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The possible existence of topological insulators in cubic pyrochlore iridates A2Ir2O7 �A=Y or rare-earth
elements� is investigated by taking into account the strong spin-orbit coupling and trigonal crystal-field effect.
It is found that the trigonal crystal-field effect, which is always present in real systems, may destabilize the
topological insulator proposed for the ideal cubic crystal field, leading to a metallic ground state. Thus the
trigonal crystal field is an important control parameter for the metal-insulator changeover. We propose that this
could be one of the reasons why distinct low-temperature ground states may arise for the pyrochlore iridates
with different A-site ions. On the other hand, examining the electron-lattice coupling, we find that softening of
the q=0 modes corresponding to trigonal or tetragonal distortions of the Ir pyrochlore lattice leads to the
resurrection of the strong topological insulator. Thus, in principle, a finite-temperature transition to a low-
temperature topological insulator can occur via structural changes. We also suggest that the application of the
external pressure along �111� or its equivalent directions would be the most efficient way of generating strong
topological insulators in pyrochlore iridates.

DOI: 10.1103/PhysRevB.82.085111 PACS number�s�: 71.27.�a, 73.43.�f

I. INTRODUCTION

Topological band insulators arise from nontrivial Berry
phase of electron wave functions and possess gapless bound-
ary states as a consequence of topological properties of the
bulk electron energy bands.1–12 Topological invariants of
electron wave functions in such topological insulators can be
used to describe/identify two-dimensional quantum spin-Hall
insulators and three-dimensional strong topological insula-
tors. The presence of the gapless boundary states and the
associated topological properties have recently been con-
firmed by a series of remarkable experiments on HgCdTe,
Bi1−xSbx, Bi2Se3, Bi2Te3, and other materials.13–18 It has been
known that the strong spin-orbit coupling in these systems
provides an essential ingredient for the nontrivial Berry
phase of electron wave functions. One important future di-
rection is to understand the effect of interactions on the to-
pological insulators. Growing interests on combined effects
of electron correlation and topological properties have natu-
rally lead to recent fascinating studies on the realization of
topological phases in transition-metal oxides with d
electrons,19,20 instead of more conventional s- or p-orbital
systems where electron correlation is less important.

Transition-metal oxides with 5d electrons are character-
ized by the strong spin-orbit coupling due to the large atomic
number of 5d transition-metal elements. As a result, the spin-
orbit coupling competes with the kinetic and interaction en-
ergies, leading to substantial correlation effects despite the
relatively extended nature of the 5d orbitals. This feature, for
example, is confirmed by recent experiments on Sr2IrO4,21–24

where the spin-orbit coupling plays an essential role in the
formation of the Mott-insulator ground state. In the case of
the so-called hyperkagome material Na4Ir3O8, a spin-liquid
ground state is proposed, manifesting strong correlation ef-
fects in 5d electron systems.25–32 Moreover iridium oxides
are considered as promising candidate systems where we can
study the interplay between electron correlation and strong

spin-orbit coupling. Perhaps most interestingly, the iridium
oxides may also be ideal materials for the occurrence of to-
pological insulators. It is suggested that the honeycomb lat-
tice of Ir ions in Na2IrO3 with the complex hopping ampli-
tudes arising from the strong spin-orbit coupling may lead to
a quantum spin-Hall insulator.19 Three-dimensional pyro-
chlore lattice of Ir with the structure described in Fig. 1 is
also suggested as a candidate system for a strong topological
insulator.20 The possibility of the topological Mott insulators
where the spinons, not the electrons, possess topological
band structures is discussed as a result of correlation
effects.20,33

In this work, we study the possibility and stability of
strong topological insulators in pyrochlore iridates, A2Ir2O7

�A=Y or rare-earth elements� by taking into account both of
the strong spin-orbit coupling and trigonal crystal-field effect
induced by a local distortion of IrO6 octahedra. Due to the
extended nature of 5d electron wave functions, the local
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FIG. 1. �Color online� �a� Structure of the pyrochlore lattice. An
Ir atom sits at each vertex of a tetrahedron. Four sites within a
tetrahedral unit cell are numbered from 1 to 4. �b� The coordinate
system used in this paper.
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crystal-field strength in 5d systems also becomes a large en-
ergy scale competing with electron interaction and spin-orbit
coupling.34 The strength of the trigonal crystal-field effect
may be different for distinct choices of the A-site ion in
A2Ir2O7. Given that there exist a variety of choices for the A
site, the pyrochlore iridates offer the opportunity to control
the relative strength of the crystal-field effect and the spin-
orbit coupling. In addition, the pyrochlore iridates show both
metallic and insulating ground states at low temperatures as
well as finite-temperature metal-insulator transitions depend-
ing on the A-site ions.35–37 Thus it would be very interesting
to understand the origin of distinct phases and phase transi-
tions.

Here we derive an effective Hamiltonian for the Ir ions in
the pyrochlore iridates by carefully incorporating the trigonal
crystal-field effect and using the appropriate spin-orbital ba-
sis. Previously an effective Hamiltonian was derived by
Pesin and Balents20 for the Ir ions in a perfect octahedral
environment with the cubic Oh symmetry and it was found
that the Ir pyrochlore system supports a strong topological
insulator when the strength of spin-orbit coupling is suffi-
ciently large. In contrast we find that the trigonal crystal-field
effect, which is always present in real pyrochlore systems, is
quite significant and it can lead to a metallic ground state.

On the other hand, we find that the distortions of the Ir
pyrochlore lattice induced by softening of certain q=0 pho-
non modes give rise to the resurrection of strong topological
insulators. This suggests that finite-temperature metal-
insulator transition can occur through structural distortions
such that the low-temperature ground state is a strong topo-
logical insulator. It is interesting to notice that recent experi-
ments on Sm2Ir2O7 and Eu2Ir2O7 show structural changes at
the metal-insulator transition even though the low-
temperature ground state seems to be magnetic and show
spin-glasslike behavior.38,39 We also suggest from the studies
of the electron-lattice coupling that applying pressure along
�111� or its equivalent directions would be the most efficient
way of generating strong topological insulators in pyrochlore
iridates.

The rest of the paper is organized as follows. In Sec. II we
derive the effective hopping Hamiltonian including the trigo-
nal crystal-field effect. We first consider the influence of lo-
cal trigonal distortion of the oxygen octahedra on Ir t2g elec-
trons. Then we explain the derivation of the corresponding
lattice Hamiltonian. In Sec. III, the evolution of the elec-
tronic structure induced by trigonal crystal field in the pres-
ence of the strong spin-orbit coupling is described in detail.
Here we explain how a metallic state may arise when the
trigonal crystal-field effect is present. In Sec. IV, we discuss
the effect of electron-lattice coupling on the electronic struc-
ture of the Ir pyrochlore system. We show how the electron-
lattice coupling can lead to strong topological insulators. Fi-
nally, we conclude in Sec. V. The detailed expressions for
various matrices describing the effective Hamiltonian are
given in the Appendix.

II. EFFECTIVE HOPPING HAMILTONIAN WITH
TRIGONAL CRYSTAL FIELD

In this section we investigate the effect of local trigonal
crystal field on the electronic structure of Ir 5d electrons. In

Sec. II A we explain the degeneracy lifting of t2g orbitals
under trigonal crystal fields. The effective hopping Hamil-
tonian including the trigonal crystal field is derived in Sec.
II B. Detailed procedures of the derivation can be found
there, as well.

A. Trigonal crystal field

Each Ir4+ ion is coordinated by six oxygen anions which
are at equal distance from the central Ir4+ cation. The actual
coordinates of the surrounding oxygen anions have a free
positional parameter, so called the oxygen x parameter,
which depends on material properties. In general, the six
oxygen ions around a central Ir4+ form a distorted octahedron
where the amount of distortion can be parametrized by the
oxygen x parameter.40,41 For x=xc=5 /16, each Ir4+ ion is
under a perfect local cubic crystal field. The deviation of x
from the ideal value of xc generates a trigonal crystal field.
The trigonal distortion of an oxygen octahedron is accompa-
nied by compression �x�xc� or elongation �x�xc� of the
oxygen octahedron along one of the C3 symmetry axis for
threefold rotation. A local geometry of an IrO6 octahedron
and a C3 symmetry axis for the trigonal distortion are de-
scribed in Fig. 2�a�.

Under the trigonal distortion, the local symmetry group
around an Ir site reduces from the cubic Oh to D3d. Due to
the trigonal crystal field, degenerate t2g orbitals split into a
singlet a1g state and a doublet eg� state belonging to A1g and
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FIG. 2. �Color online� Trigonal crystal field around an Ir4+ ion.
�a� Local geometry of an IrO6 octahedron. A trigonal distortion is
induced by compression or elongation of the surrounding oxygen
octahedron along a C3 symmetry axis for threefold rotation. �b�
Splitting of degenerate t2g states under the trigonal crystal field. �c�
Local C3 axes for four Ir ions constituting a tetrahedron; each C3

axis points to the body center of the tetrahedron.
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Eg irreducible representations of the D3d point group, respec-
tively �see Fig. 2�b��. A C3 symmetry axis corresponds to one
of the �111� or its equivalent axes. Taking the local �n1n2n3�
directions as the C3 symmetry axes �ni= �1�, the effect of
trigonal crystal field on t2g states can be described by the
following Hamiltonian:

Htri = −
�tri

3 � 0 n1n2 n1n3

n1n2 0 n2n3

n1n3 n2n3 0
� .

Here we have chosen a local basis as �†= �dyz
† ,dzx

† ,dxy
† �. The

singlet a1g state with the energy Ea=−2�tri /3 is given by

�a1� 	 a1
†�0� =

1

3

�n1�dyz� + n2�dzx� + n3�dxy�� . �1�

The eigenvectors for the eg� doublet states with the energy
Ee=�tri /3 can be written as

�e+� 	 e+
†�0� =

1

3

�n1��dyz� + n2�2�dzx� + n3�dxy�� ,

�e−� 	 e−
†�0� =

1

3

�n1�2�dyz� + n2��dzx� + n3�dxy�� , �2�

where �=ei�2	/3�.
In Fig. 2�c�, we show the local C3 axes of the four Ir sites

constituting a tetrahedral unit cell. Each C3 axis points to the
body center of the tetrahedron. Considering the trigonal dis-
tortions of IrO6 octahedra and their relative orientations, we
construct the effective hopping Hamiltonian for Ir d elec-
trons on the pyrochlore lattice. The resulting Hamiltonian is
given by

H = �
i,n,


��
 − ��din

† din
 + �

�ij�
�
n,n�

�

,
�

din

† Tn
,n�
�djn�
�

+ H.c.� . �3�

Here i and j are indices for unit cells while n and n� indicate
Ir sites within a unit cell �n=1,2 ,3 ,4�. We use the index 

�
=1, . . . ,6� to describe local spin-orbit eigenstates. Within
the t2g manifold, d electrons behave as if their effective or-
bital angular momentum is one with an additional minus
sign.20 Therefore, the effective total angular momentum of
Ir d electrons, jeff can be either 1/2 or 3/2. We use 
=1,2 to
indicate the spin-orbit doublet with jeff=1 /2 and 

=3,4 ,5 ,6 to denote the spin-orbit quadruplet with jeff=3 /2.
The on-site energy �
=SO for the spin-orbit doublet and
�
=−SO /2 for the spin-orbit quadruplet with the spin-orbit
coupling strength given by SO. Tn
,n�
� is the hopping am-
plitudes between nearest-neighbor Ir sites and � is the
chemical potential.

In contrast to the tight-binding Hamiltonian derived by
Pesin and Balents in Ref. 20 where a single energy scale t
describes the hopping processes, the hopping amplitude
Tn
,n�
� has two independent parameters ta and te in this case.

These two hopping parameters come from the hopping pro-
cesses between a1g and e2g� states under the trigonal crystal
field, respectively. Under the perfect local cubic environment
around an Ir site without a trigonal crystal field, ta= te is
satisfied. In other words, the effect of trigonal crystal fields
on the electronic structure can be captured by varying the
relative magnitude of ta / te. In the following section, we ex-
plain the procedures deriving the above effective Hamil-
tonian in Eq. �3�.

B. Construction of the effective hopping Hamiltonian

We construct the effective Hamiltonian describing hop-
ping processes between neighboring Ir t2g orbitals through
intermediating oxygen p orbitals in the following way. We
first consider a small cluster composed of neighboring Ir-
O-Ir atoms as shown in Fig. 3. Allowing Ir-O hopping pro-
cesses, the three-atom cluster can be described by the follow-
ing Hamiltonian:

H = H�0� + H�1�, �4�

where

H�0� = �L
†Hd

�0��L + �R
†Hd

�0��R + p̃†Hp
�0�p̃ �5�

and

H�1� = �L
†VLp̃ + p̃†VL

†�L + �R
†VRp̃ + p̃†VR

†�R. �6�

Here H�0� indicates on-site potentials at Ir and O sites
while H�1� describes Ir-O hybridizations. The on-site atomic
potentials of d and p orbitals give rise to the diagonal matri-
ces, Hd

�0�=diag�Ea ,Ee ,Ee� and Hp
�0�=diag�Ep ,Ep ,Ep�. Here

Ea �Ee� is the atomic energy for an a1g singlet �eg� doublet�
state composed of Ir d orbitals under the trigonal crystal field
and Ep is the atomic energy of degenerate oxygen p orbitals.
Vn �n=L ,R� represents overlap integrals between Ir d orbit-
als and oxygen p orbitals. Taking into account the local trigo-
nal crystal field of each Ir atom, we employ a basis, that is
diagonal under the local trigonal crystal field, �n

†

= �a1,n
† ,e+,n

† ,e−,n
† � to represent Ir t2g orbitals. The subscript n

indicates the locations of two Ir atoms on the left-hand side
�n=L� or the right-hand side �n=R�. p̃†= �p̃x

† , p̃y
† , p̃z

†� repre-
sents oxygen p orbitals connecting neighboring Ir atoms. It is
important to notice that the local octahedral axes of Ir atoms
are not parallel to the global cubic axes as described in Fig.
3. Each component of the oxygen p orbitals is defined with
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FIG. 3. �Color online� Local Ir-O-Ir configuration. Local octa-
hedral axes for Ir atoms on the left-hand side �IrL� and the right-
hand side �IrR� are not parallel to the global cubic axis adopted for
the central oxygen atom.
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respect to the global cubic axis while d orbital basis is de-
fined with respect to the local octahedral coordinate of each
Ir atom.

The effective hopping Hamiltonian between two neigh-
boring Ir atoms is obtained from the second-order perturba-
tion theory treating H�1� as a perturbation. The resulting
Hamiltonian is given by

HL,R = −
1

2
�L

†� 1

Hp
�0� − Hd

�0�VLVR
† + VLVR

† 1

Hp
�0� − Hd

�0���R + H.c.

�7�

The information about the relative orientation between
two local octahedral axes of neighboring Ir atoms is con-
tained in VL and VR. To construct VL and VR, we follow the
approach used by Pesin and Balents in Ref. 20. We first
construct matrices describing hopping processes between
Ir t2g and O p orbitals. It is convenient to define components
of oxygen p and Ir t2g orbitals with respect to the same cubic
axis. In this case the Ir-O hopping processes are strongly
constrained by the symmetries of d and p orbitals. The hop-
ping matrices connecting �px , py , pz� orbitals to �dyz ,dzx ,dxy�
orbitals are given by20

�x
� = � 
pd	�0 0 0

0 0 1

0 1 0
� ,

�y
� = � 
pd	�0 0 1

0 0 0

1 0 0
� ,

�z
� = � 
pd	�0 1 0

1 0 0

0 0 0
� .

Here the subscript and superscript of the matrix � indicate
the location of an O atom with respect to the Ir atom. For
example, �x

+ describes Ir-O hopping processes when an O
atom sits on the positive x axis with the Ir atom sitting at the
origin. 
pd	 is the hopping integral between neighboring p
and d orbitals.

Since the local octahedral axes of Ir atoms are not paral-
lel, we introduce an additional matrix R�i� for each ith Ir
atom, which rotates the global cubic axis to a local octahe-
dral axis. Under the action of R�i�, the p̃n�n=x ,y ,z� orbitals
defined with respect to the global cubic axis transform as
pi,n

† =Rmn
�i� p̃m

† . Here pi,n denotes a p orbital defined with respect
to the local octahedral axis of the ith Ir atom. In addition, we
introduce the matrix � that transforms �dyz ,dzx ,dxy� to the
trigonal basis �a1 ,e+ ,e−� in the following way, ei,n

† =�nmdi,m
† .

From Eqs. �1� and �2�, � is obtained as

� =
1

3� n1 n2 n3

n1� n2�2 n3

n1�2 n2� n3
� .

Now we can construct VL and VR explicitly, which are given
by VL=���p�L�R

�L�† and VR=���p�R�R
�R�†. Here the subscript

p�L� �p�R�� of � indicates the location of the intermediating
oxygen atom with respect to the local octahedral axis of the
Ir ion on the left-hand �right-hand� side.

The effective hopping Hamiltonian in Eq. �7� can be writ-
ten compactly as

HL,R =
1

2
�L

†ThopVLVR
† + VLVR

†Thop��R + H.c., �8�

where Thop	diag�ta , te , te� with ta=
pd	
2 / �Ea−Ep� and te

=
pd	
2 / �Ee−Ep�. In the above, we have replaced VR �VL� by

VR /
pd	 �VL /
pd	� to make ta and te have conventional
forms for hopping amplitudes. Note that ta= te in the absence
of the trigonal crystal-field effects because Ea=Ee is satisfied
in that case. The effect of local trigonal field splitting can be
considered by changing the relative magnitude of ta / te.

Up to now we have neglected spin degrees of freedom.
Since the spin-orbit coupling is the largest energy scale of
the problem, it is convenient to use the local spin-orbit eigen-
states as a basis for the representation of the Hamiltonian. To
project the Hamiltonian onto the local spin-orbit basis, we
define rotation matrices D�i� acting on the spin space, which
is nothing but a spinor representation of O�3� rotations R�i�

defined before. The detailed expressions of matrices R�i� and
D�i� are given in the Appendix. Then the spin-dependent hop-
ping Hamiltonian is given by

HL,R = �
l�,l���

�L,l�
† T̃l�,l����R,l��� + H.c., �9�

where

T̃l�,l��� =
1

2
�ThopVLVR

† + VLVR
†Thop�l,l���D

�L��†D�R���,��.

�10�

Here l is the index for d orbitals under the local trigonal
crystal field �l=a, e+, and e−� and � indicates the spin pro-
jection with respect to a local quantization axis.

We can obtain the final expression for the effective hop-
ping Hamiltonian by introducing a matrix A which changes
the trigonal basis to the local spin-orbit basis in the following
way, �
�=d


† �0�	�l�A
,l��l�
† �0�. Here we denote the local

spin-orbit basis using an index 
 �
=1, . . . ,6�. 
=1,2 indi-
cate the spin-orbit doublet with the total angular momentum
jeff=1 /2 and 
=3,4 ,5 ,6 denote the spin-orbit quadruplet
with jeff=3 /2. It is straightforward to extend the approach
described above for a three-site cluster to the full pyrochlore
lattice system. The resulting effective lattice hopping Hamil-
tonian is given by

Heff = �
�ij�

�
n,n�

�

,
�

din

† Tn
,n�
�djn�
� + H.c., �11�

where

Tn
,n�
� = �
l�,l���

�A��
,l�T̃nl�,n�l����A
T�l���,
�. �12�
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Here i is the unit-cell index and the index n refers to the four
Ir sites within a single tetrahedral unit cell. Including the
on-site potentials for the local spin-orbit eigenstates, the ex-
pression for the effective tight-binding Hamiltonian is finally
given by Eq. �3�.

III. EVOLUTION OF THE ELECTRONIC STRUCTURE
UNDER TRIGONAL CRYSTAL FIELD

In this section, we discuss the evolution of the electronic
structure of the Ir 5d system on the pyrochlore lattice in the
presence of the trigonal crystal field. We start with the case
where the Ir ions are under the perfect cubic crystal field
with large spin-orbit coupling. In Fig. 4, we plot the electron
band dispersion along the high symmetry directions in the
Brillouin zone for the perfect cubic crystal field on the Ir ions
with SO=4.0, ta= te=0.5. Since we have four sites within a
unit cell and each site supports three t2g orbitals, there are 24
bands within the first Brillouin zone including spin degrees
of freedom. Due to the time-reversal and inversion symme-
tries, each band is doubly degenerate. In Fig. 4, the upper
four bands are derived from the spin-orbit doublets with total
angular momentum jeff=1 /2. On the other hand, the lower
eight bands come from the quadruplets with jeff=3 /2. Note
that these two groups of bands are well separated by a large
energy gap with an energy scale given by SO.

Since each Ir atom contributes five electrons, 20 bands
among the 24 bands are filled. Namely, we have a band in-
sulator with the half-filled jeff=1 /2 bands. Therefore in the
forthcoming discussion, we neglect the fully occupied jeff
=3 /2 bands and focus on the properties of the upper four
bands �or eight bands counting the double degeneracy of
each band� possessing jeff=1 /2 character. The energy disper-
sions of the jeff=1 /2 states are shown in Fig. 5�a�. The fully
occupied lower two bands are separated from the upper two
bands by a finite gap between them.

To understand the topological properties of the insulating
phase, we compute the Z2 topological invariants �� ;�1�2�3�
from the parity eigenvalues �m��l� at the time-reversal in-
variant momenta, following Fu and Kane.9 Here �m��l� indi-
cates the inversion parity of the mth occupied jeff=1 /2 band
at the time-reversal invariant momentum �l. Using the
reciprocal-lattice vectors Gi�i=1,2 ,3�, the eight time-
reversal invariant momenta can be written as �l=n1n2n3
= �n1G1+n2G2+n3G3� /2 with n1,2,3=0 ,1. The strong Z2 to-
pological invariant � is given by

�− 1�� = �
ni=0,1

�
m=1

2

�m��n1n2n3
� , �13�

where the parity eigenvalues at the eight time-reversal invari-
ant momenta are multiplied at the same time. On the other
hand, each of the three weak Z2 topological invariants �i�i
=1,2 ,3� is determined by the parity eigenvalues at the four
time-reversal invariant momenta lying on a plane, which is
given by

�− 1��i = �
ni=1,nj�i=0,1

�
m=1

2

�m��n1n2n3
� . �14�

Because of the time-reversal symmetry, each band is doubly
degenerate at the time-reversal invariant momentum and ev-
ery Kramers doublet share the same inversion parity. Since
the Z2 topological invariants count the parity of one state for
each Kramers pair,9 we consider the product of the inversion
parities corresponding to the two occupied jeff=1 /2 bands in
Eqs. �13� and �14�. Notice that, since the product of the in-
version parities of the occupied jeff=3 /2 bands is +1 in every
time-reversal invariant momentum, we can neglect the con-
tributions from the jeff=3 /2 bands. These analyses lead to a
strong topological insulator with the Z2 invariants �1;000� as
found earlier by Pesin and Balents.20 It is interesting to note
that a strong topological insulator with the same Z2 invariant
�1;000� was also found in a simple one-band model on the
pyrochlore lattice.42

Now we describe the effect of the trigonal crystal field on
the electronic structure of the jeff=1 /2 bands. As mentioned
above, the trigonal crystal-field effect can be described by

ΓΓ ΓΓXX XXΚΚLL��

E(k)E(k)
00

-3-3

66

33

FIG. 4. �Color online� Tight-binding band structure of Ir 5d or-
bitals when there is no trigonal crystal-field effect. Here we have
chosen SO=4.0, ta= te=0.5. Note that the upper four bands corre-
sponding to the spin-orbit doublet �jeff=1 /2� are well separated
from the other eight bands which come from the spin-orbit quadru-
plet �jeff=3 /2�.

ΓΓ ΓΓXX XXΚΚLL��ΓΓ ΓΓXX XXΚΚLL��ΓΓ ΓΓXX XXΚΚLL��

E(k)E(k)

(a)(a) (c)(c)(b)(b)t / t =1.0t / t =1.0aa ee t / t =1.7t / t =1.7aa ee t / t =2.4t / t =2.4aa ee

FIG. 5. �Color online� Dispersions of jeff=1 /2 bands under
trigonal crystal field with ta� te. Here we have fixed SO=4.0, te

=0.5 while changing ta. There is an accidental band touching be-
tween the two bands in the middle at the L point when ta / te=1.7.
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changing the relative magnitude of ta and te. In general, the
pyrochlore oxides have oxygen x parameters ranging from
0.309 to 0.355.40 Since xc=0.3125 for the perfect cubic crys-
tal field, we have to consider both trigonal compression �x
�xc� and elongation �x�xc� cases. According to the naive
crystal-field splitting picture, the on-site energies Ea and Ee

of a1g and eg� states are determined by the magnitude of oxy-
gen x parameters. However, in real materials, the relative
magnitude between Ea and Ee are strongly affected by hy-
bridization with high energy eg orbital states, which are al-
lowed under the trigonal crystal field.43 Therefore, irrespec-
tive of the magnitude of the oxygen x parameter, we have to
investigate both ta / te�1 and te / ta�1 cases on equal footing.

We first consider the case of ta / te�1. In Fig. 5, we plot
the evolution of the band structure as we increase ta / te. For
ta / te�1.7, an accidental band touching occurs at the L point
in the Brillouin zone. Since the two bands touching at the L
point have opposite inversion parities as shown in Table I,
the band crossing induces the exchange of the parities be-
tween the two bands touching at the L point. However, since
we have eight different momentum points within the first
Brillouin zone, which are symmetry equivalent to the L
point, the product of the inversion parities for all occupied
bands is invariant. According to Fu and Kane,9 the product of
the inversion parities of occupied bands determines the Z2

topological invariant �, characterizing the topological prop-
erties of insulators. Therefore, the accidental band touching
does not induce the change in the topological properties of
the insulating states.

Now we consider the opposite limit of te / ta�1. Figure 6
shows the evolution of the band structure as we increase
te / ta. Notice that the band gap at the � point reduces pro-
gressively as te / ta increases. In particular, when te / ta
= �te / ta�c=2.3, a band inversion occurs at the � point and the
system becomes metallic. The double degeneracy at the �
point is protected by the lattice point-group symmetry.
Therefore the metallic phase is stable as long as symmetry
breaking fields reducing the lattice symmetry are not intro-
duced. It is interesting that a similar metallic state is

predicted by a recent first-principles calculation on
Y2Ir2O7.44 Although we have used a simplified tight-binding
approach, the overall band structure and degeneracies at the
� point for the metallic phase are consistent with the predic-
tion of the local-density approximation �LDA� calculation.

The effect of the trigonal crystal fields on the electronic
structure is summarized in the phase diagram shown in Fig.
7. The strong topological insulator �STI� is stable against the
trigonal crystal-field effect for te / ta smaller than the critical
value, �te / ta�c. On the other hand, if te / ta is larger than the
critical value, a metallic phase occurs. The metallic phase is
stable as long as the point-group symmetry of the lattice is
protected.

IV. LATTICE DISTORTION AND METAL-INSULATOR
TRANSITION

In this section we study the fate of the metallic phase
predicted above against external perturbations. Some pyro-
chlore iridates A2Ir2O7 with A=Nd, Sm, and Eu, show metal-
insulator transitions as the temperature decreases.35,36 How-
ever, the nature of the insulating ground state is under
controversy. According to a recent Raman-scattering mea-
surement on these iridium compounds,38 metal-insulator
transitions accompany structural distortions for Sm2Ir2O7
and Eu2Ir2O7. In addition, a recent theoretical study on a toy

TABLE I. Inversion parities of the jeff=1 /2 bands at time-
reversal invariant momenta for SO=4.0, ta= te=0.5. Here E1�E2

�E3�E4. At the momentum Xi�i=1,2 ,3�, the upper �lower� two
bands are degenerate with opposite inversion parities satisfying ��̄
=−1 ����̄�=−1�.

E1 E2 E3 E4

��0,0 ,0� + + + +

L0�	 ,	 ,	� − − + −

L1�−	 ,	 ,	� + + − +

L2�	 ,−	 ,	� + + − +

L3�	 ,	 ,−	� + + − +

X1�2	 ,0 ,0� � �̄ �� �̄�
X2�0,2	 ,0� � �̄ �� �̄�
X3�0,0 ,2	� � �̄ �� �̄�

ΓΓ ΓΓXX XXΚΚLL��ΓΓ ΓΓXX XXΚΚLL��ΓΓ ΓΓXX XXΚΚLL��

E(k)E(k)

(a)(a) (c)(c)(b)(b)t / t =1.0t / t =1.0ee aa t / t =2.2t / t =2.2ee aa t / t =2.5t / t =2.5ee aa

FIG. 6. �Color online� Dispersions of jeff=1 /2 bands under
trigonal crystal field with ta� te. Here we have fixed SO=4.0, ta

=0.5 but vary te. As te / ta increases the energy gap between the two
bands in the middle reduces. When te / ta�2.3 band inversion oc-
curs at the � point and the system becomes metallic.

t / tt / tee aa

MetalMetalSTISTISTISTI

(t /t )(t /t )ee aa cc
XX

FIG. 7. �Color online� Phase diagram as a function of the
strength of the local trigonal crystal field represented by te / ta. Note
that a metallic phase occurs when te / ta becomes larger than the
critical value of �te / ta�c�1. The red cross in the middle of two
strong topological insulators �STI� indicates the point where acci-
dental band touching occurs.
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model for the topological insulators on the pyrochlore
lattice,42 has shown that the lattice distortions along the �111�
direction may be important for the realization of the topo-
logical insulator. Here we investigate the effect of lattice
distortions on the fate of the metallic state. In particular, to
make predictions relevant to future high-pressure experi-
ments, we focus on uniform lattice modulations via q=0
phonon mode softening, which lead to macroscopic volume
change in the system.

Since we have four Ir ions within a tetrahedral unit cell,
displacements of four Ir atoms from their equilibrium posi-
tions, �ri= ��xi ,�yi ,�zi�, give rise to 12 independent degrees
of freedom. Among these 12 different modes, we neglect six
modes describing global translations and rotations of the unit
cell, because these do not lead to distortions of the tetrahe-
dron. The remaining six modes are classified as A1 singlet
QA, E doublet QE= �Q1

E ,Q2
E�, and T2 triplet QT

= �Q1
T ,Q2

T ,Q3
T�, in terms of irreducible representations for the

Td point group of the tetrahedron.45–47 The expressions for
normal coordinates Q corresponding to each irreducible rep-
resentation are given by

QA =
1

6

��r14 + �r23 + �r24 + �r13 + �r34 + �r12� ,

Q1
E =

1

12

��r14 + �r23 + �r24 + �r13 − 2�r34 − 2�r12� ,

Q2
E =

1

2
�− �r14 − �r23 + �r24 + �r13� ,

Q1
T =

1

2

��r14 − �r23� ,

Q2
T =

1

2

��r24 − �r13� ,

Q3
T =

1

2

��r34 − �r12� . �15�

In the above �rij indicates the change in the distance be-
tween the ith and jth Ir atoms. Since the QA mode describes
a uniform elongation or contraction of all bond lengths, it
does not change the symmetry of the unit cell. So we neglect
the QA mode in the following discussion. On the other hand,
the two components of the doublet QE= �Q1

E ,Q2
E� describe

tetragonal and orthorhombic distortions, respectively. Fi-
nally, each component of the triplet mode, Qi

T depicts elon-
gation and contraction of a pair of orthogonal bonds which
are lying on two parallel planes of a cube �see Fig. 1�b��.
Equal amplitude superposition of three components of the
triplet mode leads to a trigonal distortion of a tetrahedron
along �111� or its equivalent directions.

Using the information about the phonon modes of a single
tetrahedron, we consider various q=0 phonon modes on the
pyrochlore lattice system. The pyrochlore lattice consists of
two inequivalent tetrahedra sharing a corner and these two

types of tetrahedra are interchanged via inversion symmetry
with respect to a corner. Therefore even when we are re-
stricted to q=0 phonon modes, there are lattice distortions
with even and odd symmetries with respect to an inversion
center. However, in this work, we focus on phonon modes
with even inversion parities. This is because only the phonon
modes with even parities lead to macroscopic distortion of
the lattice. Therefore these modes can be softened via cou-
pling to applied external pressure, which can be performed in
future high-pressure experiments. In particular, we focus on
tetragonal and orthorhombic distortions induced by Eg pho-
non modes and trigonal distortions driven by T2g phonon
modes. Structures of distorted lattices and modulations in
bond lengths are described in Figs. 8 and 9.

11

4433

22

FIG. 8. �Color online� Tetragonal lattice distortion induced by a
q=0 phonon mode with Eg symmetry. Red solid and blue broken
lines describe two inequivalent bond lengths under the lattice
distortion.

11

4433

22

FIG. 9. �Color online� Trigonal lattice distortion induced by a
q=0 phonon mode with T2g symmetry. Red solid and blue broken
lines describe two inequivalent bond lengths under the lattice
distortion.
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Modulation of interatomic distances between neighboring
Ir atoms results in the renormalization of the nearest-
neighbor hopping amplitudes. To understand the effect of
electron-phonon coupling on the ground-state properties of
the system, we consider a Hamiltonian given by

Hel-ph = �
i,n,


��
 − ��din

† din
 +

1

2�
i

�
n,m

Kn,m�n,m
2

+ �
�ij�

�
n,n�

�

,
�

din

† Tn
,n�
���n,n���djn�
� + H.c.,

�16�

where �n,n� indicates modulation of the hopping amplitude
between neighboring nth and n�th Ir atoms. Specifically, we
assume that Tn
,n�
���n,n���=Tn
,n�
���n,n�=0���1−�n,n��.
This is equivalent to scaling of ta and te to ta�1−�n,n�� and
te�1−�n,n�� between neighboring sites n and n� �see Eqs. �10�
and �12��. Since ta� te�
pd	

2 , this approximation captures
the change in the overlap integral between neighboring d and
p orbitals caused by electron-phonon coupling. The elastic
constant, Kn,n�, corresponding to the modulation �n,n�, is sim-
ply taken to be Kn,n�=1.7ta.

In Fig. 10 we plot the ground-state energy of the coupled
electron-phonon system �Eq. �16�� as we increase the mag-
nitude of hopping amplitude modulation �T, which corre-
sponds to a trigonal lattice distortion. Here �T�0 means that
the hopping amplitudes along the bonds connected with the
site 1 �the broken lines in Fig. 9� are reduced by �T while the
hopping amplitudes along all other bonds are increased by
the same amount. In Fig. 11, we plot the change in the elec-
tron band dispersion induced by a trigonal lattice distortion.
The trigonal lattice distortion results in opening a full gap at
the Fermi energy leading to an insulating phase. The compe-
tition between the electronic energy gain from gap opening
and elastic energy cost compromises at the equilibrium bond
distance. For SO=4.0, ta=0.5, and te / ta=2.5, 10% modula-
tion of the hopping amplitude �T generates a band gap with
magnitude of 0.22, which is about 4% of the jeff=1 /2 state

bandwidth. Taking into account the jeff=1 /2 state bandwidth
predicted by the LDA calculation,44 the estimated magnitude
of the band gap is roughly about 40 meV. Straightforward
calculation of Z2 topological invariants shows that the result-
ant insulating ground state is a strong topological insulator
with Z2 invariants �� ;�1�2�3�= �1;000�. Notice that the Z2
invariants of the new insulating phase are the same as those
of the original topological insulating phase, which exists
when there is no local trigonal crystal-field splitting effect.

It is interesting that two insulating phases separated by a
metallic phase in between share the same topological prop-
erties. To understand the reason for the identical topological
properties of two insulating phases, we have checked the
inversion parities of all bands at the � point displayed in
Table I. According to Fu and Kane,9 for a system with time-
reversal and inversion symmetries, the Z2 topological invari-
ants are given by the product of inversion parities of all
occupied bands at time-reversal invariant momenta. As one
can see in Fig. 6, the metallic phase induced by local trigonal
crystal-field effect has a band crossing only at the � point.
Since every band has even inversion parity at the � point, the
band crossing does not change the parities of occupied
bands. Therefore two insulating phases with an intervening
metallic phase share the same Z2 topological indices in this
case.

In addition to trigonal lattice distortions, we have also
investigated the effect of tetragonal and orthorhombic distor-
tions, which result from softening q=0 Eg phonon modes.
The influence of various lattice distortions on the nature of
the ground state is summarized in Table II. It turns out that a
tetragonal distortion with �E1�0 leads to an insulating
ground state. Figure 8 describes a bond modulation pattern
for a tetragonal distortion with �E1�0. Here electron hop-
ping amplitudes are increased for dotted bonds while the
hopping amplitudes for solid bonds are reduced. Relative
magnitude of bond length modulations is consistent with the
Q1

E mode, the first component of the doublet E phonon mode
in Eq. �15�. However, the magnitude of the band gap gener-
ated by a tetragonal distortion with �E1�0 is much smaller
than that from a trigonal lattice distortion when the magni-
tudes of hopping amplitude modulations are the same in the
two cases. In addition, an orthorhombic distortion does not

∆∆EE

ηTT00 0.20.2

0.020.02

00

0.40.4

0.040.04

FIG. 10. �Color online� Ground-state energy per unit cell for the
pyrochlore iridate system coupled with a trigonal phonon mode
along �111� direction. Here SO=4.0, ta=0.5, and te / ta=2.5. We plot
the change in the ground-state energy induced by the trigonal lattice
distortion as a function of the hopping amplitude modulation �T.

E(k)E(k)

ΓΓ ΓΓXX XXΚΚLL��ΓΓ ΓΓXX XXΚΚLL��

Trigonal
distortion

FIG. 11. �Color online� Band-structure change induced by a
trigonal lattice distortion, which comes from a q=0 T2g phonon
mode softening. A band gap opens at the � point. The resultant
insulating phase is a strong topological insulator.
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open a full band gap. Therefore we propose that application
of external pressure along the �111� or its equivalent direc-
tions is the most efficient way of generating strong topologi-
cal insulators.

V. CONCLUSION

We investigate the possible existence of the strong topo-
logical insulators in pyrochlore iridates A2Ir2O7. The effec-
tive Hamiltonian for the pyrochlore lattice of Ir ions is de-
rived by taking into account the strong spin-orbit coupling
and trigonal crystal-field effect. It turns out that the strong
topological insulator found for the ideal cubic environment
of Ir ions may turn into a metallic state under trigonal dis-
tortion of oxygen octahedra. It has been known that, in cubic
pyrochlore oxides, A2B2O7, where both A- and B-site ions
reside on two distinct interpenetrating pyrochlore networks,
the trigonal crystal-field splitting exists inherently40 with an
energy scale comparable to the spin-orbit coupling.44 This
may also be consistent with the recent LDA calculation of
Y2Ir2O7 where it was found that the nonmagnetic ground
state would be a metal.44,48 Given that various pyrochlore
iridates with different A-site ions possess substantial but dif-
ferent amount of trigonal distortion, the presence of trigonal
crystal-field effect may be one of the important factors that
determine the nature of low-temperature ground states and
finite-temperature metal-insulator transitions.

On the other hand, we found that the electron-lattice cou-
pling also plays an important role. It is shown that certain
q=0 normal modes lead to the re-emergence of a strong
topological insulator when these modes are softened and the
system undergoes a structural deformation. Recent experi-
mental observation of the pressure-induced metal-insulator
transition in Ba1−xRxIrO3 �R=Gd,Eu� suggests that electron-
lattice coupling strongly affects the ground-state properties
in iridium oxide compounds. Due to the sensitive response of
the electronic structure near the Fermi level against the varia-
tion in Ir-O-Ir bond angles, the application of moderate hy-
drostatic pressure around 12 kbar destabilizes the metallic
ground state leading to metal-insulator transition.49 While the
identification of the true ground state in the pyrochlore iri-
dates would require better understanding of the electron cor-
relation effect, it is an intriguing possibility that the strong
topological insulators may arise via a finite-temperature
metal-insulator transition with structural changes. Our study
also suggests that the application of the external pressure
along �111� or its equivalent directions may lead to a strong

topological insulator by taking the advantage of the electron-
lattice coupling or perhaps even to a topological Mott insu-
lator in stronger correlation regime.

In the current work, we did not study the electron-electron
interaction effect. It is possible that sufficiently strong elec-
tron interaction would turn the metallic state induced by the
trigonal crystal-field effect to a magnetically ordered insula-
tor or a more subtle form of Mott insulator. The competition
between magnetically ordered Mott insulators, topological
band insulators, and topological Mott insulators in the pres-
ence of electron interaction would be an excellent topic of
future studies. The understanding of the delicate interplay
between the electron interaction, spin-orbit coupling, local
crystal-field effect, and electron-lattice coupling would be
essential for the determination of the ultimate ground states
in these systems. All of these possibilities await for further
experimental verifications and findings.
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APPENDIX: EXPLICIT MATRIX EXPRESSIONS FOR THE
EFFECTIVE HOPPING HAMILTONIAN

In this appendix, we present the expressions for various
matrices used to derive the effective hopping Hamiltonian in
Sec. II B. We follow the same convention taken by Pesin and
Balents.20 The matrix R�i� rotating the global cubic axis to the
local octahedral axis for the ith Ir atom is given by

R�1� =�
2

3
−

1

3
−

2

3

−
1

3

2

3
−

2

3

2

3

2

3

1

3

� , R�2� =�
2

3

2

3

1

3

−
2

3

1

3

2

3

1

3
−

2

3

2

3

� ,

R�3� =�
1

3
−

2

3

2

3

2

3

2

3

1

3

−
2

3

1

3

2

3

� , R�4� =�
1

3
−

2

3

2

3

−
2

3
−

2

3
−

1

3

2

3
−

1

3
−

2

3

� .

TABLE II. Lattice distortions and the resulting ground states.

Lattice distortion Ground state

Tetragonal ��E1�0� Topological insulator

Tetragonal ��E1�0� Metal

Orthorhombic ��E2�0� Metal

Orthorhombic ��E2�0� Metal

Trigonal ��T�0� Topological insulator

Trigonal ��T�0� Metal
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The matrix D�i� corresponding to a spinor representation of
R�i� is given by

D�1� = � 
2

3

1 − i

6

−
1 + i

6


2

3
�, D�2� = �−

2 + i

6

−
i


6

−
i


6
−

2 − i

6

� ,

D�3� =�
2 − i

6

−
1

6

1

6

2 + i

6
�, D�4� =� −

i

6

1 − 2i

6

−
1 + 2i

6

i

6

� .

Finally, we show the matrix A which changes the trigonal
basis to local spin-orbit eigenstates as follows:

A =�
0 0 0 0

n1�

3
0

0 0 0 0 0
− n1�

3

− n2

6
0

− in2�

6
0 0 0

0
− n2

3
2
0

− in2�

3
2
0 0

n3

3
2
0

− in3

3
2
0 0 0

0
n3


6
0

− in3


6
0 0

� ,

where �=ei�2	/3� and �n1n2n3� indicates the local C3 symme-
try axis of the corresponding distorted oxygen octahedron.
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