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The collective behavior of spins in a dilute magnetic semiconductor is determined by their mutual interac-
tions and influenced by the underlying crystal structure. Hence, we begin with the atomic quantum-mechanical
description of this system using the proposed variational-perturbation calculus and then turn to the emerging
macroscopic picture employing phenomenological constants. Within this framework we study spin waves and
exchange stiffness in the p-d Zener model of �Ga,Mn�As, its thin layers and bulk crystals described by the
spds� tight-binding approximation. Analyzing the anisotropic part of exchange, we find that the
Dzyaloshinskii-Moriya interaction may lead to a cycloidal spin arrangement and uniaxial in-plane anisotropy
of diagonal directions in thin layers, resulting in a surfacelike anisotropy in thicker films. We also derive and
discuss the spin-wave contribution to magnetization and Curie temperature. Our theory reconstructs the values
of stiffness determined from the temperature dependence of magnetization but reproduces only partly those
obtained from analyzing precession modes in �Ga,Mn�As thin films.
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I. INTRODUCTION

Dilute magnetic semiconductors, such as �Ga,Mn�As,
form a class of materials with many outstanding properties1,2

and functionalities.3 A number of these result from the com-
plex structure of the valence band, which hosts holes medi-
ating magnetic order between spins localized on transition-
metal impurities. The strong force which lies behind this
mechanism is the carrier-mediated exchange interaction. It
gives the low-lying energy states of such a system the char-
acter of spin waves, which contribute to both its equilibrium
�e.g., spontaneous magnetization and Curie temperature� and
nonequilibrium magnetic properties �ferromagnetic reso-
nance and relaxation�.4 At the same time, it allows us to
replace the atomic quantum-mechanical description of the
system with the classical, continuous micromagnetic theory,
where it appears in form of exchange stiffness.5

Quite generally, micromagnetic properties of any ferro-
magnet are determined by the magnitudes of the exchange
stiffness and magnetocrystalline anisotropy.6 The first de-
scribes the exchange energy associated with nonuniform dis-
tributions of local directions of magnetization. The other is
the energy needed to change the total magnetization direction
with respect to the crystal axes, which involves the compet-
ing crystal-field and spin-orbit interactions. While the main
part of the exchange energy is isotropic, a consequence of its
electrostatic origin, the relativistic spin-orbit coupling can
create its small anisotropy, namely, the dependence on the
crystalline orientation of magnetization. In zinc-blende bulk
crystals and thin layers with broken space inversion symme-
tries, it leads to many interesting effects, related to the
anisotropic7 and Dzyaloshinskii-Moriya8,9 exchange, which
have not been hitherto studied in �Ga,Mn�As. Since the total
spin is no longer conserved, they are indispensable when
considering any usage of spins for information storage and
processing.

The spin-wave spectrum and the isotropic exchange stiff-
ness in bulk �Ga,Mn�As were computed by König, Jung-
wirth, and MacDonald,10 and by Brey and Gómez-Santos11

within the p-d Zener model employing the six-band kp
Hamiltonian,12–14 which neglects the inversion asymmetry
specific to the zinc-blende lattice. It was found that the actual
magnitude of the exchange stiffness is much greater when
one takes into account the complex structure of the valence
band, as compared to the case of a simple parabolic band.10,11

This, as well as the highly anisotropic Fermi surface, were
shown to explain7,11 why the mean-field approximation12 is
so accurate in �Ga,Mn�As. It was also found that the values
of exchange and anisotropy energies obtained within the
same formalism describe quantitatively15 the width of stripe
domains in films with perpendicular magnetic anisotropy.

More recently, Bouzerar16 employed a self-consistent lo-
cal random-phase approximation in order to evaluate the
spectral density of spin-wave excitations in Ga1−xMnxAs.
The magnitudes of spin-spin exchange integrals J�r� were
obtained from first-principles computations within the local
spin-density approximation �LSDA� and tight-binding linear
muffin-tin orbital approach neglecting the spin-orbit interac-
tion. The theory allows to treat disorder and thermal fluctua-
tions, and shows that the calculated spectral density has well-
defined maxima up to about one half of the relevant Debye
wave vector qD= �24x /��1/3� /a, where a is the lattice con-
stant. This made it possible to determine the spin-wave dis-
persion ��q� in the range 0�q�qD /2, from which the mag-
nitude of spin-wave stiffness was obtained.16

Experimentally, Potashnik et al.17 analyzed the tempera-
ture dependence of magnetization in a series of Ga1−xMnxAs
samples, which provided the values of spin-wave stiffness
from the T3/2 Bloch law. In later experiments, the stiffness
was determined by examining spin precession modes excited
by optical pulses18 and under ferromagnetic resonance
conditions.19–21 The values obtained for some films with
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thickness greater than 120 nm, either as-grown18,21 or
annealed,18 are in good agreement with those predicted by
Bouzerar.16 However, the values for thinner films18,21 or an-
other series of annealed samples19,20 were about three times
smaller. Similarly small magnitudes of spin-wave stiffness
were found by analyzing the domain structure of annealed
Ga0.93Mn0.07As.22 The experimental works18–21 demonstrate
that spectral positions of spin-wave resonances are strongly
affected by the character of spin pinning at the sample bor-
ders. The same effect is caused by magnetic anisotropy
changes along the growth direction, particularly strong at the
film interface and surface.21 Therefore, theoretical predic-
tions concerning spin-wave excitations in both thick and thin
layers may provide a useful guide to better understanding of
magnetization dynamics in real samples.

In this paper we investigate spin waves and related micro-
magnetic constants in ferromagnetic �Ga,Mn�As, as de-
scribed by the p-d Zener model.12 The validity of this model
is supported by photoemission experiments23 and ab initio
computations, in which the inaccuracies of the LSDA are
partly reduced by self-interaction.24 Furthermore, the magni-
tude of low-temperature quantum corrections to conductivity
indicates that in the concentration range relevant to ferro-
magnetism, the density of states assumes values expected for
valence band holes.25,26 The carrier band is formed from
p-type-like states of the GaAs semiconductor structure,
which are mostly built from the anion 4p orbitals. We de-
scribe it by the spds� tight-binding approximation for thin
layers and, by applying periodic boundary conditions, for
bulk crystals.27–30 Our analysis of the anomalous Hall effect
in �Ga,Mn�As in Refs. 31 and 32 provides a thorough com-
parison of this method with other band-structure models.31

One of its advantages is that it captures the inversion asym-
metry of the zinc-blende lattice, which produces the Dressel-
haus spin splitting of the conduction band,33 and additionally
the structure inversion asymmetry in thin layers, which cre-
ates the Bychkov-Rashba spin splitting.34 The growth-
induced biaxial strain is included by changing the atoms’
arrangement, according to the strain tensor values:
�xx=�yy =�a /a and �zz=−2c12 /c11�xx, where �a is the strain-
induced change in the lattice constant, and c12 /c11=0.453 is
the ratio of elastic moduli. Also, the on-site energies of the d
orbitals depend linearly on the strain tensor values.27 Spin
polarization of individual Mn moments is replaced by a mo-
lecular field, which creates a k-dependent Zeeman-type split-
ting of the host bands. For heavy holes in the � point it is
given by �=xn0S	, where x is the fraction of cation site
density n0 substituted by Mn forming a spin S=5 /2, and
	=−54 meV nm3 is the p-d exchange integral.13 The valid-
ity of this approach can be questioned if the magnetic ions
produce bound states35 but the metallic character of the car-
rier states of interest here means that this does not occur due
to many-body screening. At the same time we neglect the
effect of this screening on potentials produced by magneti-
zation fluctuations, which is justified as long as � is smaller
than the Fermi energy so that spin- and charge-density fluc-
tuations are decoupled. A part of Mn atoms form uninten-
tional defects such as interstitials �which can passivate single
substitutional spins� and antisites. Both being double donors,
they significantly lower the hole density, which can be partly

remedied by removing the interstitials by post-growth
annealing.

The paper is arranged as follows. In Sec. II we use the
proposed variational-perturbation calculus to describe the
system of lattice spins interacting via hole carriers and its
spin-wave excitations. In the micromagnetic theory, the sys-
tem is described by the set of constants related to magneto-
crystalline anisotropy and exchange energy. Section II C pro-
vides quantitative results on the spin-wave stiffness
expressed as the dimensionless parameter Dnor, comparing it
between the kp and spds� tight-binding models. In Sec. II D
we derive the spin-wave contribution to magnetization and
Curie temperature. Section III compares our theory to related
experimental findings.17–22 The last section of the paper con-
tains the summary of our work.

II. THEORETICAL MODEL

In this section, we demonstrate a physically transparent
perturbation-variational method of treating the systems in
question. We use it to find the effective Hamiltonian of lat-
tice ions interacting through hole carriers, written in the in-
teraction representation of creation and annihilation opera-
tors. Next, we calculate the dispersion dependence of its low-
lying energy states by transforming the Hamiltonian to the
spin-wave representation. These two pictures are associated
with different sets of phenomenological parameters describ-
ing the macroscopic system, whose properties we shall in-
vestigate later on.

A. Microscopic picture

We consider the ferromagnetic phase of a system consist-
ing of P carriers and N magnetic lattice ions, described by
the Hamiltonian H0 and coupled by the p-d exchange inter-
action H�

H = H0 + H� = H0 + �
i=1

P

�
j=1

N

	I�ri − R j�si · S j , �1�

where si and S j are the ith carrier’s and jth ion’s spin opera-
tors while ri and R j are their respective positions. The
strength of the p-d exchange interaction between these two
spins is described by a smooth function 	I�ri−R j�, localized
around the jth magnetic ion. In the absence of external fields,
H0 depends on the carriers’ degrees of freedom only.13

The dynamics of magnetic ions coupled to the system of
hole carriers requires a self-consistent description, which
takes into account how the holes react to the ions’ magneti-
zation changes. Therefore, we use the Löwdin perturbation
method specifically adapted for multiparticle
Hamiltonians,36–39 to derive an effective Hamiltonian Heff

for ions only.
We choose the multiparticle basis states of H as M � �.

The ion part M is an eigenstate of the unperturbed ions-holes
system in Eq. �1�, and the hole part � is a Slater determinant
of eigenstates of the one-particle hole Hamiltonian

h = h0 + �sz, �2�

where h0 describes the host band structure and � is the spin
splitting induced by polarized lattice ions.
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The Löwdin calculus consists in dividing the multiparticle
basis states into two subsets, A and B

H = �HAA HAB

HBA HBB
� . �3�

Set A contains all states M � �0, where �0 is the P-particle
ground state of h. Set B contains all the remaining states, in
which at least one hole is excited above the Fermi level. We
construct the effective Hamiltonian for the states from set A
only, adding their coupling with set B as the second order
perturbation,

Hnn�
eff = �H0�nn� + Hnn�

� + �
n��B

Hnn�Hn�n�

E − Hn�n�
, �4�

where n ,n��A. The term �H0�nn� is independent of the ion
configurations, so we set it to zero for simplicity. Thus, the
effective Hamiltonian Heff depends only on the ion degrees
of freedom but, thanks to the Löwdin method, takes hole
excitations into account and can be used to calculate the
spin-wave dispersion in a self-consistent manner.

The variational part of our method consists in searching
for the energy E in the range where we expect to find the
lowest eigenenergies of H, which are the ones that we are
interested in. For a known average spin splitting �, we can
set E to the total energy of the hole multiparticle state �0,
E�0

=��k,m���0
Ek,m, where Ek,m is the energy of the mth band

with wave vector k of Hamiltonian h, and the sum goes over
all occupied eigenstates �k ,m� in �0. The states n� are of the
form M� � ��, ����0. To simplify the sum over n�, we ap-
proximate the diagonal matrix element Hn�n�, which depends
on both M and ��, by the total energy of the multiparticle
hole state ��, E��=��k,m����Ek,m. It describes the interaction
of �� with the average configuration of the ions’ spins cor-
responding to the spin splitting �. We can thus write the
Hamiltonian �4� in the following form:

Hnn�
eff = Hnn�

� + �
M�

�
����0

Hnn�Hn�n�

E�0
− E��

, n,n� � A . �5�

The factor Hnn�Hn�n� under the sum can be written as
�M � �0�H��� � M���M� � ���H��0 � M��, where n=M � �0
and n�=M� � �0. Since the denominator in Eq. �5� is inde-
pendent of M�, summing over M� is equivalent to inserting
an identity operator, which allows us to write the last term as

�
����0

�M � �0�H��������H��0 � M��
E�0

− E��
.

We can thus treat Heff as a Hamiltonian acting on ion states
only

HMM�
eff = �M � �0�H���0 � M��

+ �
����0

�M � �0�H��������H��0 � M��
E�0

− E��
. �6�

Since the p-d exchange term in H, which produces the
extra-diagonal matrix element �M � �0�H��� � M��, is the in-
teraction of a single hole with an ion, the only �� states
which have a nonzero contribution to the sum over �� in
Eq. �6� are those which are created from �0 by just one
excitation, �k ,m�→ �k� ,m��. Hence, we have E�0

−E��
=Ek,m−Ek�,m� and Hamiltonian �6� can be written as

HMM�
eff = �M � �0�H���0 � M�� + �

k,k�
�

m,m�

fk,m�1 − fk�,m��

Ek,m − Ek�,m�


 �M � �0�H��������H��0 � M�� , �7�

where fk,m is the Fermi-Dirac distribution coefficient. The
fraction in the above sum looks dangerous, as it may diverge
in the presence of the energy bands’ crossings, which would
make our perturbation calculus invalid. However, the effec-
tive Hamiltonian for ions depends on the average of these
factors and will be shown immune to this problem.

We write Hamiltonian �6� using ion spin operators and
integrate out the hole degrees of freedom

Heff = �
�

�
j=1

N

Hj
�Sj

� + �
���

�
j=1

N

�
j�=1

N

Hjj�
���Sj

�Sj�
��. �8�

The coefficients Hj
� and Hjj�

��� are given by

Hjj�
��� =

	2

V2 �
kk�

�
mm�

fk,m�1 − fk�,m��

Ek�,m� − Ek,m


 ei�k�−k�·�Rj−Rj��skmk�m�
� sk�m�km

�� , �9�

where due to the condition ����0 in Eq. �5�, for k=k� the
summation goes over m�m�, and

Hj
� =

	

V
�
k

�
m

fk,mskmkm
� +

�	

V
�
k

�
m�m�

fk,m�1 − fk�,m��

Ek,m� − Ek,m


 �skmkm�
� skm�km

z + skm�km
� skmkm�

z � , �10�

where skmk�m�
� = �uk,m�ŝ��uk�,m�� for �=+,−,z and 	ŝ+ , ŝ−
= ŝz

by convention. To obtain the above expressions, we substi-
tuted the hole-only part of Hamiltonian H0 �1� by the sum of
P one-particle Hamiltonians h0 from Eq. �2�. We also used
the formula ��k,m�h0��k�,m��=�k,k���m,m�Ek,m−�skmk�m�

z �. It
arises from the fact that the Bloch states �k,m=eik·ruk,m
building the multiparticle hole states � are one-particle
eigenstates of Hamiltonian h �2�, which includes spin
splitting �. Assuming that eik·r is a slowly varying
function of r and I�r−R j� is constant within the unit cell
around the jth ion and vanishes outside of it, we obtained
��k,m�ŝ�I�r−R j���k�,m��= 	

Vei�k�−k�Rjskmk�m�
� , where V is the

crystal volume.
The second term of Heff �8� describes the exchange inter-

action between the lattice ions. In the presence of the spin-
orbit coupling it has an antisymmetric part in form of the
Dzyaloshinskii-Moriya interaction
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�
��

�
j j�

iujj�
�� �

���

�����Sj
�Sj�

��, �11�

where ����� is the antisymmetric Levi-Civita symbol with
+−z=1 while uij is a pseudovector and exists only in the
systems with broken inversion symmetry

iujj�
�� =

1

2 �
���

�����Hjj�
���.

Using the Löwdin perturbation-variational calculus, we
have thus described the problem as a lattice spin system
coupled by exchange interaction. The low-lying energy states
of such systems are wavelike and can be modeled in the
small oscillations approximation. For this purpose, we re-
place the spin operators with certain nonlinear functions of
bosonic creation and annihilation operators aj

† and aj, carry-
ing out the Holstein-Primakoff bosonization.40 Next, we ap-
proximate these functions with their power expansions
around the state of saturation magnetization

Sj
+ � �Saj, Sj

− � �Saj
†, Sj

z = S − aj
†aj �12�

leaving in the Hamiltonian the terms which are quadratic in
creation and annihilation operators, as only these terms in-
fluence the dispersion relation. This approximation works
very well in the long-wave limit, aq��, as the neglected
magnon-magnon interactions are proportional to �aq�4.6 Fur-
thermore, it justifies neglecting any short-range interactions
between localized spins. At the same time, the continuous
medium approximation becomes valid, which allows us to
carry out the Fourier transform aq=N−1/2� j=1

N eiq·Rjaj. After
simple algebraic transformations, we arrive at the final form
of the harmonic Hamiltonian

Heff = �
q
�� − �q

+−�aq
†aq −

1

2
�q

++aqa−q −
1

2
�q

−−aq
†a−q

† � .

�13�

We call it the interaction representation as it describes the
perturbation of the ground state by the isotropic Coulomb
interaction �first term� and by the spin-orbit interaction, cou-
pling modes of different q �remaining terms�. The spin sus-
ceptibility of the holes is given by

�q
��� = −

nS	2

V
�
k

�
mm�

fk,m − fk+q,m�

Ek,m − Ek+q,m�
skm�k+q�m�

� s�k+q�m�km
�� ,

�14�

where n=N /V is the density of localized spins S in the
sample volume V and nS	=�. The presence of the energy

denominator shows that �q
��� corresponds to the second-

order part of the Hamiltonian �7�. As promised, vanishing of
the denominator is not harmful, due to the de l’Hospital rule.

The formula �14� implies that �q
++= ��q

−−�� is symmetric in
q, while �q

+−, �q
−+�R inherit the symmetry of the �k,m

eigenstates. Hence, we expect the latter to be symmetric with
respect to q for systems which preserve space inversion
symmetry,10 and otherwise for systems which do not. The
q-independent term describes the interaction of a single mag-

netic ion with a molecular field arising from the intraband
spin polarization of the carriers

� = −
	

V
�
k

�
m

fk,mskmkm
z . �15�

The corresponding term reflecting the interband polarization

�so =
nS	2

V
�
k

�
m�m�

fk,m − fk,m�

Ek,m� − Ek,m
�skmkm�

z �2 �16�

arises from both Hjj�
���, Eq. �9�, and the second part of Hj

�

coefficient, Eq. �10�, and cancels exactly in the full Hamil-
tonian Heff.

Hamiltonian �13� in the interaction representation de-
scribes the spin system in terms of circularly polarized plane
waves �first term�, which interact with each other and deform
in time �remaining terms�. We want to obtain the dispersion
relation of independent, stable magnons. For this purpose,
we diagonalize Heff by the Bogoliubov transformation from
aq ,aq

† to bq ,bq
† operators, keeping in mind that we deal with

the system which breaks the space inversion symmetry. The
final form of the effective Hamiltonian in the spin-wave rep-
resentation reads

Heff = − �
q

�qbq
†bq, �17�

where excitation modes are spin waves with dispersion

�q =
�−q

+− − �q
+−

2
+��2� − �q

+− − �−q
+−�2

4
− ��q

++�2. �18�

In the case of �q
+−=�−q

+−, fulfilled for the systems invariant
under space inversion, the above formula simplifies to
König’s et al.10 solution

�q = ��� − �q
+−�2 − ��q

++�2. �19�

Furthermore, neglecting the spin-orbit coupling, when
�++=0, Bogoliubov transformation is unnecessary, and the
effective Hamiltonian is already diagonalized by aq ,aq

† op-
erators. The negative sign of the Hamiltonian �17� is a con-
sequence of using the electronic convention to describe the
hole-ion system.

Apart from spin waves, which are the eigenstates of the
stationary Hamiltonian Heff, dynamic excitations of different
physical origin may occur �e.g., Stoner spin flips�. They
transfer a single carrier across the Fermi level to the state
excited by the energy ��=Ek,m−Ek+q,m� 	see the denomina-
tor of Eq. �14�
 and may lead to the spin waves’ damping. In
the presence of the spin-orbit coupling, we find them likely
to appear at very low energetic cost throughout the whole
q-vector range. On the other hand, within the mean-field
approximation and well below the Curie temperature, substi-
tutional and thermal disorders are characterized by a short
correlation length �, which ensures a well-defined spin-wave
excitation spectrum for q�2� /�.

Figure 1 presents a typical spin-wave dispersion spectrum
�q, Eq. �18�, in bulk �Ga,Mn�As calculated by the tight-
binding computational scheme described in Sec. I. The hole
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concentration p equals 0.65 nm−3 and the spin splitting
�=−0.13 eV is applied along the easy axis z̃ fixed to the
	001
 direction by the biaxial strain �xx=−0.6%.13 The latter
causes a small anisotropy between �q for spin waves propa-
gating in the 	001
 direction and in the �001� plane. Further-
more, due to the lack of inversion symmetry in the unit-cell
geometry, �q

+−��−q
+−, in general. This means that, contrary to

the results of the six-band kp model,10 �q can be asymmetric
with respect to the sign of q or � �inset�. �This effect was
studied experimentally and theoretically in the context of
dielectric susceptibility in another zinc-blende crystal,
InSb.41� Related to the very small Dresselhaus spin splitting
of the conduction band, the also small �q asymmetry is ob-
served for all but 	100
 and 	111
 q directions, and decreases
with the growth of spin splitting. This result remains in line
with our previous studies showing that static properties of
�Ga,Mn�As such as Curie temperature or anisotropies, to
which �q belongs, depend mainly on the properties of the
carrier bands.31

Figure 2 presents �q in �Ga,Mn�As thin layer for
p=0.3 nm−3 and �=−0.1 eV along the easy axis 	110
. The
host crystal consists of two unstrained infinite monolayers
�Ga, As, Ga, As� grown in the 	001
 direction. The new ef-
fect, related to the structure asymmetry, is a shift of the dis-
persion minimum to a nonzero qmin value.

According to the above plots, �q for small q vectors can
be described by the following general formula:

�q = D��q�q� − U�q� + �0, �20�

where indices � ,�=x ,y ,z denote spatial directions used in
the Einstein sum convention. The D and U constants are the
spin-wave stiffness tensor and the Dzyaloshinskii-Moriya co-
efficient, respectively, while �0 is the spin-wave gap created
by magnetocrystalline anisotropies. The higher order terms

arising from the bulk inversion asymmetry can be skipped as
negligibly small for considered q vectors.

Alternatively, we can expand the q-dependent terms in
�q, considering their properties implied by Eq. �14�

�q
+− �

2g�B

MS
�A��q�q� + Ũ�q�� + �q=0

+− ,

�q
++ �

2g�B

MS
T++

��q�q� + �q=0
++ , �21�

where MS=g�BnS is the saturation magnetization of the spin
system. We obtain that, up to quadratic terms, the spin-wave
stiffness in Eq. �20� depends only on the �q

+− term

D =
2g�B

MS
A while U =

2g�B

MS
Ũ . �22�

The above constants are the subject of micromagnetics,
which we shall investigate in the next section. It ignores the
quantum nature of the atomic matter and uses classical phys-
ics in the limit of a continuous medium.

B. Macroscopic picture

The atomic-scale effects investigated in the previous sec-
tion lead to the wavelike behavior of the spin system. In
micromagnetics, these spins are replaced by classical vectors
with their slow-varying direction n�r� described by the free-
energy functional

E	n�r�
 =� �
j=1

�

K j
�n�

2j + A�	
����n���n	

+ U��	n���n	�d3r , �23�

where indices � ,�=x ,y ,z and � ,	= x̃ , ỹ denote spatial and
magnetization directions, respectively, and �	 is the anti-
symmetric Levi-Civita symbol. The first term describes the
anisotropy energy, which depends on the orientation of the
magnetization with respect to the easy axis z̃. Consecutive
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sion asymmetry of GaAs lattice modeled by the spds� tight-binding
method, as compared to the six-band kp model preserving the sym-
metry. Lower and upper solid lines denote the 	412
 and the oppo-
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 propagation direction.
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orders of the magnetocrystalline anisotropy tensor K in
principal-axis representation are numbered by j. The next
term is the symmetric exchange energy, where A is the ex-
change stiffness tensor, with A�	

�� =A	�
��. The antisymmetric

part of exchange is expressed by the last, Dzyaloshinskii-
Moriya term.8,9 Since we describe the magnetization fluctua-
tions around the easy axis, we do not include the derivatives
of nz̃ in the sum, as they are of higher order.

The exchange stiffness A can be split into two parts. The
first one is isotropic in the magnetization direction but can
bear the anisotropy of the exchange interaction in space �e.g.,
caused by biaxial strain�

A�� =
1

2
�Axx

�� + Ayy
��� . �24�

The remaining part is anisotropic with respect to the magne-
tization direction

T�	
�� = A�	

�� − A����	. �25�

We define indices � ,��=+,−, referring to corresponding
spin components, so that n�= �nx̃� inỹ� /�2 and
A�	

����n���n	=A���
�� ��n���n�. It follows from the tensors’

definitions that �T++
����=T−−

�� and T+−
��=0. We shall use the new

notation to rewrite the exchange energy, including the
Dzyaloshinskii-Moriya term, in the following form:

Eex =� 	2A���n+��n− + T��
����n���n�

+ iU��n+��n− − n−��n+�
d3r . �26�

In analogy to microscopic approach, we transform the ex-
change energy functional to the reciprocal space

Eex =
g�B

MS
�
q

	�2A�q�
2 + Ũ�q��a�q�†a�q�

+ T++
��q�q�a�q�†a�− q�† + T−−

��q�q�a�q�a�− q�
 .

�27�

We compare the above result to the effective Hamiltonian
�13� in the interaction representation. It is clear that A �to-
gether with U� and T correspond to coefficients of the �q

+−

and �q
++ expansions in Eq. �21�, respectively. Furthermore,

we can identify the components of the above form with dif-
ferent physical mechanisms governing the spin behavior. The
term involving A describes the energy of a circularly polar-
ized spin wave, as it arises from the isotropic part of ex-
change interaction. Hence, we shall call it the isotropic ex-
change stiffness tensor. The two terms involving T account
for the anisotropic exchange, as we have chosen in Eq. �25�,
induced by the spin-orbit coupling. Hence, we shall call it
the relativistic exchange stiffness tensor. Its nonzero ele-
ments imply that the tilting of an individual spin from the
easy axis z̃ to different directions has different energetic cost.
As a consequence, the polarization of the spin wave deforms
and acquires an elliptical shape. The linear term character-

ized by the constant Ũ represents the minimum shift of the
spin-wave dispersion dependence observed in thin �Ga,M-
n�As layers �Fig. 2�, associated with the asymmetric ex-

change of Dzyaloshinskii-Moriya, Eq. �11�. The energy �0 in
Eq. �20� is related to the anisotropy constant K in the full
free energy functional in Eq. �23�.

We calculate the above tensors for the bulk �Ga,Mn�As
from Fig. 1 and two monolayers from Fig. 2. For this pur-
pose, we fit the coefficients of the �q

+− and �q
++ expansions in

Eq. �21� on ca 1 nm−1 edge cube �or square� in q space,
centered around zero. The obtained tensors describe the en-
ergy of spin waves polarized in the plane perpendicular to
the easy axis z̃. If they propagate in this plane, we call them
longitudinal waves. Transverse spin waves propagate along
z̃.

1. Bulk (Ga,Mn)As

The dispersion spectrum of spin waves propagating in
bulk �Ga,Mn�As along two main crystal axes, 	100
 �x
�equivalent to 	010
� and 	001
 � z, is presented in Fig. 1. The
simulated system is biaxially strained, �xx=−0.6%, with the
hole concentration p=0.65 nm−3 and spin splitting
�=−0.13 eV along the easy axis z̃ � 	001
.

The energy cost of exciting a circularly polarized wave is
given by the exchange stiffness tensor

A = �1.32 0 0

0 1.32 0

0 0 1.28
� meV nm−1. �28�

It is expressed by a diagonal form with eigenvectors pointing
along crystal axes, as the magnetization in the spins’ ground
state is uniform. The difference between its elements reflects
the anisotropy of the exchange interaction in space �between
the xy plane and the growth direction z� caused by the biaxial
strain.

In the presence of the spin-orbit coupling, the circular
polarization can deform into an ellipse. This polarization an-
isotropy is described by the relativistic T++ tensor, which
depends on the mutual orientation of magnetization and spin-
wave propagation directions. In our system with the easy
axis z̃ along the spatial z direction, it takes the following
form:

T++ = � 0.020 − 0.035i 0

− 0.035i − 0.020 0

0 0 0
� meV nm−1. �29�

Its zero diagonal component means that the polarization of
transverse spin waves is circular while the nonzero elements
indicate that longitudinal spin waves have elliptical polariza-
tion with the shorter axis of the ellipse rotated to the q di-
rection. The resulting polarizations are illustrated with Fig.
3�a�.

For an arbitrary propagation direction, the shape of the
spin-wave polarization can be calculated from the following
polarization matrix:

p = �px̃x̃ px̃ỹ

pỹx̃ pỹỹ
� , �30�

where p�	=A�	
��q�q� or in more detail
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px̃x̃ = q�A + Re T++�qT + �0
+− + Re �0

++ − � ,

pỹỹ = q�A − Re T++�qT + �0
+− − Re �0

++ − � ,

px̃ỹ = pỹx̃ = − Iw qT++qT − Iw �0
++. �31�

The ellipse is the solution of the equation

n�n	p�	 = const , �32�

where n� and n	 are the in-plane components of the magne-
tization unit vector n. The ratio of its longer and shorter main
axes, a and b, can be derived from the eigenvalues of the
polarization matrix in Eq. �30� as

a/b =�px̃x̃ + pỹỹ + ��px̃x̃ − pỹỹ�2 + 4px̃ỹ
2

px̃x̃ + pỹỹ − ��px̃x̃ − pỹỹ�2 + 4px̃ỹ
2

. �33�

Kinetically, a longitudinal elliptical spin wave can be viewed
as a circular one, which experiences the Lorentz contraction
in the direction of motion, b=a�1−v2 /c2, traveling with the
velocity v, where c is the speed of light. Figure 4 presents

this spin-wave relativistic velocity in the relevant range of q
vectors along 	100
 and 	110
 directions.

As already mentioned, T is induced by the spin-orbit cou-
pling, which connects the symmetries of the lattice with
spins. Thus, similarly to magnetocrystalline anisotropies, it
depends on the magnetization direction with respect to the
crystal axes. The T tensor calculated in the analyzed �Ga,M-
n�As system with the easy axis z̃ changed to the 	010
 direc-
tion would acquire the following form:

T++ = �− 0.018 0 0.034i

0 − 0.033 0

0.034i 0 0.007
� meV nm−1, �34�

which reveals its dependence on the biaxial strain. �An ap-
propriate rearrangement of the matrix elements gives the T++
tensor for z̃ along 	100
.� Now the longitudinal spin waves
propagate in the x̃ỹ � �010� plane and experience the “Lorentz
contraction” as described above while the transverse waves
propagate along the new easy axis z̃. Their polarizations are
additionally deformed by the potential of the strained crystal.
The latter is stretched equally in the 	100
 and 	010
 direc-
tions and compressed in the 	001
 direction, and so are the
polarizations. The magnitude of their deformations is given
by the q-independent terms of the polarization matrix p in
Eq. �30�. Figure 3�b� is illustrative of this effect.

Technically, the relativistic exchange might lead to mac-
roscopic anisotropies in the system, if they did not average
out for spin waves propagating in different directions. How-
ever, one can imagine a weak anisotropy arising from the
described phenomena in asymmetrically shaped samples,
where the largest number of similarly polarized modes can
exist along the longest dimension. It would then be a candi-
date for an explanation of the weak uniaxial anisotropy of
the 	100
 and 	010
 crystal axes observed in some
�Ga,Mn�As samples.42

2. (Ga,Mn)As layers

In thin layers of �Ga,Mn�As �Fig. 2�, we observe the mini-
mum shift of the spin-wave dispersion to a nonzero qmin
value, which was not present in bulk. It is a hallmark of the
Dzyaloshinskii-Moriya asymmetric exchange in Eq. �11�,
arising from structure inversion symmetry breaking. The
mechanism of this interaction is demonstrated in our numeri-
cal simulations for the two monolayers of �Ga,Mn�As from
Fig. 2.

The structure of the modeled lattice is shown in Fig. 5.
Thanks to the lack of inversion symmetry at the midpoint
of each Ga-As bond, the exchange interaction of
Dzyaloshinskii-Moriya is allowed, u j j� ·S j 
S j�. According
to Moriya’s rules,9 the uij vector of each atom pair, indicated
by an arrow at each bond, is perpendicular to their mirror
plane. Its sense is always the same when we go from Ga to
As atom. Since in our theoretical approach outlined in Sec.
II A we have used the Holstein-Primakoff transformation to
describe spin waves as small fluctuations around the magne-
tization direction z̃, only the ujj�

z̃ terms contribute to the spin-
wave dispersion relation. For the above reasons, we expect
the maximum effect of the Dzyaloshinskii-Moriya interac-

FIG. 3. �Color online� Spin-wave polarization �exaggerated for
clarity�, namely, a shape traced out in a fixed plane by the spin
vector rotating around the magnetization easy axis z̃, in �a� the bulk
�Ga,Mn�As from Fig. 1 with z̃ � 	001
 and �b� after changing z̃ to
	010
.
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tion in systems magnetized along the u vectors: perpendicu-

lar to 	110
 or 	11̄0
. First, we consider the magnetization z̃
set along the 	110
 direction and a spin wave propagating

perpendicular to it, q � 	11̄0
. The dotted line is the wave-
front, along which all spins must be in phase. Along this
wavefront, the constant u vector �big arrows� tilts the spins
perpendicular to itself and to each other to minimize the
energy of the Dzyaloshinskii-Moriya interaction. The u j j�
vector is a function of the distance between the spins,
R j −R j�. Hence, when we move from one spin pair to
another in a regular lattice structure, their chirality S j 
S j�
minimizing the energy is constant in magnitude and
antiparallel to u j j�. Therefore, each spin will be rotated with
respect to its neighbors by a constant angle around a constant
axis. The rotation direction is parallel or antiparallel to the
spin-wave propagation direction q, depending on whether
u j j� is parallel or antiparallel to z̃. In this way, a cycloidal
structure with a period � forms in the spin system.

Since the modulation occurs along the 	11̄0
 direction, this is
where we observe the dispersion minimum shift by
qmin=2� /� �Fig. 2�. For the magnetization z̃ pointing along

the 	11̄0
 direction, the u vectors �small arrows� cancel out
when looking along this direction, and no frustrated structure
of lower energy can arise. Since the Dzyaloshinskii-Moriya
interaction operates in the sample plane, neither will
we observe its hallmarks when z̃ is perpendicular to this
plane.

For the quantitative analysis of the described effects, we
fit the spin-wave dispersion presented in Fig. 2 with the form
�20�. In Fig. 6 �full circles� we sweep the magnetization z̃ in
the sample plane �001� and report the obtained angle be-
tween z̃ and qmin together with the energy gain �0−�qmin

due
to the Dzyaloshinskii-Moriya interaction, and the magnitude
of qmin. From simple algebra we have qmin=− 1

2D−1U and

�0−�qmin
=qmin

T Dqmin. As expected, the energy gain is the
largest when z̃ and qmin are perpendicular to each other, for

z̃ � 	110
, and drops to zero for z̃ � 	11̄0
 	Figs. 6�a� and 6�b�
.
The first arrangement is accompanied by the strongest frus-
tration of the spin system, qmin=0.6 nm−1 	Fig. 6�c�
, result-
ing in the spin cycloid with period �=10 nm. In the other
arrangement, no spin frustration arises and the collinear spin
order is preserved. This behavior accounts for an in-plane
anisotropy with the easy and hard axes along the 	110
 and

	11̄0
 directions, respectively. It is easy to notice that if we
mirror reflect the sample �or equivalently, move the bottom
Ga1 layer to the top Ga5 position�, the two axes switch—

	110
 will become the hard axis and 	11̄0
 the easy axis �Fig.
6, open circles�. Consequently, the sign of qmin and the ori-
entation of the spin cycloid will change. The described an-
isotropy arises from the net Dzyaloshinskii-Moriya interac-
tion. Although it is a surface effect, it should not be confused
with the surface anisotropy, which does not occur in the zinc-
blende �001� surface.

In the above reasoning, it is important to remember that
we deal with the hole-mediated ferromagnetism. While the
magnetic lattice ions substitute only Ga sites and would seem
oblivious to the inversion asymmetry of the Ga-As pairs, the
carriers interact with all surrounding atoms. Thus, the system
of magnetic ions interacting through the hole carriers, as de-
scribed by Eq. �8�, is sensitive to all symmetry properties of
the crystal.

As we have shown above, the Dzyaloshinskii-Moriya in-
teraction in thin �Ga,Mn�As layers leads to the frustration of
spins in the ground state. While in bulk �Ga,Mn�As the di-
agonal form of tensor A, Eq. �28�, depicts the uniform
ground-state magnetization, the exchange stiffness tensors in
thin layers reveal a spin cycloid oriented along one of the
mirror planes

FIG. 5. �Color online� Two infinite monolayers of GaAs. The Ga
and As sites are numbered by their elevation in the growth direction
	001
: 1’s are situated at �· , · ,0�, 2 at �· , · , 1

4a�, 3 at �· , · , 1
2a�, and 4

at �· , · , 3
4a�. The molecular field of magnetic Mn ions is introduced

according to Sec. I. The strongest interactions between the nearest
neighbors are marked by solid bonds. The created solid lines define

mirror planes in the zinc-blende crystal, �110� and �11̄0�. Since the
analyzed structure has two-dimensional periodicity, the carrier mo-
menta in the growth direction are quantized and spin waves propa-
gate in-plane only.
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A = � 0.93 − 0.28

− 0.28 0.93
� meV nm−1,

T = � 0.09 − 0.01i 0.05 + 0.005i

0.05 + 0.005i 0.09 + 0.006i
� meV nm−1. �35�

Their eigenvectors point along the highest symmetry axes,

	110
 and 	11̄0
. This effect is equivalent to applying strain
along one of these directions, which would account for a
magnetoelastic anisotropy, like the one in biaxially strained
samples. However, contrary to the case of a uniformly
strained sample, all effects related to the Dzyaloshinskii-
Moriya interaction vanish in the bulk limit.

The A, T, and U constants let us think of the magnetic
system in terms of the interactions by which it is governed,
as described by the Hamiltonian �13� in the interaction rep-
resentation. Alternatively, if we want to deal with indepen-
dent stationary magnons �with already deformed polariza-
tion�, represented by the Hamiltonian �17�, we calculate the
spin-wave stiffness D, related to A by the formula �22�.

C. Spin-wave stiffness and Curie temperature

This section discusses the relation between the spin-wave
stiffness and Curie temperature, based on which we define
the normalized spin-wave stiffness parameter, Dnor. Depend-
ing only weakly on the hole density p and spin splitting �, it
makes a convenient tool for experimentalists to estimate the
spin-wave stiffness values D given the Curie temperature
and the magnetization of the sample. We provide quantitative
numerical results on Dnor for bulk �Ga,Mn�As obtained in the
spds� tight-binding computational scheme �see Sec. I� and
compare them to the outcome of the previously employed
six-band kp model.10 We also clarify that the surprisingly
large magnitude of D in these systems results from the p-like
character of the periodic part of Bloch function.

The standard relation between spin-wave stiffness D and
Curie temperature TC in a cubic crystal, which is often used
in the literature on the topic, reads

D =
kBTCrnn

2

2�S + 1�
, �36�

where rnn is the nearest-neighbor distance.5 Derived for
short-range interactions, it is interesting to find out how it is
modified when considering the actual nature of the spin-spin
exchange. This question has a number of implications. For
instance, both carrier relaxation time, which is limited by
magnon scattering, and the quantitative accuracy of the
mean-field approximation grow with D /TC, as the density of
spin waves at given temperature T diminishes when D in-
creases. It is worth noting that a simple adaption of this
formula to �Ga,Mn�As by replacing rnn with �xn0�−1/3 re-
sulted in an overestimation of the p-d exchange integral by
an order of magnitude.18

Allowing for spatially modulated structures, the magnetic
ordering temperature TC for a carrier-controlled ferromagnet
is given by a solution of the mean-field equation1,43

	2��q,T��S�q,T� = 1, �37�

where � and �S are the carrier and lattice ion spin suscepti-
bilities. In the simple case of a parabolic band they are pro-
portional to the Pauli and Curie-Weiss magnetic susceptibili-
ties, respectively.

First, we consider the two-band model of carriers residing
in a simple parabolic band, where all that is left of the A
tensor of Eq. �23� is the scalar isotropic exchange stiffness A.
According to the previous section, it is related to the qua-
dratic coefficient of the expansion ��q���0+nS	2Cq2, by
D=nS	2C=2A /nS. Additionally, we assume that the ground
state of the system corresponds to the uniform ferromagnetic
ordering, q=0, and take �S�q ,T� in the Curie form

�S�q,T� =
nS�S + 1�

3kBT
. �38�

Using Eqs. �37� and �38�, we obtain

D =
3kBTCC�T → 0�

�S + 1���0,T = TC�
. �39�

If the values of both spin splitting � at T→0 and kBTC are
much smaller than the magnitude of the Fermi energy �EF�,
the carrier susceptibility is given by

��q� =
1

4
��EF�F� q

2kF
� . �40�

The total density of states at EF=�2kF
2 / �2m�� is

��EF�=m�kF / ����2, where m� is the carrier effective mass,
and

F� q

2kF
� =

1

2
+

kF

2q
�1 −

q2

4kF
2�log�2kF + q

2kF − q
�

= 1 −
q2

12kF
2 − O�q4

kF
4� �41�

is the Lindhard function. We obtain from these equations

D =
kBTC

4�S + 1�kF
2 . �42�

We see that, in agreement with the notion that magnetic stiff-
ness increases with the range of the spin-spin interaction, rnn
in Eq. �36� is replaced by 1 / �kF

�2� in Eq. �42�, which scales
with the range of the carrier-mediated interactions. Indeed,
according to the Ruderman-Kittel-Kasuya-Yosida theory,44

the magnitude of the ferromagnetic exchange integral decays
at small spin-spin distances r as 1 / �rkF� and reaches the first
zero at r�2.2 /kF.

Since in semiconductors 1 /kF�a0, the above formulas
imply that D /TC is rather large in systems with carrier-
controlled ferromagnetism. A question arises as to how the
ratio D /TC would be modified, if the complexities of the
valence band were taken into account.

As already noticed by König et al.,10 the values of ex-
change stiffness for �Ga,Mn�As are greater in the six-band
model with a spin-orbit coupling than in the case of a simple
parabolic band. As argued by these authors, due to the mul-
tiplicity of the valence bands, the Fermi level for a given
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carrier concentration is much lower than in the two-band
model, and hence both carrier polarization and exchange
stiffness are greater.10 On the other hand, Brey and
Gómez-Santos11 assign large values of D to higher magni-
tudes of TC in the multiband model.

To check these suggestions we plot in Fig. 7 the values of
dimensionless parameter

Dnor =
4�S + 1�kF

2D

kBTC
�43�

for various hole concentrations p and kF= �3�2p�1/3. The ra-
tio D /TC for bulk �Ga,Mn�As is computed using the spds�

tight binding �Sec. I� and the previously employed10 six-band
kp model of the semiconductor band structure. Guided by the
results of the two-band model, one could expect Dnor�1 in
the limit of small spin polarizations, �� �EF�. In contrast to
these expectations, Dnor is on the order of eleven and, more-
over, weakly dependent on the polarization, altered here by
changing the hole concentration and the spin-orbit splitting.
Furthermore, the experimentally observed biaxial strain mag-
nitudes have only slight effect on the stiffness tensor 	see
Fig. 1 and Eq. �28�
.10 This indicates that the single param-
eter Dnor can serve to estimate the magnitudes of D and A if
only the Mn magnetization M and hole concentration p are
known.

Knowing that neither the spin-orbit coupling nor the mul-
tiplicity of carrier bands can explain the large spin-wave
stiffness, we turn our attention to the matrix elements
�uk,m�ŝ��uk+q,m�� in the spin susceptibility of holes in Eq.
�14�. Neglecting the spin-orbit coupling, uk,m is a product of
the spin part sm and the real spatial part wk,m. Thus, we can
write

�uk,m�ŝ��uk+q,m�� = �
1
�2

�1 − �sm�sm����wk,m�wk+q,m��

for �=+,−. In the parabolic two-band model with its carrier
wave functions described by plane waves �k,m�r�=

sm
�V

eik·r,

the periodic part uk,m=
sm
�V

. Hence �sm �sm��=�mm� and
wk,m= 1

�V
, and F�q�=��q� /��0� simplifies to the Lindhard

function in Eq. �41�. More realistic models take into account
the periodic lattice potential, which mixes different atomic
orbitals and leads to the k-dependent modulation of uk,m.
	The eventual composition of hole states in the spds� tight-
binding model is presented in Figs. 8�a�–8�c�.
 From this it
follows that the scalar products �wk,m �wk+q,m�� are
q-dependent, and can be only smaller than in the simple
model. As a consequence, F�q� has a steeper slope, as pre-
sented in Fig. 8�d�. This explains why the magnitude of the
stiffness tensor is so large in �Ga,Mn�As and related ferro-
magnets. Actually, the fact that the p-type character of the
carrier wave functions affects in this way the q dependence
of dielectric susceptibility has been already noted.45,46

D. Spin waves’ contribution to magnetization

In this section, we address the problem of applicability of
the mean-field model to the description of temperature de-
pendence of magnetization in the analyzed systems. While it
is a known fact that the critical fluctuations do not change
much the mean-field Curie temperature TC in the presence of
long-range exchange interactions,47 several papers48–50 dis-
cuss how it is lowered by spin waves. Also, the influence of
dilution and disorder on spin waves and the Curie tempera-
ture, which can be crucial in samples with low Mn content,
was studied by many authors with varying conclusions.51–56

In response, we propose a simple model which takes into
account the correct number of spin-wave excitations and
thermal depolarization of spins. However, we argue that spin
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waves also do not lower the mean field TC due to thermal
decoherence of quantum spin system.

The mean-field approximation employed in our model al-
lows for a reasonable overall description of ferromagnetism
in the analyzed systems. It reduces the problem of lattice
spins coupled by the exchange interaction to that of nonin-
teracting spins in the molecular field �, Eq. �15�. Their mag-
netization is described by the self-consistent equation

M�T� = M�0�BS�S�	��T�,T

kBT

� . �44�

The Brillouin function BS ignores the actual nature of
thermal fluctuations and their correlations, and assumes that
every spin fluctuates independently, which in our theory
corresponds to the high-q limit of spin-wave excitations �see
Fig. 1�. At low temperatures, however, the long-wavelength
magnons of much lower energies can exist. Since each of
them carries a moment of �B, they yield a strong contribu-
tion to the temperature dependence of magnetization5,57

M�T� = M�0��1 − �NS�−1�
q

�nq�T� , �45�

where �nq�T is the thermal average of spin-wave excitations
in each mode. The latter can be modeled by the Bose-
Einstein distribution, �nq�T=1 / 	exp��q /kBT�−1
, as spin
waves are bosons. Then, replacing the summation in Eq. �45�
by an integral and putting �q�Dq2, one obtains the well
known T3/2 Bloch law6

� dq�nq�T = �3/2�3/2� kBT

D
�3/2

, �46�

where �3/2�2.612 is the Riemann zeta function.
Remembering about the spin-wave gap created by mag-

netic anisotropy, which allows for ferromagnetism in low-
dimensional systems despite the Mermin-Wagner theorem,58

we have �q��0+Dq2. �We neglect the Dzyaloshinskii-
Moriya coefficient, which vanishes in bulk limit.� In that
case, the above law is modified to59

� dq�nq�T = Li3/2�e−�0/kBT��3/2� kBT

D
�3/2

, �47�

where Li3/2�e−�0/kBT� is de Jonquiére’s function.
Furthermore, the Bose-Einstein statistics allows for the

unlimited number of spin waves in each mode �on the other
hand, König et al.10 assume that there can be only 2S spin
waves of each q, which is too strict�. In fact, their total
number cannot be larger than 2NS, corresponding to com-
plete magnetization reversal. We handle this by introducing a
fictious mode with zero energy, which is “occupied” by the
spin waves which have not been excited in reality. In this
way we can treat the problem with classic Bose-Einstein
condensate methods:60 the total number of bosons occupying
all modes is always 2NS, their zero-energy mode constitutes
the “condensate” phase, while the excited spin waves consti-
tute the “thermal cloud.” The total number of spin waves in
the limit of infinite crystal volume is therefore given by

min� �
q�qD

e−�q/kBT

1 − e−�q/kBT ,2NS� .

Additionally, while at zero temperature the system is de-
scribed by a pure state �0, where exciting a spin wave costs
the energy

�q
0 = �bq

†�0�Heff�bq
†�0� − ��0�Heff��0� �48�

at nonzero temperatures it is described by a mixture of pure
states �n with a certain number of spins flipped by one-
particle thermal excitations, �=�npn��n���n�. Thus, its mag-
netization drops to M�T� according to the mean-field Bril-
louin function in Eq. �44�. The energy cost of exciting a spin
wave is now given by

�q
T = �

n

pn	�bq
†�n�Heff�bq

†�n� − ��n�Heff��n�
 . �49�

Since the spin-wave dispersion �q, Eq. �18�, depends on
temperature T almost exclusively via the spin splitting � and
is approximately proportional to it, we can estimate the
above expression by �q

0�npn
Mn

M�0� =�q
0 M�T�

M�0� =�q
0 ��T�

��0� , where Mn
is the magnetization in the state �n. �It is worth noting that
this approach is similar to the way in which the effect of
dilution on spin waves is taken into account—the value of �
employed to evaluate �q corresponds to the magnitude of
spin splitting in the dilute case.� Spin waves are thus pertur-
bations of the thermal state of lattice spins and not of the
ground state, which we can model just by replacing M�0�
with M�T� 	or � with ��T�
 in the dispersion relation �q.
They additionally lower the magnetization to M��T�. Re-
maining in the limit of small oscillation approximation, we
obtain the following set of equations:

M�T� = M�0�BS�S�	���T�

kBT

� ,

M��T� = M�T� − minM�0�
NS

�
q�qD

e�q

1 − e�q
,2M�T�� ,

�50�

where �q=−�q	��T� ,T
 /kBT. The spin splitting ��T� is in-
duced by the mean field of the lattice spins described by the
first equation while ���T� additionally takes into account
their depolarization due to spin waves.

Figure 9 presents the temperature dependence of magne-
tization as described by the above methods for the bulk
�Ga,Mn�As from Fig. 1. The T3/2 Bloch law and its modified
version apply to low temperatures only. We see that the val-
ues of D determined neglecting the anisotropy gap would be
overestimated. The “spin-wave condensate” includes the
magnon contribution to magnetization in the whole tempera-
ture range and leads to significantly lower Curie temperature
than in the mean-field model. This method uses the correct
bound for the number of spin-wave excitations. It also na-
ively attempts to solve the problem of the well-known short-
comings of the spin-wave theory61 introduced by the
Holstein-Primakoff transformation in Eq. �12�, as it includes
disorder by depolarizing the lattice spins with temperature.
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However, quantum-mechanical intuition suggests that the
spin waves should vanish completely at higher temperatures.
Nonzero temperature leads to the loss of information about
the system: pure states are replaced by mixed states, namely

the thermal states e−	Ĥ /Tr e−	Ĥ, and the quantum correlation
of spins vanishes. This can be reflected in the p-d Hamil-
tonian by replacing 	�i,jsi ·S j with 	�i,j�si

z��Sj
z�=�� j�Sj

z�,
which is simply the mean-field model. Similarly, in the vi-
cinity of the Curie transition, where the problem of critical
fluctuations arises, the mean-field models of systems with
long-range exchange interactions are known to work very
well.47 The next section provides further insight into the ap-
plicability of the presented models by comparing their results
to experiment.

III. COMPARISON TO EXPERIMENTAL DATA

As already mentioned in Sec. I, the theory of exchange
stiffness developed within the six-band p-d Zener model10

describes quantitatively the width of stripe domains in
�Ga,Mn�As.15 Recently, Gourdon et al.22 carried out a de-
tailed analysis of the magnetic domain structure and mag-
netic properties of an annealed 50-nm-thick Ga0.93Mn0.07As
layer with a perpendicular magnetic easy axis and the Curie
temperature of 130 K. Two employed experimental methods
yielded an upper and lower limit of the isotropic exchange
stiffness A as a function of temperature T. As found by these
authors from examining the domain-wall velocity, the higher
values of A�T�, determined from the lamellar domain width,
are reliable.

We model the sample in the tight-binding computational
scheme for bulk �Ga,Mn�As �see Sec. I�. In order to deter-
mine the material parameters for numerical simulations, we
start by estimating the effective Mn content xeff from the
measured low-temperature spontaneous magnetization
M�T→0�=39 kA /m. Taking into account the hole contribu-
tion, Mc�−5 kA /m,62 implies the magnetization of the Mn

spins MS=44 kA /m. This value corresponds to the effective
Mn content xeff=4.3% and the spin splitting �=−0.13 eV.
No direct measurements of the hole concentration are
available for this sample, so we estimate its magnitude from
the effective and total Mn content, xeff and x=7%.
Assuming that interstitial Mn donors had survived
the annealing process and formed antiferromagnetic pairs
with the substitutional Mn acceptors,63,64 we obtain
p= �3xeff /2−x /2�n0=0.65 nm−3.65

From Fig. 7, for the given value of p and � we find
Dnor�10.5, which gives the spin-wave stiffness
D=1.1 meV nm2 �A=0.21 pJ /m� at T→0 K. Knowing
this, we can calculate the temperature dependence of magne-
tization according to Sec. II D �Fig. 9�. In the mean-field
picture �solid lines�, the magnetization of lattice spins MS is
described by the Brillouin function in Eq. �44�. The magni-
tude of hole magnetization �Mc� decreases with temperature
proportionally to MS, according to Eq. �15�. The resulting
magnetization M�T� is compared to the experimental curve
�circles�. We obtain a good agreement with the measured
data, especially near the Curie transition, and TC=127 K. At
low temperatures, we plot the outcomes of the T3/2 Bloch law
in Eq. �46� and its modified version in Eq. �47� employing
the calculated spin-wave stiffness value D �dotted lines�. The
modified Bloch law, adjusted to include the spin-wave gap,
gives very good agreement with the experimental depen-
dence, which indicates that in this regime the spin-wave ex-
citations are solely responsible for demagnetization. Near the
Curie transition, we reconstruct the measured Curie tempera-
ture and magnetization values with the Brillouin function,
which suggests that the temperature destroys the spin-wave
coherence and recalls the mean-field picture.

To reconstruct the A�T� trend obtained from the magni-
tudes of lamellar domain width,22 we again make use of the
fact that the susceptibility �q

+−, Eq. �14�, depends on tempera-
ture almost exclusively via spin splitting. Thus, the exchange
stiffness scales with temperature in the same way as ��T�.
We use the experimentally determined M�T� and the
calculated A�T→0�=0.21 pJ /m to estimate the exchange
stiffness values for the remaining temperatures as
A�T�=A�0�M�T� /M�0�. As shown in Fig. 10, this procedure
correctly reproduces the experimental A�T� trend. However,
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the same value of A�T→0�, which has been shown to suc-
cessfully describe the experimental M�T� dependence with
the modified Bloch law, is twice as large as the exchange
stiffness constant determined from the measured lamellar do-
main width.

Potashnik et al.17 evaluated the isotropic exchange con-
stant J for the set of optimally annealed �Ga,Mn�As layers
with varying Mn content. The values derived from the tem-
perature dependence of magnetization, using the standard
Bloch law, and from the Curie temperature within the three-
dimensional Heisenberg model,6 were similar.

Our theoretical reconstruction of the experiment by the
spds� tight-binding model of bulk �Ga,Mn�As is demon-
strated in Fig. 11. To obtain the presented results, we have
estimated the effective Mn content xeff from the measured
low-temperature magnetization M�T→0�, and then in-
creased it by about 10% to include the hole contribution.62

Assuming that annealing removed all interstitials and each
remaining substitutional Mn produces one hole carrier, the
hole density p=xeffn0. For the obtained values of p and xeff
we have calculated the mean-field Curie temperatures TC and
the exchange constant J=D�xeffn0�2/3 /2S assuming that Mn
ions form a cubic lattice. We note that this form is equivalent
up to a few percent to that employed in Ref. 17:
J=D�4�xn0 /24�2/3 /2S, where x is the total Mn content �N.
Samarth, private communication�. Since for the samples with
low Mn content our values of TC are much lower than the
experimental ones, we conclude that the corresponding esti-
mates of J �indicated by empty circles� are not reliable. On
the other hand, we reconstruct Curie temperatures for
samples with xeff�2.5% �filled circles� but this time the the-
oretical values of J are much smaller than the experimental
ones. This discrepancy points to the importance of the
anisotropy-induced energy gap in the spin-wave spectrum.
As illustrated in Fig. 11 �inset� for the sample with

xeff=3.3%, fitting the experimental M�T� curves with the
standard Bloch law neglecting the gap leads to higher values
of J than those expected theoretically. At the same time, the
modified Bloch law in Eq. �47� employing the theoretical
exchange constant J=0.12 meV nm2 reconstructs the ana-
lyzed M�T� trend. We notice that it perfectly describes the
mild slope of the low-temperature M�T�, contrary to the
standard Bloch law.17 Similarly to the case of the Gourdon
et al.22 experiment, the mean-field model works very well at
higher temperatures.

In a series of experiments, the spin-wave stiffness was
determined by examining spin precession modes excited by
optical pulses18 and under ferromagnetic resonance
conditions.19–21 According to these works, the experimental
findings are strongly affected by gradients of magnetic an-
isotropy, presumably associated with carrier depletion at the
surface and interface, which also affect the character of spin
pinning. We also note that no influence of the magnetic field
on the hole spins, visible as a deviation of the Landé factor
from the value g=2,62 was taken into account in the em-
ployed Landau-Lifshitz equations. With these reservations
we show in Fig. 12 the experimentally evaluated values of D
plotted as a function of the nominal Mn concentration x for
various as-grown and annealed samples of Ga1−xMnxAs.
These findings are compared to the results of ab initio
computations16 �dashed line� and our theory for the hole con-
centration p=xn0 and p=0.3xn0 �solid lines�. When compar-
ing theoretical and experimental results, one should take into
account that the actual Mn concentration xeff is smaller than
x, particularly in as-grown samples. As seen, our theory de-
scribes properly the order of magnitude of the spin-wave
stiffness D but cannot account for a rather large dispersion in
the experimental data.

In thin �Ga,Mn�As layers, described in Sec. II B 2, the
Dzyaloshinskii-Moriya interaction can be observed in form
of a spin-wave dispersion minimum shift. It leads to the for-
mation of a cycloidal spin structure and uniaxial in-plane
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anisotropy of the 	110
 and 	11̄0
 directions, with the easy
axis determined by the sample geometry. Both these phe-
nomena have been a subject of considerable interest in recent
years.66–70 While the long-period spin structures have not
been hitherto observed, the uniaxial anisotropy is commonly
present in �Ga,Mn�As.65,71 However, it was shown by
gradual etching70 or by investigating different samples69 to
be insensitive to the layer thickness. This is not the case for
the anisotropy caused by the Dzyaloshinskii-Moriya interac-
tion, which is a surface effect and vanishes with increasing
layer thickness. To test our theory, one should pick very thin
high-quality samples grown in the 	001
 direction, which ad-
ditionally excludes the anisotropy of the surface, with the
easy axis along one of the in-plane diagonal directions. The
cycloidal spin structure could be then observed e.g., under a
magnetic force microscope or by neutron scattering. The

sample should be probed along the 	110
 and 	11̄0
 direc-
tions to find the long-period modulation of magnetization
only along the one perpendicular to the easy axis.

IV. SUMMARY

We have investigated spin waves and exchange stiffness
in thin layers and bulk crystals of ferromagnetic �Ga,Mn�As
described by the spds� tight-binding computational scheme.
Using the proposed variational-perturbation calculus, we
have described the analyzed systems and their spin-wave ex-
citations. Their properties have been expressed by the phe-
nomenological parameters of micromagnetic theory. We have
noticed that the strength of ferromagnetic order described by
the isotropic exchange stiffness is significantly amplified by
the p-like character of carrier wave functions, as compared to
the simple parabolic band model. Furthermore, we have
found various effects reflecting the tendency of the spin-orbit
interaction to pervade every aspect of carrier dynamics. They
produce the relativistic corrections to spin waves given by
the anisotropic exchange stiffness tensor and the asymmetric

Dzyaloshinskii-Moriya coefficient. The latter accounts for
the cycloidal spin arrangement and the accompanying

uniaxial in-plane anisotropy of diagonal �	110
 / 	11̄0
� direc-
tions in thin layers, which can result in a surfacelike aniso-
tropy in thicker films. Quantitative results on the stiffness
constant have been provided in form of a normalized param-
eter, which assumes the value Dnor�11 over a wide range of
Mn and hole concentrations in �Ga,Mn�As. They agree with
the previous kp calculations10,11 but predict significantly
smaller values of spin-wave stiffness than those resulting
from ab initio computations.16

The above theories have been applied to analyze the re-
lated experimental data on the stiffness parameter and the
temperature dependence of magnetization. Our basic theoret-
ical model has not managed to reconstruct all stiffness values
obtained by various experimental methods. In all cases we
have reconstructed the entire range of magnetization depen-
dence on temperature. At low temperatures, it can be under-
stood within the modified Bloch law59 employing the values
of spin-wave stiffness calculated by our model. At higher
temperatures, the mean-field theory becomes justifiable ow-
ing to thermal decoherence and the long-range character of
spin-spin interactions. At the same time, we have reproduced
only partly the stiffness values obtained from analyzing pre-
cession modes in �Ga,Mn�As thin films. Our results may
allow to separate bulk and surface effects, as well as bring to
light the pining phenomena and the role of inhomogeneities
in experiments examining precession modes in slabs of
carrier-controlled ferromagnetic semiconductors.
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