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The 3d-electron spinel compound LiV2O4 exhibits heavy fermion behavior below 30 K which is related to
antiferromagnetic spin fluctuations strongly enhanced in an extended region of momentum space. This mecha-
nism explains enhanced thermodynamic quantities and nearly critical NMR relaxation in the framework of the
self-consistent renormalization �SCR� theory. Here we show that the low-T Fermi-liquid behavior of the
resistivity and a deviation from this behavior for higher T may also be understood within that context. We
calculate the temperature dependence of the electrical resistivity ��T� assuming that two basic mechanisms of
the quasiparticle scattering, resulting from impurities and spin fluctuations, operate simultaneously at low
temperature. The calculation is based on the variational principle in the form of a perturbative series expansion
for ��T�. A peculiar behavior of ��T� in LiV2O4 is related to properties of low-energy spin fluctuations whose
T dependence is obtained from SCR theory.
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I. INTRODUCTION

The metallic vanadium oxide LiV2O4 has attracted much
attention after a heavy fermion behavior in this 3d-electron
system was discovered.1–3 The cubic spinel LiV2O4 has the
pyrochlore lattice of vanadium ions �in the mixed valence
state V3.5+� and shows metallic conduction and no long-range
magnetic ordering for any measured temperatures at ambient
pressure. So far the origin of the heavy fermion quasiparticle
formation observed in this compound for T�10 K remains
to be a controversial subject, however, effects of electronic
correlations and the geometrical frustration of the pyrochlore
lattice are supposed to be key aspects of the problem.

The quasiparticle mass enhancement is expected when a
metallic system is driven by strong electron correlations to a
vicinity of a charge and/or spin phase transition at low T. In
that case, the charge/spin disordered ground state on the me-
tallic side of the transition in the strongly correlated system
LiV2O4 is sustained because a long-range order with a par-
ticular ordering �critical� wave vector Qc is prevented by the
geometrical frustration. Expressed differently, the system
cannot choose a unique wave vector of an ordered structure
which minimizes the free energy. Instead, it is frustrated be-
tween different structures with different critical wave vectors
Qc’s and equally low free energy. For instance, low-energy
spin fluctuations are expected to be present in a very large
region of momentum space which is the signature of frus-
trated itinerant magnetism. This is in contrast to nonfrus-
trated systems where the fluctuations are confined to the im-
mediate vicinity of a unique incipient ordering vector.

This scenario for frustrated itinerant magnetism was re-
cently investigated in detail for LiV2O4 by present authors.4

An analysis of inelastic neutron scattering �INS�
measurements5–7 and calculations of the dynamic spin sus-
ceptibility allowed us to suggest the location of the paramag-
netic spinel LiV2O4 close to a magnetic instability. This was
achieved by developing the random-phase approximation

theory of spin fluctuations based on ab initio band-structure
calculations and an on-site Coulomb interaction of 3d elec-
trons. Close to the critical value of the interaction strength,
low-energy spin fluctuations develop throughout a large shell
in momentum space. They may be mapped to an effective
low-energy paramagnon model which describe low-
temperature INS results5–7 accurately. From the comparison
at T→0, the parameters of the model �peak energy, weight,
and extension in momentum space� are fixed. Using the self-
consistent renormalization �SCR� theory,8–10 which includes
mode coupling of spin fluctuations, the finite T properties of
INS spectral shapes, uniform and staggered susceptibility, as
well as NMR relaxation rate, have been explained.4,11,12

From this analysis we concluded that LiV2O4 can be re-
garded as a nearly antiferromagnetic �AFM� metal and its
unusual low-T properties have to be related to a peculiar
structure of the paramagnetic ground state with strongly de-
generate low-energy �slow� AFM spin fluctuations.

In the present study, our main concern is to explain the
low-temperature, T�40 K, electrical resistivity ��T� mea-
sured on single crystals of LiV2O4 and reported by Takagi et
al.13 and Urano et al.14 A Fermi-liquid behavior ��T��T2 for
T�2 K and a more slow increase in ��T� for higher tem-
peratures were found. Measurements13,14 revealed a notice-
able change in physical properties of LiV2O4 for T�40 K,
including a Curie-Weiss magnetic susceptibility ��T� and a
highly incoherent transport, which is, however, beyond the
scope of present theory. In our approach we will use the
effective low-energy paramagnon model for spin fluctuations
whose parameters are completely fixed by the comparison
with INS. Only two more pheonomenological parameters
characterizing the impurity and paramagnon scattering
mechanism will be needed.

From an analysis of the optical reflectivity and conductiv-
ity measurements, Jönsson et al.15 and Irizawa et al.16 in-
ferred that the conducting electron system in LiV2O4 at am-
bient pressure is located close to a correlation-driven
insulating state. Under the applied external pressure,16 the
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system undergoes a metal-insulator transition accompanied
with a charge ordering and a structural lattice distortion in
the insulating phase. The observed complicated phase trans-
formation display properties different from those expected
from a first-order phase transition or a conventional metal-
insulator transition. We note that because of quarter filling of
the electronic t2g bands in LiV2O4, electron correlations due
to intersite Coulomb repulsion have to play an essential role
in the observed transition.17 Under such conditions, a micro-
scopic mechanism for the heavy quasiparticle formation on
the metallic side of the transition has to be clarified. How-
ever, in the present analysis which is concerned with resis-
tivity under ambient pressure the effect of intersite Coulomb
interaction and a slowing down of charge fluctuations will
not be included.

It was realized some time ago that the calculation of
low-T transport properties in nearly AFM metals is a rather
subtle issue.18–20 In clean systems with a peculiar AFM or-
dering vector QAFM, the quasiparticle scattering by quantum-
critical spin fluctuations is strongly anisotropic. The stron-
gest scattering occurs near the “hot spots” of the Fermi
surface �FS� connected by QAFM and the main contribution
to the electrical conductivity is due to quasiparticles from the
“cold region” of the FS. In that case, if the system is at some
distance from the AFM quantum critical point, the low-T
scattering rates are proportional to T2 and the Fermi behavior
��T�−�imp�T2 is realized. As was first pointed out by
Rosch,19,20 if a small amount of disorder is present, an inter-
play of strongly anisotropic scattering due to critical spin
fluctuations and an isotropic impurity scattering may compli-
cate the picture producing several different regimes for
��T�−�imp�T� with the exponent between 1���2 in the
low-T region.

To describe temperature-dependent electrical resistivity in
LiV2O4, we suggest that quasiparticles are scattered by AFM
spin fluctuations almost equally strongly over the FS and
effects of anisotropy are weak. This is related to a peculiar
distribution of dominant AFM spin fluctuations with ordering
vectors Qc’s forming a largely isotropic dense manifold in k
space in this compound.4 Low-temperature evolution of in-
teracting spin fluctuations in LiV2O4 can be successfully de-
scribed within the SCR formalism as presented in our previ-
ous studies.11,12 As explained in Ref. 8, the set of model
parameters of the SCR theory were obtained11 from neutron-
scattering data5–7 and used to describe12 the temperature and
pressure evolution of the spin-relaxation rate 1 /T1T observed
in the NMR measurement21 of the low-T spin dynamics in
LiV2O4. In this work, the theory is extended and applied to
give an explanation of the low-T electrical resistivity ��T� in
this compound.13,14

II. VARIATIONAL PRINCIPLE FOR �(T):
GENERAL CONSIDERATION

As follows from experimental observations,1–3,13,14 the
concept of the Fermi quasiparticles for charge carriers in the
metallic spinel LiV2O4 is valid for sufficiently low tempera-
tures, T�30 K. In this regime, we assume that the dominant
scattering processes are given by low-energy AFM spin fluc-

tuations and impurities. In the linear-response theory, in an
applied electric field E the quasiparticle distribution function
fk is linearized around the equilibrium Fermi distribution fk

0

according to fk= fk
0 −	kdfk

0 /d
k. The electronic transport can
be found from the Boltzmann equation,

− e�Evk�
dfk

0

d
k
= �

k�

Wkk�	k�. �1�

The scattering operator Wkk� can be expressed through the
total equilibrium transition probability Pkk�=Pkk�

imp +Pkk�
sf as

�kB=�=1�,

Wkk� =
1

T��kk��
k�

Pkk� − Pkk�� , �2�

provided the spin fluctuations are in thermal equilibrium, i.e.,
there is no drag effect.

For the elastic impurity scattering, one has

Pkk�
imp = 2ni�Tkk��

2��
k − 
k��fk
0�1 − fk�

0 � . �3�

To a sufficiently good approximation, the T matrix in Eq. �3�
is frequently assumed to be a constant �Tkk��

2�Vimp
2 and

niVimp
2 , where ni is the impurity density, is regarded as a free

parameter to be chosen so as to give a realistic value of the
measured residual resistivity �imp. We avoid this approxima-
tion and treat below matrix elements of Pkk�

imp generally.
For the spin-fluctuation �sf� scattering, one has18,20,22,23

Pkk�
sf = 3Jsf

2 fk
0�1 − fk�

0 �	n�
k − 
k�� + 1
Im ��k − k�,
k − 
k�� ,

�4�

where n�
� is the Bose distribution function, ��q ,
� is the
dynamical spin susceptibility describing the low-T paramag-
netic state of LiV2O4, and Jsf is an effective coupling con-
stant which is the second free parameter. It is worth empha-
sizing that in the present study, the other parameters of the
phenomenological SCR theory determining the behavior of
��q ,
� are considered to be known and fixed from a fit to the
data of inelastic neutron scattering measurement5–7 on
LiV2O4, as discussed in Ref. 11.

Following the standard notation,24 the Boltzmann Eq. �1�
can be rewritten in the form Xk=�k�Wkk�	k�. Then, the elec-
trical resistivity can be obtained by minimizing a
functional,24

�		
 = min� �	,W	
��	,X�E = 1��2� . �5�

Here, E=1 means the unit electrical field and the scalar prod-
uct of two functions 	k and �k is defined as �	 ,�
=�k	k�k. In fact, in Eq. �5� the k integration over the ac-
tual FS is implied, which follows from the property of the
scattering operator Wkk� and the explicit form of Xk
=e�Evk��−dfk

0 /d
k�.
A way to search for a variational solution of Eq. �5� for

the deviation function 	k is to expand it in a set of the FS
harmonics �FSHs� �L�k�,
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	k = �
L

�L�L�k� , �6�

where �L are variational parameters and L is a convenient
composite label that includes numbering of different sheets
of the FS in LiV2O4. The FSHs are defined25,26 as polynomi-
als of the Fermi-velocity Cartesian components vk

�. That is,
for each integer N�0 one has to construct �N+1��N+2� /2
polynomials �vk

x�l�vk
y�m�vk

z �n with l ,m ,n�0 and l+m+n=N,
and orthonormalize them on the actual FS, ��L� ,�L=�L�L.
The resulting polynomials forming a complete set ��L�k�� of
basis functions are classified according to different irreduc-
ible representations � of the lattice symmetry point group. In
general, for a given � there are subsets of different functions,
��L

r �k��, ��L
s �k��, etc., which transform according to the

same �. Then, for any pair of partner functions, �L�
r �k� and

�L�
s �k�, belonging to different subsets, but transforming ac-

cording to the same row of �, one has ��L�
r ,W�L�

s �0. The
other off-diagonal matrix elements of the scattering operator
Wkk�, including those connecting different irreducible repre-
sentations, vanish by symmetry arguments and, hence, the
scattering operator has a block-diagonal form �see the dis-
cussion by Allen,25 and references therein�.

A minimum of �		
 is achieved in the class of odd func-
tions, �L�−k�=−�L�k�; only these basis functions are in-
cluded in the expansion �6�. Recalling the cubic symmetry of
the LiV2O4 lattice structure, we assume without loss of gen-
erality that the applied electric field points in the x direction,
which immediately distinguishes one of the first-order FSHs:
�1x�k�=vk

x / ��vk
x�21/2, where ��vk

x�21/2 is for the root-mean
square on the Fermi surface.

A general strategy in describing the physical resistivity
��T� as a solution of the variational Eq. �5� in most of the
metallic systems, including those with complicated elec-
tronic band structure, is to truncate the expansion �6� by
keeping in it only a few of FSHs. Following the common
practice, one may start the analysis with the lowest, first-
order variational solution, 	k

�0���1x�k�, which is a fairly
good approximation provided the anisotropic effects of the
quasiparticle scattering are weak. As usual, here the aniso-
tropy of the scattering operator Wkk�=Wkk�

imp +Wkk�
sf means

that the transition probabilities depend not only on the mu-
tual angle between the momenta k and k� but also on their
position with respect to the crystallographic axes. Aniso-
tropic effects, as well as a complexity of the actual FS, can
be partially caught in the calculations by keeping in the ex-
pansion �6� a selected number of higher-order FSHs.

To go beyond the lowest-order solution for �		
 in the
simplest manner, the following approximate assumption can
be made: the off-diagonal matrix elements WLL�
= ��L ,W�L� are small compared to diagonal ones, WLL and
WL�L�. Then, the variational solution to Eq. �5�, being written
in the familiar form24 as �−1=X1

2��1x ,W−1�1x, where X1

= ��1x ,X, can be expanded in a perturbation series,26

� �
1

X1
2W1x,1x

��1 − �
L

�
W1x,LWL,1x

W1x,1xWLL
+ �

LL�

�
W1x,LWLL�WL�,1x

W1x,1xWLLWL�L�
− . . .� ,

�7�

where the primes on the sums means that the terms with
L ,L�=1x and L=L� are excluded.

For T→0, from Eqs. �2� and �4� one has WLL�
sf →0, both

for L=L� and L�L�, and the Eq. �7� reduces to

��T → 0� = �imp � X1
−2W1x,1x

imp � , �8�

where the constant � stands for brackets in Eq. �7� with
WLL�=WLL�

imp. Its value is less than unity, 0���1, since the
inclusion of higher-order terms leads a lower estimate of the
upper bound for �. The expression given by Eq. �8� approxi-
mates the experimental value13,14 of the residual resistivity
�imp

exp �32 �� cm in a low-T fit procedure.
For the further purposes, we note that relations between

W1x,1x
imp and the other diagonal matrix elements WLL

imp cannot be
generally established. In particular, a strong inequality
WLL

imp�W1x,1x
imp for some L�1x is not excluded, which does

not invalidate our previous assertions. Actually, irrespective
of a relation between W1x,1x

imp and WLL
imp, the series expansion

�7� starts with the matrix element W1x,1x
imp due to the require-

ment that the variational solution for � is given by the diag-
onal matrix element of the inverse scattering operator W−1

between the same first-order FSH, i.e., �−1=X1
2

��1x ,W−1�1x.

III. ELECTRON SCATTERING BY SPIN
FLUCTUATIONS IN LiV2O4

An open question is: whether one may rely an analysis of
the physical resistivity on the series expansion �7� for T�0?
Since the impurity scattering is thought to be highly isotro-
pic, one of the underlying assumptions that WLL�

imp /WLL
imp�1

for L��L, has to be fulfilled. Here, the appearance of some
off-diagonal matrix elements WLL�

imp can be explained mostly
due to a complex character of the multisheet FS in LiV2O4.
Below we examine how properties of AFM spin fluctuations
are related to those of the spin-fluctuation scattering operator
Wkk�

sf in LiV2O4, and show that the smallness of the off-
diagonal elements WLL�

sf with respect to diagonal ones, WLL
sf

and WL�L�
sf , seems to be a plausible assumption as well.

From Eqs. �2� and �4�, any diagonal or off-diagonal ma-
trix element WLL�

sf allowed by symmetry arguments can be
written as follows:

WLL�
sf =

1

2T
�
kk�

	�L�k� − �L�k��
Pkk�
sf 	�L��k� − �L��k��
 .

�9�

The use of the definition �4� for Pkk�
sf leads to
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WLL�
sf =

1

2T
� 1

2
�6� d
� d2k

vk
� d2k�

vk�
	�L�k� − �L�k��


�Psf�k� − k,
�	�L��k� − �L��k��
 , �10�

where the standard replacement �k→�d
�
d
2k / 	�2�3vk


for a unit volume together with the relation

f0�
k�	1 − f0�
k��
	n�
k − 
k�� + 1


= 	f0�
k�� − f0�
k�
n�
k� − 
k�	n�
k� − 
k� + 1
 ,

and the approximation 	f0�
�− f0�
��
��
�−
��−df0 /d
� are
used; two-dimensional integrations over k and k� are re-
stricted to the FS. Then the kernel P�k�−k ,
� in Eq. �10�
takes the form

Psf�k� − k,
� = 3Jsf
2 
n�
�	n�
� + 1
Im ��k� − k,
� .

�11�

This is the well-known form of conduction-electron scatter-
ing from spin fluctuations. The latter are enhanced by the
nearly critical Coulomb interaction of 3d electrons, which
leads4 to a paramagnon expression for ��k�−k ,
� whose pa-
rameters are fixed from INS results at T→0. At low tempera-
tures, the low-energy �
�1 meV� dynamic spin susceptibil-
ity ��q� ,
� in LiV2O4 shows maxima around the critical
wave vectors q�=Qc forming a rather dense manifold �Qc� in
k space.4 To take into account explicitly all scattering pro-
cesses due to dominant spin fluctuations, it is helpful to make
in Eq. �11� the following substitution:

Im ��k� − k,
� � �
�Qc�

� d3q

�2�3��k� − k − Qc − q�

�Im ��Qc + q,
� , �12�

which ascribes particular weights Im ��Qc+q ,
� to the qua-
siparticle scattering processes whose wave vectors, k� and k,
at the Fermi surface satisfy the relation k�−k=Qc+q. In Eq.
�12�, the summation is over the entire set �Qc� of the critical
wave vectors and their neighborhoods, �q�� �Qc�. In total,
this involves a broad region in k space, where the dominant
AFM spin fluctuations are distributed, and Im ��Qc+q ,
� in
Eq. �12� does not much depend on a direction of Qc. The
resulting distribution differs strongly from that occurring at
low T in most of nearly AFM metals where the low-energy
susceptibility ��q ,
� is usually peaked around a discrete or-
dering wave vector QAFM.

The use of the above arguments allows us to write down
the matrix element WLL�

sf in a factorized form

WLL�
sf � CLL�F�T� , �13�

where

CLL� = � 1

2
�6� d2k

vk
� d2k�

vk�
	�L�k� − �L�k��
Mkk�

sf

�	�L��k� − �L��k��
 , �14�

F�T� =
1

T
�

0

�

d
� d3q

�2�3
n�
�	n�
� + 1
Im ��Qc + q,
� ,

�15�

and the matrix Mkk�
sf is defined as Mkk�

sf �3Jsf
2 ��Qc���k�−k

−Qc�. The matrix is invariant under simultaneous operations
of the lattice point group on both k and k� since the manifold
�Qc� is an invariant as well. The wave vectors Qc are along
all high symmetry directions in the Brillouin zone �BZ� and
their end points are lying on a closed surface of a mean
radius �Qc��0.6 Å−1 which is referred to as the “critical”
surface.4 The factorization of matrix elements introduced by
Eq. �13� implies that the quasiparticle scattering by spin fluc-
tuations with different Qc at the critical surface provide
nearly identical contributions and, therefore, only one repre-
sentative wave vector Qc appears in Eq. �15�.

As discussed in Ref. 4, the high directional degeneracy of
Qc’s results from complexity of the electronic band structure
and the geometrical frustration of the pyrochlore lattice
structure of LiV2O4. In this respect, the low-T spin-
fluctuation scattering mechanism18–20 operating with a pecu-
liar ordering wave vector QAFM differs from that occurring in
the paramagnetic spinel LiV2O4. In the former case, the qua-
siparticle scattering is a strongly anisotropic one, leading, for
instance, to hot spots at the Fermi surface. Instead, the above
analysis suggests that the quasiparticle scattering by spin
fluctuations in LiV2O4 is largely isotropic one. In that case,
the diagonal matrix element WLL

sf prevails over the off-
diagonal ones. This fact and similar arguments mentioned
above for the impurity scattering justify the applicability of
the perturbation series expansion, Eq. �7�, for ��T�.

IV. CALCULATION OF �(T) BASED ON THE SCR THEORY
OF SPIN FLUCTUATIONS IN LiV2O4

First, based on the expansion �7�, the resistivity ��T� can
be expressed as follows:

��T� − �imp = �sf
�1��T� + ���T� , �16�

where the spin-fluctuation contribution �sf
�1��T�=X1

−2W1x,1x
sf

represents the lowest-order solution and ���T� is a correc-
tion due to higher-order terms in Eq. �7�. Their variations
with T can be found by calculating the function F�T�, Eq.
�15�, entering the matrix elements of the spin-fluctuation
scattering operator, Eq. �13�. Although the subsequent deri-
vation of an explicit form of F�T� has much in common with
earlier studies23,27 of nearly AFM metals, essential features
specific to LiV2O4 have to be emphasized. In particular,
within the SCR theory of spin fluctuations the imaginary part
of the dynamic spin susceptibility can be parametrized as
follows:11

Im ��Qc + q,
;T�

=
1

4TAT0




	yQ�T� + �q�/qB�2 + b�q�/qB�2
2 + �
/2T0�2 .

�17�

Here, for a given Qc, q� and q� are the components of q
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parallel and perpendicular to Qc, respectively; qB is the ef-
fective radius of the BZ boundary given in terms of a primi-
tive cell volume v0 as qB= �62 /v0�1/3. The parameters TA
�220 K and T0�60 K characterize the widths of the mo-
mentum and energy distributions of spin fluctuations, respec-
tively; a small parameter b takes care about a strong aniso-
tropy of the distribution in k space. Next, the reduced inverse
susceptibility at Qc is defined as yQ�T�= 	2TA��Qc ;T�
−1 as-
suming a “spherical” approximation, i.e., ��Qc ;T� does not
depend on a direction of Qc.

With the insertion of Eq. �17� into Eq. �15�, we get

F�T� =
2T0

TA
� d3q

�2�3�
0

�

d�n���	n��� + 1

�2

�2 + �2uq�2

=
2T0

TA
� d3q

�2�3 I�uq� . �18�

Here, the last equality defines I�uq�, where

uq�t� =
yQ�t� + �q�/qB�2 + b�q�/qB�2

t
�19�

and t=T /T0 is the reduced temperature. At the next step, the
function I�uq� can be expressed as

I�uq� =
uq

2
����uq� −

1

uq
−

1

2uq
2� , �20�

where ��u� is the digamma function and ���u�=d��u� /du.
The integration over q in Eq. �18� are performed by using

the same prescriptions as in Ref. 11, which yields

�2�−3�d3qI�uq�=cf̄�T /T0�, where c is the known dimen-
sionless factor, c�4, and27

f̄�T/T0� =
t

bxc
�

0

zc

dz�−
bxc

t
−

1

2
ln� yQ�t� + z2 + bxc

yQ�t� + z2 �
+

yQ�t� + z2 + bxc

t
�� yQ�t� + z2 + bxc

t
�

−
yQ�t� + z2

t
�� yQ�t� + z2

t
� − ln �� yQ�t� + z2 + bxc

t
�

+ ln �� yQ�t� + z2

t
�� , �21�

where ��u� is the gamma function, the cutoff zc�1 /2, and
the remaining parameter bxc�10−2.

For a given yQ�t�, the expression �21�, as a function of
temperature, can be calculated numerically. This determines,
according to Eqs. �13� and �18�–�21�, an evolution with T of
any nonvanishing matrix element WLL�

sf in the whole range
T�40 K, where the SCR theory for the AFM spin fluctua-
tions in LiV2O4 is proved to be valid.11 Here we utilize the
known functional form for yQ�t�, Fig. 1, obtained by solving
the basic equation of the SCR theory developed in Ref. 11 to
explain results of inelastic neutron-scattering measurements
on LiV2O4. The solution shows that yQ�t� is a monotonically
increasing function of temperature; the limiting value yQ
�t→0�, was found to be yQ�0�=0.044. The use of the energy
scale, T�=2T0yQ�0��16 K, which is the relaxation rate of

the low-energy spin fluctuations,11 is helpful in recognizing
two regimes with different power-law behavior of yQ�t�. Ac-
tually, for T�T�, one obtains 	yQ�t�−yQ�0�
 /yQ�0��1,

which leads to the quadratic behavior of f̄�T /T0��T2. For
T��T, a smooth, nearly linear, t dependence of yQ�t� results

in a peculiar monotonic temperature increase in f̄�T /T0�, as
indicated below.

First, we analyze the lowest-order approximation to the
low temperature �T�T�� resistivity,

��T� � �imp + �sf
�1��T� , �22�

where

�sf
�1��T� = Asf

�1� f̄�T/T0� , �23�

and compare its T dependence with that of the observed13

experimental resistivity. Here Asf
�1�= �2cT0 /TA�X1

−2C1x,1x is
an adjustable parameter �together with �imp� in a low-T fit

procedure using the calculated f̄�T /T0� shown in Fig. 2.

One may see that the function f̄�T /T0� nearly precisely

follows the quadratic dependence, f̄�T /T0�=c1T2 with c1
=0.0033, for T�2 K�T�, where the Fermi-liquid behavior
	�exp�T�−�imp
=AT2 in LiV2O4 was reported.13,14 From the
low-T fit procedure, as shown in Fig. 3, the parameter Asf

�1�
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y Q
(t
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1.00.50.0

t

yQ(0) = 0.044

bxc = 0.01

T0 = 60 (K)

TA = 220 (K)

FIG. 1. The solution of the basic equation of the phenomeno-
logical SCR theory for the reduced inverse static spin susceptibility
yQ�t� as a function of the reduced temperature t=T /T0; phenomeno-
logical parameters required to obtain yQ�t� in LiV2O4 are given in
the text.
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FIG. 2. T dependence of f̄�T /T0� defined by Eq. �21� and cal-
culated with the use of the reduced inverse susceptibility yQ�T /T0�
shown in Fig. 1.
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was found to be Asf
�1�=666.7 �� cm, which corresponds to

the observed coefficient of the T2 term, A=2.2 �� cm /K2.
With increasing T and starting from T�2 K, both the

calculated �sf
�1��T� and the measured resistivity 	�exp�T�

−�imp
 show gradual deviations from the T2 behavior, how-
ever, with somewhat different rates. Specifically, starting
from T�2 K one obtains the growing discrepancy 	�exp�T�
−�imp
−�sf

�1��T�=���T��0, which indicate that the higher-
order corrections involved in ���T� cannot be longer ne-
glected. Remarkably, a negative correction, ���T��0, is
consistent with the variational principle requiring that an ex-
tension of the involved basis functions should lead to an
improved upper bound on ��T�.

Actually, let us consider the lowest-order correction
��sf

�2��T� which can be written from Eq. �7� as

��sf
�2��T� = −

1

X1
2�

L

�� �W1x,L
sf + W1x,L

imp �2

WLL
imp + WLL

sf −
�W1x,L

imp �2

WLL
imp � ,

�24�

where the second term in brackets, being already involved in
�imp, is now subtracted to ensure that ��sf

�2��T→0�=0. Note
that a T dependence in the right-hand side of Eq. �24� is
entirely due to WLL�

sf =CLL�F�T�, both for L�=L and L��L.
For sufficiently low T, a denominator in the right-hand side
of Eq. �24� can be approximated assuming that CLLF�T�
�WLL

imp and F�T��T2, which immediately leads to small
leading correction, ��sf

�2��T��aT2− �b�T4+O�T6�. Here, the
first quadratic term can be adopted by changing slightly a
value of the adjustable parameter Asf

�1� while the next term,
−�b�T4, provides the required negative correction to the first-
order result �sf

�1��T�.
An extension of the above analysis to higher temperature

could be possible if one establishes reliable relations be-
tween numerous matrix elements involved in Eq. �7�. The
following plausible assumption can be made based on the

fact that F�T�= �2cT0 /TA� f̄�T /T0� is a rapidly growing
function of T, Fig. 2. For instance, F�T�30 K� /F�T

�1 K��102. We suggest that the limit, CLLF�T��WLL
imp,

can be achieved at T�40 K, i.e., near the border where the
SCR theory of spin fluctuations in LiV2O4 is still valid. With
this assumption, one obtains, for instance, the following es-
timate for the second-order correction, ��sf

�2��T�
�−	X1

−2�L��C1x,L�2 /CLL
F�T�+const. Then, by doing in the
same manner and after collecting all leading terms in the
expansion �7�, the physical resistivity in LiV2O4 for 2�T
�40 K can be approximated by the following simple func-
tional form:

��T� � �imp + B + Asf f̄�T/T0� , �25�

where

Asf =
2cT0

TA

1

X1
2�C1x,1x − �

L

�
�C1x,L�2

CLL

+ �
LL�

�
C1x,LCLL�CL�,1x

CLLCL�L�
− . . .� , �26�

B =
1

X1
2�

L

��WLL
imp�C1x,L

CLL
�2

+ W1x,L
imp �1 − 2

C1x,L

CLL
� − . . .� .

�27�

By noting a close similarity between Eqs. �22� and �25�, it
is worth emphasizing completely different T dependence of

f̄�T /T0� in the low- and a high-temperature regimes. More-
over, the factor Asf is subjected to a special constraint with
respect to Asf

�1�. Actually, for T�2 K�T� the first-order
term in the series �26� is only needed, Asf

�1�

��2cT0 /TA�X1
−2C1x,1x while for 2�T�40 K, the factor

Asf is given by the full series �26� and, hence, Asf �Asf
�1� is

required. An estimate for a shift B in Eq. �25�, which is the
second adjustable parameter in a high-T fit procedure, is
discussed below.

In Fig. 3, the physical resistivity 	�exp�T�−�imp
 is com-
pared with the predicted behavior, Eq. �25�, for T�T�

��16 K�. A satisfactory coincidence between the experi-
mental data and calculated results is achieved for 20�T
�40 K with two fit parameters Asf =280 �� cm and B
=85 �� cm. While the expected constraint, Asf �Asf

�1� is
fulfilled, the obtained large value of B�3�imp means that the
Matthiessen rule24 is severely violated. A possible mecha-
nism for this effect is the following. Recalling the estimate,
Eq. �27� for B, together with relations �imp�W1x,1x

imp and
�C1x,L /CLL�2�1, we suggest that for some L�1x one has
WLL

imp�W1x,1x
imp , which explains why an estimate B��imp is

feasible.
So far the special attention has been paid to two limiting

regimes of low and comparatively high temperatures
�T�40 K�, where the series expansion, Eq. �7�, for ��T�
reduces to very similar forms, Eqs. �22� and �25�, requiring
two adjustable parameters for a fit procedure in each re-
gimes. We insist that Eq. �7� should provide the interpolation
T-dependent function between the low- and high-T limits as
well. However, for intermediate temperatures, one has
CLLF�T��WLL

imp, and the corresponding fit procedure, though

300

200

100

0
403020100
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tiv
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high-T fit

FIG. 3. Theoretical fits to the experimental data �Ref. 13, open
circles� for the electrical resistivity in LiV2O4 in different tempera-
ture regions. In the low-T limit, the resistivity is described by Eqs.
�22� and �23� with �imp=32 ��� cm� and Asf

�1�=666.7 ��� cm�. In
the high-temperature region, 20 K�T�40 K, where the SCR
theory is still valid, the resistivity is approximated by Eq. �25� with
�imp+B=117 ��� cm� and Asf =280 ��� cm�.
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being possible, would require a larger number of adjustable
parameters. This could hardly give more insight into the
problem under consideration and therefore we omit such a
procedure in our discussion.

V. CONCLUSION

We have calculated the electrical resistivity ��T� in the
paramagnetic metallic spinel LiV2O4 treated as a nearly
AFM Fermi liquid for temperatures T�40 K. Impurities
and strongly degenerate temperature-induced low-energy
AFM spin fluctuations were supposed to provide two main
sources of the quasiparticle scattering and the resistivity. The
self-consistent renormalization theory developed earlier was
applied to derive explicitly the temperature-dependent matrix
elements of the spin-fluctuation scattering operator. The ab-
sence of hot spots of the Fermi surface and a largely isotro-
pic character of the quasiparticle scattering was deduced
from a peculiar, nearly spherical, shape of the spin-
fluctuation distribution in the momentum space for the para-
magnetic ground state in LiV2O4. Comparatively weak an-
isotropic effects were assumed to originate mainly from a
complex many-sheet structure of the Fermi surface in this
compound. The assumption allowed us to use the variational
solution for the Boltzmann equation in the form of a pertur-

bative series expansion for ��T�. Our theory remains to be a
phenomenological one since unknown model parameters
were found from the best overall fit to the temperature-
dependent �exp�T� measured on a single crystal of LiV2O4.

The resulting theoretical expression for ��T� was shown
to take very similar simple forms in two limiting regimes for
spin fluctuations, which describe successfully experimental
results for ��T� with a minimal set of two adjustable param-
eters in each regime. These include the low temperatures,
T�T� �where T��16 K is the characteristic energy scale of
spin fluctuations�, and somewhat higher temperatures, T�

�T�40 K, respectively.
For T�40 K, the SCR theory of AFM spin fluctuations

in LiV2O4 is no longer valid. As discussed in Ref. 11, and
evidenced from experiment,5–7,13,14 with increasing T the
AFM fluctuations at �q��Qc are suppressed and no more
distinguished from those at other wave vectors in the BZ; the
system enters a spin-localized regime compatible with the
Curie-Weiss behavior of ��q=0� observed in LiV2O4 for T
�50 K. An explanation of incoherent transport properties in
this regime remains to be a challenging problem.
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