

u0
2 , u0 =

Qe

4�0�r
. �5.1�

For Fig. 4 we used Nc=2.5�1011 cm−2 as the density of
impurities.

For a potential landscape with Gaussian correlator �range
�, dimensionless strength U0�

�U�r�U�r��� =
U0��vF�2

2��2 exp�−

r − r�
2

2�2 	 �5.2�

the conductivity takes the functional form18

� =
e2

h

4�n�2e4�n�2

U0I1�4�n�2�
. �5.3�

�The function I1 is a Bessel function.� For Fig. 4 we took
U0=0.1 and �=W=10 nm. The parameter values used in
Fig. 4 are only for the purpose of illustration but the point to
make is that geodesic scattering dominates over potential
scattering for large carrier densities.

B. Anisotropy dependence of conductivity

In the case of an anisotropic �elliptical� dispersion relation
the conductivity will be direction dependent. This situation
arises for example if the surface of Bi2Se3 is not in the �111�
direction. Geodesic scattering implies a certain universality
for the directionality dependence of the conductivity, if we
may assume that the surface deformations are shallow
�H /W�1� and without a preferential orientation �circularly
symmetric on average�. The ratio �xx /�yy is then only a func-
tion of vy /vx, independent of other parameters �such as elec-
tron density or density and height of the deformations�. This
universal function is plotted in Fig. 3 �solid curve�.

In Fig. 5 we compare this result for geodesic scattering
with corresponding results for potential scattering. Three
typical impurity potentials are considered, of different range:
long-ranged unscreened Coulomb potentials, medium-ranged
Gaussian potential fluctuations, and short-ranged potentials.
The conductivities are obtained following the general ap-
proach of Ref. 19, by first computing the transition rates in
Born approximation and then solving numerically the linear-
ized Boltzmann equation. We took the same material param-
eter values as in the previous section.

The unscreened Coulomb potential gives a ratio �xx /�yy
which depends only on vy /vx �dashed line�. For Gaussian
potential fluctuations, the ratio �xx /�yy is a function of both
vy /vx and n. It is plotted as a dotted line in Fig. 5 for
n�2=1. �If �=W=10 nm this corresponds to the carrier den-
sity n=1012 cm−2.� In the same figure we also plot �dot-
dashed line� the limit �→0 �at fixed n� of a short-ranged
potential.

FIG. 4. Conductivity as a function of carrier density. The influ-
ence of three different sources of scattering is shown: surface de-
formations �solid line�, unscreened Coulomb impurities �dashed
line�, and Gaussian correlated potential fluctuations �dotted line�.
The parameters used for the plot are given in the text.

FIG. 5. Ratios of conductivities along the two main axes of the
dispersion relation are shown as a function of anisotropy vy /vx. The
influence of four different sources of scattering is shown: surface
deformations �solid line�, unscreened Coulomb impurities �dashed
line�, Gaussian potential fluctuations �dotted line�, and short-ranged
potentials �dot-dashed line�. The parameters used for the plot are
given in the text.
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From the double-logarithmic plot in Fig. 5 one can see
that there is an approximate power-law dependence,
�xx /�yy � �vy /vx�−p, over at least one decade. The exponent is
p�3.3 for geodesic scattering, while p=2 for short-range
potential scattering. Scattering from long-ranged Coulomb
impurities or from medium-ranged Gaussian potential fluc-
tuations gives p�2.

Anisotropic charge transport in the presence of un-
screened Coulomb impurities for an elliptic dispersion rela-
tion was also discussed in the context of strained graphene.20

There it was argued that �xx /�yy � �vy /vx�−2 on the basis of a
power-counting argument. Our numerical solution of the
Boltzmann equation gives a smaller exponent p�1.3 in that
case.

To conclude, charge transport dominated by surface de-
formations has a much stronger anisotropy dependence than
that governed by impurity potentials. This highly anisotropic
transport behavior is a distinct characteristic of geodesic
scattering.
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APPENDIX: CALCULATION OF THE SCATTERING
CROSS SECTION

1. Christoffel symbols in rotated basis

In order to calculate the scattering angle in the geometry
of Fig. 1, it is convenient to rotate the coordinate axis in the
x-y plane such that the electron is incident parallel to the x
axis. Under the linear transformation from x , y to
x̃=x cos k+y sin k, ỹ=−x sin k+y cos k, the Christoffel
symbol 
��

	 transforms to


̃��
	 �x̃, ỹ� =

� x̃	

�x	�

����

	� �x,y�
�x��

� x̃�

�x��

� x̃�
. �A1�

Using the expressions �2.7� for metric tensor and Christoffel
symbols, we arrive at


̃��
x = D−1 �2�

� x̃� � x̃�

��vxz
2 ��

� x̃
− �vxz

2 − vyz
2 �sin k� ��

� x̃
sin k +

��

� ỹ
cos k	� ,

�A2a�


̃��
y = D−1 �2�

� x̃� � x̃�

��vyz
2 ��

� ỹ
− �vxz

2 − vyz
2 �sin k� ��

� x̃
cos k −

��

� ỹ
sin k	� .

�A2b�

The factor D from Eq. �2.5d�, written in terms of the rotated
coordinates, reads

D = 1 + vxz
2 � ��

� x̃
cos k −

��

� ỹ
sin k	2

+ vyz
2 � ��

� x̃
sin k +

��

� ỹ
cos k	2

. �A3�

The Christoffel symbols in Eq. �A2� appear in the geodesic
equation for the rotated coordinates

d2x̃	

d�2 + 
̃��
	 dx̃�

d�

dx̃�

d�
= 0. �A4�

2. Geodesic equation for shallow deformation

The geodesic equation �A4� can be considerably simpli-
fied in the shallow deformation limit H /W�1. Let us con-
sider a particle incident on a deformation along the x̃ direc-
tion from −� with impact parameter b and velocity

v = vxvy�vy
2 cos2 k + vx

2 sin2 k�−1/2. �A5�

Since the derivative dỹ /d� is smaller than dx̃ /d� by a factor
�H /W�2, we can drop this derivative from the geodesic equa-
tion. The result is

d2x̃

d�2 + 
̃xx
x �dx̃

d�
	2

= 0, �A6a�

d2ỹ

d�2 + 
̃xx
y �dx̃

d�
	2

= 0. �A6b�

Furthermore, since dx̃ /d�=v�1+O�H /W�2�, we can write
d /d�=vd /dx̃. This leads to

d2ỹ

dx̃2 = − 
̃xx
y . �A7�

The scattering angle �1 is obtained from
=limx̃→� dỹ /dx̃ hence

�k,b� = − �
−�

�



̃xx
y dx̃
ỹ→b. �A8�

Inserting Eq. �A2b� into Eq. �A8� and noting that
D=1+O�H /W�2, we obtain the scattering angle to leading
order in H /W

�k,b� = − �
−�

�

dx̃���
��

� ỹ
− �

��

� x̃
	 �2�

� x̃2�
ỹ→b

. �A9�

We abbreviated

� = vyz
2 cos2 k + vxz

2 sin2 k, �A10a�

� = �vxz
2 − vyz

2 �sin k cos k. �A10b�

3. Circularly symmetric deformation

For a circularly symmetric height profile ��x ,y�, depen-
dent only on r=�x2+y2=�x̃2+ ỹ2, the term proportional to �

GEODESIC SCATTERING BY SURFACE DEFORMATIONS… PHYSICAL REVIEW B 82, 085312 �2010�

085312-7



in Eq. �A9� vanishes �because it is an integral over an odd
function of x̃�. The expression for the scattering angle thus
simplifies further to

�k,b� = − ��
−�

�

dx� ��

�y

�2�

�x2�
y→b

. �A11�

For the Gaussian deformation in Eq. �2.10� we obtain the
scattering angle in Eq. �2.11� given in the main text.

The entire dependence of the scattering angle  on the
angle of incidence k is contained in the prefactor �. This
implies that the moments Mp=�dbp of the scattering angle
depend on the angle of incidence as

Mp�k� = cp�p = cpvxz
p �sin2 k + vyx

2 cos2 k�p �A12�

with cp a coefficient independent of k.
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