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Electrons hopping on the sites of a two-dimensional Lieb lattice and three-dimensional edge-centered cubic
�perovskite� lattice are shown to form topologically nontrivial insulating phases when spin-orbit coupling is
introduced. These simple models on lattices with cubic symmetry show a Dirac-type structure in the excitation
spectrum but with the unusual feature that there is a dispersionless band through the center of the spectrum and
only a single Dirac cone per Brillouin zone.
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I. INTRODUCTION

The study of topological insulators1,2 has taken off in the
last few years, proving to be an exciting area of research in
condensed-matter physics while also having ties to funda-
mental physics due to the possibility of providing a test bed
for exotic particles such as Majorana fermions,3 fractionally
charged vortices,4 axions,5,6 and magnetic monopoles.7,8

In general, topological insulators are bulk insulators hav-
ing an energy gap between the valence and conduction
bands, but with gapless edge states �two-dimensional �2D��
or surface states �three-dimensional �3D��, caused by spin-
orbit �SO� coupling, which are immune to nonmagnetic im-
purities and geometric perturbations. Similar in spirit to the
quantum Hall effect, the novelty of a topological insulator
�TI� lies in the fact that it can be characterized by a topologi-
cal invariant, and is not the result of a spontaneously broken
symmetry. However, the invariant cannot take on any integer
value, as in the in the quantum Hall case, but is instead a
so-called Z2 topological quantum number that we label �,
which can be either 0 or 1. In 2D, a single Z2 invariant is
sufficient for the job whereas in 3D, one needs four Z2 in-
variants ��0 ;�1�2�3�, which distinguish 16 possible topologi-
cal phases and fall into the two general classes: weak TI
�WTI� and strong TI �STI�.9 In 3D if there are an odd number
of surface states then we have �0=1 and the system is in the
STI phase. If there is an even number of surface states �pos-
sibly zero� then �0=0 and we have a trivial insulator or WTI
if any of the �i are nonzero.

The 2D topological insulator, also known as the quantum
spin Hall phase, was independently proposed by two
groups,10–12 and to date a variety of models have been estab-
lished that can support the TI phase. The original model on
the honeycomb lattice was realized by superposing two cop-
ies of the Haldane model,13 one for spin up and other for spin
down electrons, with the spin-up and spin-down electrons
moving in opposite directions along the edge.10 It was then
predicted theoretically,14 and later confirmed
experimentally,15 that this effect is present in the HgTe/CdTe
quantum wells. Fu and Kane extended the concept to 3D
with a toy model on the diamond lattice,9 and also predicted
that the alloy Bi1−xSbx, which has large spin-orbit coupling,
would be a three-dimensional TI.16 This was later verified
experimentally by ARPES �angle-resolved photoemission
spectroscopy� measurements which directly observed the to-

pological surface states.17 Other models with a low-energy
Dirac structure, namely, the 2D kagome, decorated honey-
comb, checkerboard, and 3D pyrochlore systems, have been
recently shown to support topological states.18–22 Experimen-
tally the most promising system is currently Bi2Se3, which is
known to have a large band gap and a single surface Dirac
cone.23 Although not experimentally verified, there is also
some theoretical work on topological insulators in cold at-
oms, which looks promising.24,25

On a practical level, these gapless surface states are robust
against disorder since time-reversal symmetry disallows
backscattering from nonmagnetic impurities. When gapped
by time-reversal symmetry breaking perturbations, supercon-
ducting, or excitonic pairing, these surface states give rise to
interesting insulating phases with exotic quasiparticle excita-
tions already mentioned above. Electric manipulation of the
spin degrees of freedom in topological insulators should also
be possible and they can therefore be of value in spintronics
applications. Some of the existing topological insulators are
also known to be among the best thermoelectric materials,
such as the material Bi2Te3 discussed by Zhang et al.,26 and
thus discovery of new materials or further understanding of
existing ones would be of value.

In this paper, we present another possible host for a topo-
logical insulator, namely, the Lieb lattice in 2D and its 3D
counterpart the perovskite or edge-centered cubic lattice. We
show that a simple tight-binding model for electrons on these
lattices leads to TI behavior in the presence of spin-orbit
coupling. These toy models are unlike most of the existing
models in that they have a simple cubic symmetry and ex-
hibit only a single Dirac node in the spectrum intersecting a
degenerate flat band precisely at the Dirac point. We also
briefly discuss other perturbations that lead to topologically
trivial gapped phases.

II. LIEB LATTICE

We begin with the tight-binding Hamiltonian,

H0 = − t �
�ij��

ci�
† cj� + H.c., �1�

where ci�
† creates an electron of spin � on site i of the so-

called Lieb lattice, seen in Fig. 1�a�, and t is the hopping
amplitude for nearest-neighbor sites.
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In momentum space, Eq. �1� becomes H0
=�k��k�

† Hk
0�k� with �k�= �c1k� ,c2k� ,c3k��T and

Hk
0 = − 2t�0 cos�kx� cos�ky�

0 0

0
	 ,

where the lower triangle of the matrix is understood to be
filled so that the matrix is Hermitian. The spectrum of Hk

0

consists of one degenerate flat band Ek
�3�=0 and two disper-

sive bands,

Ek
�1,2� = � 2t
cos2 kx + cos2 ky , �2�

where the Brillouin zone spans − �
2 �kx�

�
2 and

− �
2 �ky �

�
2 . Plotting these bands yields a low-energy

Dirac-type dispersion �seen in Fig. 1�b��, with a single Dirac
cone in the Brillouin zone. At one third filling then, band 1
will be completely filled, with the degenerate flat band and
the upper band being empty, and this state will behave as a
gapless band insulator.

There are several perturbations to the basic Hamiltonian
�1� that open up a gap while respecting the translational sym-
metry of the lattice. The simplest option is to add an on-site
energy 	 to all the sites that have only two nearest neighbors
in Fig. 1�a� above, or conversely the inequivalent sites with
four nearest neighbors. We note that this setup has been dis-
cussed recently in the context of ultracold fermionic atoms.27

Here, one of the dispersing bands remains touching the flat
band while the other dispersing band becomes isolated. An-
other option is to add a dimerization term, which staggers the
hopping amplitude along both the x̂ and ŷ directions so that
t→ t��. In this case, the flat band becomes isolated from
the dispersing bands, which are gapped symmetrically
�shown for strip geometry in Fig. 1�c��. Lastly, including a
Rashba spin-orbit term will again isolate the flat band while
also splitting the spin degeneracy among the valence and
conduction bands. In all of the above cases the resulting

insulating phases are characterized by conventional broken
symmetries and are topologically trivial.

The recent paper by Green et al.28 discusses a similar set
of energy bands having a flat band directly through the
middle of a single Dirac cone, which have been created via
staggered flux phases on the kagome lattice. Although their
interests lie with the flat band itself, they discuss possible
insulating phases that can be introduced in order to isolate
the flat band and determine that, for spinless fermions, time-
reversal symmetry must be broken in order to achieve this.
Seeing as the Lieb lattice requires no magnetic field to create
the same energy band structure, perhaps it is of some interest
then that we can isolate the flat band without breaking time-
reversal symmetry by way of the dimerization term men-
tioned above.

Now, to see if this model can support a TI phase we
include the intrinsic SO interaction term,

HSO = i
 �
��ij����

�dij
1 � dij

2 � · ���ci�
† cj�, �3�

where 
 is the amplitude for the next-nearest-neighbor
�NNN� spin-orbit-induced interaction �shown in Fig. 1�a��,
the term �ij = �dij

1 �dij
2 �z= �1, where dij

1 and dij
2 are the two

unit vectors along the nearest-neighbor bonds connecting site
i to its next-nearest neighbor j and � is the vector of Pauli
spin matrices. This will also lead to the formation of a gap at
the Dirac point while preserving T and the translational sym-
metry of H0. Fourier transforming, we have

Hk
SO = � 4
�0 0 0

0 − i sin�kx�sin�ky�
0

	 , �4�

where the +�−� sign refers to spin up �down� electrons, and
the spectrum for the full Hamiltonian, Hk=Hk

0 +Hk
SO, then

consists of the same degenerate flat band Ek
�3�=0, and the

modified doubly degenerate dispersive bands,
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FIG. 1. �Color online� �a� Lieb lattice show-
ing three-site basis in unit cell, NNN hopping
�dotted lines� and basis vectors a1 and a2. �b�
Tight-binding dispersion for Hk

0. �c� Band struc-
ture for strip of Ny =10 unit cells with open
boundary conditions along the y direction and in-
finite along x with �=0.2t. �d� As in �c� but with

=0.2t instead.
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Ek
�1,2� = � 2
t2�cos2 kx + cos2 ky� + 4
2 sin2 kx sin2 ky

�5�

with a gap SO=4�
� at the Dirac point.
We note that the flat band eliminates the possibility of

writing down a low-energy Dirac expansion for the system in
terms of the Pauli matrices, as discussed e.g., in Ref. 18 and
other topological insulator models, but, following Refs. 28
and 29, it is possible to express the full Hamiltonian above in
terms of a set of 3�3 matrices that form a spin-1 represen-
tation of SU�2�. Although not a focus here, this makes it
possible, for instance, to calculate the Chern numbers of the
bands analytically.

To prove that our system is indeed a topological insulator,
we now show by an explicit calculation that it possesses a
nontrivial Z2 invariant. There are several ways to do this in
practice, although they are found to be equivalent in the end,
so we use the method that is most convenient.

According to Fu and Kane16 when a crystal possesses
inversion symmetry, the Z2 topological invariant � is related
to the parity eigenvalues �2m��i� of the 2mth occupied en-
ergy band at the four T-invariant momenta �i. Our system is
inversion symmetric and so we can use this method to find �.
If we select site 1 of the unit cell as the center of inversion
then the parity operator acts as P��1�r� ,�2�r� ,�3�r��
= ��1�−r� ,�2�−r−a1� ,�3�−r−a2�� on the triad of the
electron wave functions in the unit cell labeled by vector r.
In momentum space, the parity operator becomes a
diagonal 3�3 matrix Pk=diag�1,e−ia1·k ,e−ia2·k� and
the four T-invariant momenta can be expressed as
�i=��x̂ni+ ŷmi� /2 with ni ,mi=0,1. The eigenstates of H�i
can be found analytically in this case and it is then easy to
determine the parity eigenvalues of the occupied bands. At 1

3
filling, we find that three �’s are positive and one is negative.
Which of the four �’s is negative depends on the choice of
the inversion center but the product �i���i�= �−1�� is inde-
pendent of this choice and determines the nontrivial Z2 in-

variant �=1, confirming that the system is indeed a topologi-
cal insulator. Similar considerations for 2

3 filling also yield
�=1.

Next, we solve the model in a strip geometry numerically
using exact diagonalization, in order to incorporate edge ef-
fects and demonstrate the bulk-boundary correspondence,
which states that whenever �=1 there will be an odd number
of pairs of topologically protected gapless modes along each
edge in the system. For the trivial insulating state with
�=0.1t, we find no edge states �Fig. 1�c�� but for 
=0.1t, we
indeed find a pair of spin-filtered gapless states associated
with each edge, as seen in Fig. 1�d�. As there are three atoms
in the unit cell, the two edges of the slab are not equivalent,
and therefore the edge states are not degenerate.

III. PEROVSKITE LATTICE

The perovskite lattice, depicted in Fig. 2�a�, is a straight-
forward generalization of the Lieb lattice into 3D and can be
viewed as a simple cubic lattice with additional sites posi-
tioned at the centers of all edges.

As with the Lieb lattice, our starting point is the tight-
binding model given in Eq. �1�, which in momentum space
gives

Hk
0 = − 2t�

0 cos kx cos ky cos kz

0 0 0

0 0

0
	 .

The spectrum then consists of two degenerate flat bands
Ek

�3,4�=0 and the two dispersive bands,

Ek
�1,2� = � 2t
cos2 kx + cos2 ky + cos2 kz. �6�

Again, we have a single Dirac point in the Brillouin zone and
at 1

4 filling the system behaves as a gapless band insulator.
The spectrum is shown in Fig. 2�c�. As above, we can create
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FIG. 2. �Color online� �a� Perovskite lattice
showing four sites in unit cell along with basis
vectors. �b� High-symmetry points in the Bril-
louin zone. �c� Band structure inside bulk along
path of high symmetry for Hk

0. �d� As in �c� but
with �=0.2t.
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a topologically trivial insulating phases by including an an-
isotropic on site term or a dimerization �Fig. 2�d��.

To open up a topologically nontrivial gap, we consider
spin-orbit coupling Eq. �3�. Since the dij

1,2 now lie in three-
dimensional space, the Hamiltonian does not decouple for
the two spin projections as above, and instead becomes an
8�8 matrix in k space. The spectrum can be found numeri-
cally and is shown in Fig. 3�a�. Unlike the model on the Lieb
lattice, the addition of the spin-orbit term creates a dispersion
in the degenerate flat bands and a gap that depends on the
sign of 
, which is no longer symmetric around zero energy.
Switching the sign of 
 inverts the band structure.

We now study the topological classes of these insulating
phases. As above, the Z2 topological invariants ��0 ;�1�2�3�
are easy to evaluate when a crystal possesses inversion
symmetry and can be determined from knowledge of the
parity eigenvalues �2m��i� of the 2mth occupied energy band
at the eight T-invariant momenta �TRIM� �i that satisfy
�i=�i+G. The eight TRIM in our system can be expressed
in terms of primitive reciprocal lattice vectors as
�i=�n1n2n3�= �n1b1+n2b2+n3b3� /2, with nj =0,1. Then �� is
determined by the product �−1��0 =�nj=0,1�n1n2n3

and
�−1��i=1,2,3 =�nj�i=0,1;ni=1�n1n2n3

, where �i=�m=1
N �2m��i�.

If we select site 1 of the unit cell, Fig. 2, as
the center of inversion then the parity
operator acts as P��1�r� ,�2�r� ,�3�r� ,�4�r��
= ��1�−r� ,�2�−r−a1� ,�3�−r−a2� ,�4�−r−a3�� on the
four-component electron wave function in the unit cell
labeled by vector r. In momentum space and including spin
the parity operator becomes a diagonal 8�8 matrix
Pk=diag�1,e−ia1·k ,e−ia2·k ,e−ia3·k� � diag�1,1�. It is straight-
forward to obtain the eigenstates of H�i

and the parity eigen-
values of the occupied bands numerically, then determine the
Z2 invariants. At quarter filling, we find that �=−1 at the H
point and �=1 at the other TRIM so the spin-orbit phase is a
�1;111� strong topological insulator.

Incorporating edge effects into the system with a slab ge-
ometry and plotting the band energies along lines connecting
the four surface TRIM �Fig. 3�b��, we can also see the bulk
energy bands and an odd number of surface states which
traverse the gap, a behavior characteristic of STI.

As in Ref. 20, we note that it is also possible to obtain a
WTI with this model. In the limiting case where the system
is tuned so that electrons can only move in decoupled paral-
lel planes, each forming a 2D Lieb lattice, we know from our
work above that we have a collection of 2D topological in-
sulators. Such a collection results in a WTI, which will sur-

vive even if the interplane coupling is restored. Using the
Fu-Kane method16 we have confirmed that if hopping along
the z direction is eliminated, the system at quarter filling
becomes a �0;001� WTI. For nonzero interplane coupling
parametrized as t�=�t for the NN hopping and 
�=�
 for
the spin-orbit interaction terms, where 0���1, we find that
the WTI survives as long as ��2
 / t. At �=2
 / t, the two
lowest energy bands touch at the point M in the Brillouin
zone and there is a sharp transition to the �1;111� STI phase.
We note that the system remains insulating at quarter filling
for all other values of �.

IV. CONCLUSIONS

We have established a model for a topological insulator
on lattices with simple cubic symmetry. In 2D, we have
shown that a tight-binding model with spin-orbit coupling on
the Lieb lattice supports gapless topologically protected edge
modes, and possesses a nontrivial Z2 invariant. In 3D, we
have demonstrated that a similar model on the perovskite
lattice supports 2D gapless surface states when in the �1;111�
STI phase, brought on by spin-orbit coupling. We have also
identified other gapped phases in these models that are topo-
logically trivial.

In addition to the topologically nontrivial band structures,
the models considered here exhibit flat bands, which could
give rise to interesting strongly correlated electron states
even for relatively weak interaction strength.30 A necessary
condition for exotic correlated phases is that the single-
electron states forming the flat band are delocalized in space
�localized states typically lead to formation of more conven-
tional Wigner crystal phases�. Delocalized single-electron
states are guaranteed to exist if the flat band possesses a
nonzero topological invariant, as happens, e.g., in quantum
Hall liquids. Unfortunately, this is not the case in models
considered in this study. In the Lieb lattice, spin-orbit cou-
pling preserves the flat band and separates it from other
bands. The resulting flat band however turns out to be topo-
logically trivial, i.e., it has �=0 while the TI behavior derives
from the two dispersive bands which have �=1. In the per-
ovskite lattice, spin-orbit coupling produces a significant dis-
persion in the original flat band and this will limit the impor-
tance of correlations in the system. Although we see no
general reason that would prevent a flat band from having a
nontrivial Z2 invariant, this situation does not seem to occur
in commonly used simple models.

Can our model be realized in a physical system? There
exist many perovskites in nature as well as many layered
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perovskites composed of weakly coupled 2D planes with
Lieb lattice structure. The most prominent example of the
latter are the CuO2 planes in high-Tc cuprate superconductors
such as YBa2Cu3O7 or Bi2Sr2CaCu2O8. In 3D, our model
system is an idealization of the naturally occurring perovs-
kites, most of which also have a heavy central atom in the
middle of each cubic cell, such as SrTiO3 or the double
perovskite structure Ba2NaOsO6. In these real materials, the
electron behavior near the Fermi level derives from the eg
and t2g orbitals of the transition-metal element occupying the
cubic site while the edge sites are normally oxygens whose p
orbitals are far away from the Fermi level. The resulting
band structure for the active orbitals is then significantly
more complex than that captured in our simple tight-binding
model. Nevertheless, our model calculations demonstrate
that this class of tight-binding Hamiltonians on lattices with
cubic symmetry can support topological phases, both in 2D

and 3D. We hope that our work will stimulate detailed band-
structure calculations of perovskites with heavy transition-
metal elements in search for new families of topological in-
sulators.

In the more exotic realm, it might be possible to artifi-
cially engineer the 2D system by modulating a two-
dimensional electron gas with a periodic potential having
Lieb symmetry, as achieved recently in constructing the “ar-
tificial graphene.”31 Another possibility lies with cold Fermi-
onic atoms in optical lattices as discussed in Refs. 24 and 25.
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