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Some time ago, it has been observed that vibrationally highly excited NO�v� molecules �with typical
vibrational quantum numbers v�15� lose substantial amounts of vibrational energy when scattering off a
Au�111� surface �H. Huang, C. Rettner, D. Auerbach, and A. Wodtke, Science 290, 111 �2000��. This has been
interpreted as a sign for the breakdown of the Born-Oppenheimer approximation due to vibration-electron
coupling. It has been argued that this process cannot be understood on the basis of single-quantum transitions
which are typical for “electronic friction” models based on a perturbative treatment of weak vibration-electron
couplings. Rather, multiple-quanta transitions characteristic for strong nonadiabatic effects are needed accord-
ing to recent classical surface hopping calculations involving multiple potential-energy surfaces and model
Hamiltonians �N. Shenvi, S. Roy, and J. C. Tully, Science 326, 829 �2009��. Here we address the importance
and magnitude of electronic friction for NO@Au�111� by using fully quantum-mechanical, parameter-free
first-principles theories in reduced dimensions. Periodic density-functional theory calculations are performed to
obtain a ground-state potential-energy surface along the desorption and NO-vibration coordinates, and
coordinate-resolved, finite NO vibrational lifetimes due to vibration-electron coupling. Using this input, the
scattering event is modeled by open-system density-matrix theory in the frame of the coupled-channel-density-
matrix method, which allows for the inclusion of energy relaxation of the scattering NO molecules. It is found
that within this model at least, electronic friction accounts for the observed vibrational deactivation of NO
scattering from gold.

DOI: 10.1103/PhysRevB.82.075404 PACS number�s�: 68.49.Df, 68.43.Pq, 82.20.Kh, 31.70.Hq

I. INTRODUCTION

In almost all calculations dealing with the dynamics of
molecules at surfaces, the Born-Oppenheimer approximation
�BOA� �Ref. 1� is first assumed, by which the full
Schrödinger equation is separated in electronic and nuclear
parts. This considerably simplifies dynamical simulations,
e.g., of �reactive� scattering of small molecules from metal
surfaces,2–5 in which case motion on only a single �the
ground state� potential-energy surface is considered.

However, in particular, at metal surfaces with their char-
acteristic electronic excitation continuum and/or in the case
of highly excited scatterers, the BOA becomes questionable.
Rather, the inclusion of electronically excited states, either
directly �by multiple-state models� or indirectly �by elec-
tronic friction models� can become important. For example,
in experiments of Huang et al.6 on highly vibrationally ex-
cited NO�v� molecules scattering from Au�111� surfaces,
strong nonadiabatic behavior has been suggested to be the
main cause for the observed, pronounced vibrational deacti-
vation: When starting with initial vibrational quantum num-
bers v�15 and an initial kinetic energy of Ek=0.05 eV�, the
authors found a broad, relaxed vibrational energy distribution
for scattered NO with an average loss of 7–8 vibrational
quanta, corresponding to �1.5 eV. In contrast, NO scatter-
ing from insulating LiF showed very little vibrational relax-
ation. Further, electron-emission from Au�111� covered with
the low-work function metal Cs was observed during
scattering.7 All of this demonstrates that nonadiabatic cou-
plings play an important role: In metals, electronic excita-
tions can be created, by simultaneously transferring the en-
ergy of vibrating molecules to the surface.

While highly excited NO scattering from gold loses mul-
tiple vibrational quanta, single-quantum relaxation domi-
nates for small adsorbed molecules when excited to low vi-
brational levels. A classic example is CO on Cu�100�, whose
internal stretch mode decays from CO�v=1� to CO�v=0�
within about 2 ps.8 This process is also believed to be domi-
nated by non-Born-Oppenheimer coupling between vibra-
tional and electronic degrees of freedom, and is typically
modeled via Fermi’s golden rule. Accordingly, the transition
rate between vibrational levels �v� and �u� is, at T=0, given
by9

�v→u =
2�

�
�

i
�

f

�	v,i�T̂nuc�u, f��2���i − � f + ��vu� . �1�

Here, �i� and �f� denote initial and final electronic states with

electronic energies �i and � f, respectively. Further, T̂nuc is the
nuclear kinetic-energy operator which couples vibrational
and electronic wave functions, and ��vu=Ev−Eu is the en-
ergy difference between initial and final vibrational state.
Under certain approximations, in particular �i� the assump-
tion of separability of the coupling matrix element

�	v , i�T̂nuc�u , f�� into nuclear and electronic parts and �ii� the
harmonic approximation for vibrations, Eq. �1� implies
simple selection and scaling laws for the vibrational relax-
ation process,

�v = − 1, �2�
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�v→v−1 = v�1→0. �3�

According to Eq. �2�, only stepwise single-phonon emission
is possible, and according to Eq. �3� the decay rate of higher
excited states increases linearly with the vibrational quantum
number; �1→0

−1 is the inverse vibrational lifetime �vib at T
=0. Head-Gordon and Tully9 developed a nonempirical
molecular-orbital method to calculate vibrational lifetimes
based on this approach and cluster models to represent the
solid, which was recently extended to account for periodic
boundary conditions.10 A related approach for calculating
lifetimes of vibrating adsorbates has been developed by
Helssing and Persson.11 In their work, a golden-rulelike ex-
pression is derived from density-functional theory �DFT�,
under approximations such as slowly varying electronic den-
sity and quasistatic limit. This method has been
implemented12 and applied to systems such as CO on copper
and silver.13 In these works, the authors take advantage of
periodic DFT calculations which are known to be suitable for
describing metal surfaces.

The perturbative Eq. �1� holds in the weak-coupling ap-
proximation, when electrons just below the Fermi level are
excited to just above it. Closely related approaches were sug-
gested to compute electronic friction coefficients, which can
be used in classical, dissipative dynamics.14 In these models,
the transfer of translational or vibrational energy to metal
electrons is included by means of a friction term in a
Langevin equation. The method and simplified variants
of it, have been used for atom-surface scattering,15 molecule-
surface scattering,2,16 and hot-electron mediated
photodesorption.17–19

Tully and co-workers recently suggested that single-
quantum theories founded on �weak-coupling� perturbation
theory cannot explain the strongly nonadiabatic behavior ob-
served for NO�v�15�@Au�111�.20–23 Instead, they con-
structed a model Hamiltonian based on a Newns-Anderson
model comprising a neutral ground-state NO/Au, an ionic
state NO− /Au+, and a discretized metal continuum for
electron-hole pair �EHP� excitations in the metal. Nonadia-
batic dynamics were realized within a multistate 0 surface
hopping scheme �IESH, independent electron surface hop-
ping�, which allows for multiple EHP creation. The IESH
scheme also accounts for the observed, multiquanta relax-
ation of scattered NO, leading to a broad, relaxed vibrational
energy distribution. In Ref. 22, it was argued, for NO�v
=2�@Au�111�, that in contrast a classical friction model
gives no broad vibrational energy distribution, despite the
total energy loss was consistent with the IESH model.

In our own work, we aim at a quantum-mechanical treat-
ment of inelastic scattering of NO�v� from Au�111�, which
fully accounts for quantized NO vibrations, wave-packet in-
terference, and other quantum effects. This is missing at
present. In principle, dissipative effective two-state models
�which implicitly account for continua� or nondissipative
multistate models �which explicitly account for continua�
could be used for this purpose. This has been done, for ex-
ample, for scattering of NO from metals,24,25 and for hot-
electron mediated photodesorption of NO from Pt�111�
�Refs. 26–28� in the past. The quantum-mechanical model-

ing is very costly and was therefore restricted to the most
important dynamical modes only, a strategy which we will
follow here also.

The quantum multiple-state models have further, like their
classical counterparts, the disadvantage that couplings be-
tween electronic states and/or electronic lifetimes of excited
states are not known accurately and must often be adjusted
empirically. Here we advocate a parameter-free model in-
stead by combining quantum-mechanical open-system
density-matrix theory with vibrational relaxation rates calcu-
lated from perturbative expressions such as Eq. �1�. In that
sense, and also because only a single electronic state is ex-
plicitly considered, our approach is of the electronic friction
type. Thus, this paper addresses the importance and magni-
tude of electronic friction for NO@Au�111� within a fully
quantum-mechanical treatment. It will be demonstrated, that
the model accounts for vibrational state distributions which
are compatible with experiment. The calculations of poten-
tials and vibrational lifetimes are based on periodic DFT.

In our case, the coordinates that define the distance be-
tween the molecule and the surface and the internuclear dis-
tance constitute only two dimensions of a problem that, in
principle, requires six dimensions. The intrinsic limitations
of reduced dimensional models are well known: In the con-
text of diatomic molecules interacting with metals, Refs. 3–5
and 29, for example, show, in the context of quantum dy-
namics, the importance of the dimensionality in order to
achieve an accurate description of the scattering phenomena
at surfaces. We believe however that the treatment of the
most relevant coordinates permits us to address convincingly
the importance of the electronic friction in this context.

The paper is organized as follows. In the next Sec. II, we
describe the methods used here to calculate potentials,
�coordinate-� dependent vibrational lifetimes, and the dissi-
pative scattering dynamics. Results will be presented in
Sec.III. A final Sec. IV concludes our work.

II. METHODS AND MODEL

A. Density-matrix model

The inelastic scattering of NO�v� from Au�111� will be
modeled with the help of open-system density-matrix theory,
using a two-mode model and a single electronic potential.
The two selected modes are the vibrational coordinate, i.e.,
the N-O distance r, and the scattering coordinate Z, which is
defined as the distance of the center-of-mass of NO to the
closest Au atom in the surface layer. It is assumed that NO
remains, like in its lowest-energy adsorbed state �see Sec.
III A�, in perpendicular orientation relative to the surface,
with the N atom pointing toward it—cf. the inset of Fig. 1
below. This model neglects rotational and lateral motions of
NO but has been shown to yield reasonable results for NO
scattering24 and photodesorption27 from Pt�111�.

In particular, the dynamical simulations are performed us-
ing the so-called coupled-channel density matrix �CCDM�
method,30,31 which is a tool for solving multidimensional
Liouville-von Neumann equations. We apply this method to
the propagation of the reduced density operator 	̂�r ,r� ,Z ,Z��
of the scatterer �the NO molecule�, when coupled to a dissi-
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pative environment �the gold surface�. The time evolution of
the density operator is governed by the Liouville-von Neu-
mann equation,

d	̂�t�
dt

= LH	̂�t� + LD	̂�t� . �4�

Here,

LH	̂ = −
i

�
�Ĥ, 	̂�t�� �5�

is the Hamiltonian Liouvillian, describing the unitary evolu-
tion of the isolated system under the influence of the system
Hamiltonian,

Ĥ = −
�2

2
r

�2

�r2 −
�2

2
Z

�2

�Z2 + V�r,Z� �6�

with 
r denoting the NO vibrational mass �
r
=mNmO /mNO�, 
Z the scattering mass �
Z=mNO�, and
V�r ,Z� the ground-state potential. Further, LD is the dissipa-
tive Liouvillian for which we adopt the Lindblad semigroup
form32

LD	̂�t� = �
u,v

Cu,v	̂Cu,v
† −

1

2
�Cu,v

† Cu,v, 	̂�+, �7�

where � �+ is an anticommutator. The Cu,v are Lindblad
operators,33

Cu,v = 
�v→u�Z��u�	v� , �8�

which enforce electron-hole-pair-driven transitions from NO
vibrational state �v� to state �u�, with a damping rate �v→u�Z�
that depends on the molecule-surface distance. In particular,
limZ→� �v→u�Z�=0 far from the surface, and �v→u�Z��0
closer to the surface where coupling to the electron-hole pair
“bath” is efficient �see below�.

In the CCDM method, one makes use of the fact that one
mode �in our case r� is “bound” and can efficiently be rep-
resented in the basis of the vibrational eigenstates of NO
while the other one �Z� is unbound and better represented on
an equidistant grid. Thus, the two-dimensional �2D� density
operator is expressed as

	̂�Z,Z�� = �
u,v

K

	̂u,v�Z,Z���u�	v� , �9�

where K is the number of vibrational basis functions �chan-
nels� used in the expansion, which is a convergence param-
eter of the CCDM scheme. The vibrational basis functions
��v�� are calculated as eigenfunctions of a one-dimensional
reference Hamiltonian using the Fourier grid Hamiltonian
method,34

Ĥref�v� = Ev�v� , �10�

Ĥref = −
�2

2
r

�2

�r2 + V�r,Zref� , �11�

where Zref is a reference point, chosen as Zref =4.5 Å in the
following. With this choice, the NO molecule is essentially
decoupled from the surface, and the ��v�� describe correctly
the asymptotic behavior of vibrational states of free NO.
With the ansatz �Eq. �9�� used in Eq. �4� one obtains, in the
mixed representation with N equidistantly chosen grid points
along Z, Zr=Z0+ �r−1��Z�r=1, . . . ,N�, and K channels, the
following expressions for the Hamiltonian and dissipative
parts of the Liouvillian:31

�LH	̂�t��uv
rs = −

i

�
�Eu − Ev�	uv

rs + �
t=1

N

�Trt	uv
ts − 	uv

rt Tts�

+ �
w=0

K−1

�Vuw
rr 	wv

rs − 	uw
rs Vwv

ss �� , �12�

�LD	̂�t��uv
rs = �

w=0

K−1 �uv

�w→u

rr 	ww
rs 
�w→u

ss

−
1

2
��u→w

rr + �v→w
ss �	uv

rs � . �13�

The sum of the two gives the change in density-matrix ele-
ment 	uv

rs in time. In the above equations, the general notion

Ouv
rs = 	r�	u�Ô�v��s�, has been used, where upper indices r, s,

and t are grid point, and lower indices u, v, and w are vibra-
tional state indices. The inner integration is over the r and
the outer over the Z coordinate. Further, Trt= 	r�− �2

2
Z

�2

�Z2 �t� is
a matrix element of the kinetic-energy operator for motion
along Z, which is evaluated by fast Fourier transform tech-
niques below.30 Further, each of the K vibrational states is
characterized by a one-dimensional potential Vvv�Z�
= 	v�V�r ,Z�−V�r ,Zref��v�, which is coupled through potential
terms,

Vuv
tt = 	u�V�r,Zt� − V�r,Zref��v� �14�

to other vibrational states �u� at point Zt.
According to Eq. �13�, the different vibrational states are

also coupled through coordinate-dependent quenching rates
�u→v

rr =�u→v�Zr� as required. Note that, in principle, also the
translational mode can couple to EHP, which is neglected in
Eq. �13�. This approximation is reasonable, since, in contrast
to the NO stretching mode, the relaxation time of the

FIG. 1. Contour plot of the two-dimensional, fitted potential-
energy surface V�r ,Z�. Energy values are given in electron volt. The
coordinates used are shown in the inset.
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molecule-surface mode is considerably longer than typical
“contact times” of the scattering NO with the surface �see
below�. Vibration-phonon coupling is also neglected for the
same reason.

The CCDM method is efficient if the number of channels
K is small as compared to the number of grid points which
would be needed to represent the bound coordinate. This is
usually the case. One then propagates K coupled density-
matrix blocks of size N�N each, instead of a single density
matrix of size �Nr ·NZ�� �Nr ·NZ�.

In practice, we start with a density operator corresponding
to a NO molecule in vibrational state �vin� described as a
Gaussian wave packet of width , centered initially around
Z=Z�, and approaching the surface with mean momentum
�k0Z,

	̂�0� = �vin�	vin� � �Z�	Z��g�Z�g��Z�� , �15�

g�Z� =
1

�2�2�1/4exp�ik0ZZ −
�Z − Z��2

42 � . �16�

This corresponds to an initial mean kinetic energy of Ek

=
�2k0Z

2

2
Z
. Below we chose =0.5 Å, Z�=5 Å, and different

kinetic energies and initial vibrational states. In all cases, K
=22 channels were included in the calculation, and the num-
ber of Z-grid points was N=256, starting from Z0=1.13 Å
with a grid spacing �Z=0.027 Å. The nonsparse density
matrix thus contains 5632�5632 elements. The time propa-
gation of the density operator in Eq. �4� was done on a time
grid with a Newton polynomial propagator26,35 of order 16,
and a time step of �t=0.25 fs.

Observables are calculated from the trace relation 	Ô�
=tr�	̂�t�Ô�. In particular, vibrational state populations are de-
termined as

Pv�t� = tr�	̂�t��v�	v�� . �17�

B. DFT calculations for adsorption geometries and
ground-state potential

Periodic density-functional calculations based on Kohn-
Sham theory36 were performed with the plane-wave-based
VASP code,37,38 using the PW91 exchange-correlation
functional,39 to obtain stable adsorption sites of NO on
Au�111�, and to calculate the potential-energy surface
V�r ,Z�.

When searching for adsorption sites, the substrate is rep-
resented by a 3�3�6 periodically repeated cell �six-layer
slab, each layer containing nine atoms�, and the vacuum
spacing perpendicular to the surface between each periodi-
cally repeated unit cell is 1.2 nm. Per cell, a single NO mol-
ecule was considered which corresponds to a coverage of
1/9. The reciprocal space was described by a 7�7�1
Monkhorst-Pack grid,40 and the energy cutoff was set to 500
eV. During adsorption site search, ionic relaxation was per-
formed. Here, three top layer atoms were free to move as
well as the atoms of the adsorbate, their coordinates changed
until a force of 0.01 eV /Å or less was reached. The calcu-
lations were all spin polarized because NO is an open-shell
molecule.

When calculating the potential surface V�r ,Z�, a reoptimi-
zation of the first-layer ion cores was performed. Around 60
points were computed in this case using the same supercell
but only with three atom layers, to lower the computational
cost of this task. The changes in the relevant distances be-
tween the equilibrium geometries of the six-layer slab, and
the three-layer slab, the N-O distance and the adsorption dis-
tance, varied by less than 1%.

C. Vibrations and vibrational damping rates

After the relaxation of the ions, a normal-mode analysis
�NMA� was performed to obtain the harmonic frequencies
�� of the mode � and the eigenvectors of the dynamical
�Hessian� matrix, i.e., the normal modes R� �. This calculation
essentially consists in computing energy derivatives with re-
spect to coordinates by centered finite differences. The dis-
placements are done two times in the three directions of
space for each active atom and, as we restricted the number
of active atoms to 11 for computational reasons �only the
atoms of the molecule and the ones in the first layer of the
slab were included�, 11�3�2=66 calculations were neces-
sary. Including the atoms of the metal is reasonable because
close to the surface, the vibrations of the molecule can per-
turb the gold atoms. Out of all normal modes, only those
corresponding to the two modes in our reduced-dimensional
model, r and Z will be considered in greater detail below.

In order to compute the lifetime of these two modes in the
equilibrium configuration, we proceed along the lines of Fer-
mi’s golden rule. Within the “periodic DFT route” advocated
in Ref. 12, the fundamental deexcitation rate of mode � can
be approximated, when generalized to finite temperature, as

�1→0
� =

2�

�
�

n,m,k�

�	1,nk� �
�Ĥel

�R� �

�R� ��0,mk���2

fn�1 − fm�

����n,k� − �m,k� + ���� . �18�

This expression is written using Bloch states, which is a
natural basis when dealing with periodically repeated cells: n
and m are the band indexes, k� is a wave vector in the Bril-
louin zone, and fn and fm are the Fermi functions that ensure
that n is an occupied state, and m an empty one. All the
calculations presented in this work have been made at T=0.
The term ���n,k� −�m,k� +���� accounts for the conservation of
total energy as above, with �m,k� denoting the single-particle
energy of band m and k-point k� . In practice, we use periodic,
gradient-corrected DFT also here which means that �m,k� are

Kohn-Sham energies. Further, �Ĥel /�R� � are first derivatives

of the electronic Hamiltonian Ĥel, taken at the equilibrium
position R� �

0. Finally, �R� �=R� +−R� − is the displacement of co-
ordinate � around the equilibrium position because we use
centered finite differences. We employ harmonic oscillator
eigenfunctions to represent the vibrational part of the wave
function because this is a equilibrium situation. If we sepa-
rate electronic and vibrational parts in Eq. �18�, one can
write,
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�1→0
� =

2�

�
�

n,m,k�

�	nk� �
�Ĥ

�R� �

�mk���2

�	1��R� ��0��2fn�1 − fm�

����n,k� − �m,k� + ���� . �19�

The vibrational part of the expression �19� can be calculated
analytically using the usual relation for the harmonic oscil-
lator, 	1��R� ��0�=
 �

2
���
. Note that in this harmonic approxi-

mation with linear coupling, a generalization of Eq. �19� to
arbitrary v→u transitions fulfills automatically the selection/
scaling laws �2� and �3�. The electronic matrix element

�	nk� �
�Ĥel

�R� �
�mk��� was calculated with finite differences displac-

ing the atoms along the normal modes. In practice, this im-
plies the use of the eigenstates �mk��� and their corresponding
eigenvalues.

In the work by Lorente and Ueba,13 a careful study was
performed for CO on copper and silver. The authors point
out that the k-point sampling is a critical issue. We want to
stress that all lifetime calculations were performed using a
k-point 7�7�1 grid in order to have reliable results.10,13

Another important technical point is that the delta function in
Eq. �19� has been approximated by a Gaussian,

���n,k� − �m,k� + ���� �
1


�a2
e−��n,k� − �m,k� + ����2/a2

. �20�

This is only true in the limit where the width parameter a
tends to zero but here because of the discrete representation
of the reciprocal space, a has to be nonzero. Calculations
have been performed to check the behavior of the damping
rates with the width of the Gaussian distribution and we
found a linear behavior around a=0.12 eV for both modes, a
value which was adopted below.

For the CCDM equations, coordinate-dependent damping
rates �u→v�Z� for arbitrary v and u are needed. For those we
adopt in the spirit of the harmonic-linear approximation, the
simple selection and scaling relations �2� and �3�, and we
calculate �v→v−1�Z�=v�1→0�Z� for every Z-point separately,
using Eq. �19� and R� �=r. Further, the quantity 	1��r�0� in Eq.
�19� was calculated by simple integration over the r coordi-
nate, where �1� and �0� are anharmonic, one-dimensional vi-
brational eigenstates �v� determined from Eq. �10�, with Zref
being replaced by the particular point Z of interest. Note that
when using these anharmonic vibrational wave functions and
Eq. �19�, one could in principle also calculate anharmonic
decay rates �v→u�Z� for any combination v and u directly,
which will lead to a deviation from the simple laws �2� and
�3�.

The electronic part of Eq. �19� was treated using finite
differences as before. To calculate the different matrix ele-
ments, we used a displacement along the r coordinate pro-
portional to the previously calculated 	1��r�0� in order to
simplify the implemented expression for the damping rates.

III. RESULTS

A. Adsorption site and potential-energy surface

Using the DFT protocol as outlined in Sec. II B, the
minimum-energy configuration of NO/Au�111� was obtained

when adsorbing the NO molecule on a fcc site, the molecular
axis being perpendicular to the surface and the nitrogen
pointing toward it. The adsorption energy for this configura-
tion was 340 meV. Systematic calculations showed that other
local minima exist, however they give lower adsorption en-
ergies. In particular, when the molecules sits in the hcp site,
the binding energy was 280 meV. We find that the equilib-
rium N-O distance is req=1.194 Å and the distance of the
molecule’s center of mass to the nearest Au atom is Zeq
=2.08 Å, i.e., the nitrogen atom lies at ZN=1.73 Å above
the surface. These values are in strong agreement with the
work of Roy et al.,22 who find req=1.192 Å and ZN
=1.60 Å or 1.82 Å depending on whether they consider di-
rectly the computed data, or their analytic fit to the computed
potential-energy surface. In the present work, the positions of
the atoms of the first layer were fully relaxed when fixing
r ,Z to determine one of the points of the potential-energy
surface.

Although our calculated adsorption energies are higher
than in previous works,22,41 we confirm that the fcc adsorp-
tion site is the preferred one. The potential-energy surface
V�r ,Z� was calculated along the lines described in Sec. II B,
in the interval r� �0.98,1.60� and Z� �1.6,4.5�. For dynam-
ics, an analytic fit to the calculated ��60, see above� points
was made without any restriction in r or Z, using a rational
function, essentially given by two coupled Morse potentials.
For fitting, the standard nonlinear least-squares Marquardt-
Levenberg algorithm42 was used. Since the two degrees of
freedom considered are coupled, we introduced couplings
between the two Morse potentials. This was achieved by
replacing the usual parameters of the Morse potential by
switching functions43 depending in turn on a new set of pa-
rameters, which are adjusted by the fitting procedure. Here
we adopted a simple from of the switching function,

S����q;n,q0� =
1

2
�1 � tanh�n�q − q0��� , �21�

where the symbol � stands for a function either rising from
0 to 1 or falling from 1 to 0. q is a general coordinate and n
and q0 are the switching parameters, n is related to the steep-
ness of the increase/decrease in the function and q0 is the
value of the coordinate where the switching occurs, i.e.,
S����q0 ;n ,q0�= 1

2 . The precise form of the fitting function
V�r ,Z� is given in the Appendix.

In Fig. 1, a contour plot of the fitted potential-energy sur-
face is presented. For values of Z larger than about 3.5 Å,
the potential along the stretch coordinate r remains the same
because the molecule does no longer interact with the surface
strongly. For distances smaller than Z=3.5 Å, the Morse po-
tential along r is considerably softened due to proximity of
the surface. The minimum of V�r ,Z� almost quantitatively
reproduces the equilibrium position and adsorption energy
found by geometry optimization.

During the adsorption process, the unpaired spin of the
approaching molecule is quenched as demonstrated in Fig.
2�a�. There, the computed spin polarization N�−N� �differ-
ence of the number of � and � electrons� is shown as a
function of Z, with r fixed at its �adsorption� equilibrium
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value. It is seen that the polarization drops rapidly from one
to zero when approaching the surface. At around Z�2.5 Å,
the value is 1/2 and practically zero at around the adsorption
bond length of Zeq=2.08 Å.

B. Vibrations and vibrational damping rates

1. Adsorbed species

As stated in Sec. II C, in order to describe the dissipative
nature of the problem coordinate-dependent damping rates

are needed. First of all let us consider the NO molecule when
adsorbed on top of Au in its equilibrium position. For this
stationary point, a normal-mode analysis has been carried out
as described in Sec. II B. Two of the computed normal
modes reflect, in excellent approximation, the N-O stretch
mode �r� and the NO-surface mode �Z�, respectively, with
very little admixture of other atom motions. The fundamental
energy ��r of the N-O stretch mode is 196 meV and the one
of the NO-surface stretch mode, ��Z, is 22 meV �see Table
I�.

For the adsorbed species, the damping rate was calculated
with the help of Eq. �19�, using the techniques described in
Sec. II C. The energy width ��1→0

� associated with a finite
damping rate, was 0.365 meV for �=r, which corresponds to
a lifetime �vib

r =1 /�1→0
r of approximately 1.8 ps for the N-O

stretch mode. The corresponding values for the NO-surface
vibration are ��1→0

Z =0.089 meV and �vib
Z =7.3 ps. These

values are typical when dealing with diatomic molecules on
metal surfaces: The C-O stretch mode on Cu�110� has a
damping width of 0.30 meV and for the CO-surface mode a
value of 0.061 meV has been found by Lorente et al. in a
similar calculation.13 For NO/Pt�111�, �vib

r =8.2 ps and �vib
Z

=9.6 ps were calculated in Ref. 10 by a slightly different
approach.

2. Z-dependent NO stretching frequencies and lifetimes

A series of calculations yields the frequency and the
damping rate of the N-O stretch vibration as a function of Z
as outlined in Sec. II C. We remind the reader that now the
NO vibrational states were calculated anharmonically from
one-dimensional cuts through the 2D surface �cf. Eqs. �10�
and �11��, which were then used in Eq. �19�. Of course, this
can only be an approximation since r and Z modes are not
strictly separated in the 2D model.

In Fig. 2�b�, we present the results of the frequencies of
the stretch-mode N-O as a function of the NO-surface dis-
tance Z. Far from the surface the frequency is constant,
��r=226 meV. This reflects reasonably well the experimen-
tal gas phase value of 236 meV for free NO.44 Closer to the
surface, the potential softens along r �see Fig. 1�, resulting in
smaller vibrational frequencies. According to Fig. 2�b�, the
frequency at around the equilibrium position Zeq is 189 meV.
The value from normal mode analysis �circle in Fig. 2�b��, is
thus 7 meV larger.

In Fig. 2�c�, the damping rates are presented as a function
of the coordinate Z. The dots are our calculations and the
curve is a fifth-order polynomial fitted to the points using a
standard least-squares fitting. At the equilibrium position
Zeq�2.08 Å�, the width parameter ��1→0

r is 0.365 meV, in

TABLE I. Harmonic frequencies and vibrational width and life-
time parameters of NO adsorbed in on-top position on Au�111�.

N-O stretch ��=r� NO-surface ��=Z�

��� �meV� 196 22

��1→0
� �meV� 0.365 0.061

�vib
� �ps� 1.8 7.3

FIG. 2. �Color online� Computed properties as a function of
NO-surface distance Z. �a� Magnetization; �b� vibrational frequen-
cies of N-O stretch mode obtained from diagonalizing Eq. �11�
�diamonds� or NMA at the adsorption geometry �circle�; �c� vibra-
tional damping widths ��1→0

r �diamonds� and a fifth-order polyno-
mial fit to it �solid line�: f�Z�=�n=0

5 AnZn, with parameters A0

=123.21 meV, A1=−186.12 meV Å−1, A2=107.92 meV Å−2, A3

=−30.044 meV Å−3, A4=4.0805 meV Å−4, and A5=
−0.22123 meV Å−5.
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perfect agreement with the results from the NMA �see Table
I�. As expected, closer to the surface the damping rate rises
due to strong interaction with the metal electrons At Z
=1.64 Å, for example, the width is 2.69 meV, corresponding
to a vibrational lifetime of about 250 fs. One would expect a
monotonically decreasing behavior of ��1→0

r for increasing
Z but this not the case. Instead one finds a local maximum
around Z=3.3 Å, corresponding to a lifetime of about 350
fs. For larger Z, the damping width decreases rapidly again.
The nonmonotonic behavior is an effect due to the spin tran-
sition which takes place in the region of the local rate maxi-
mum, see Fig. 2�a� and the discussion in Sec. III A. A similar
spin quenching effect has already been described in the case
of hydrogen on Cu�111� by Trail et al.45 In a later work,46

these authors show that due to broadening and shifting of the
involved electronic levels of H, the spin loss leads to a sig-
nificant increase in the friction coefficient in the region
where the transition occurs. We believe that our calculations
show the same behavior as in H/Cu�111� because the nitric
oxide is an open-shell molecule as well.

The fifth-order polynomial fit given in Fig. 2�c� is un-
physical in the sense that it abruptly drops to zero at around
4.2 Å, rather than smoothly decaying. Still, we use the ana-
lytic fit for the dynamics calculations below because differ-
ences in detail at large Z, where the damping rates are very
small, are dynamically irrelevant.

C. Dissipative dynamics

To simulate the scattering of highly vibrationally excited
NO molecules, excited Gaussian wave packets are prepared
according to Eqs. �15� and �16�, with the choices vin=15 and
14. Two different kinetic energies Ek=0.3 eV and Ek
=0.6 eV were chosen. The experimental value of Ek
=0.05 eV �Ref. 6� cannot be reached at the moment since
low kinetic energies require prohibitively large grids.

As the wave packet propagates toward the surface, popu-
lation is transferred from the vin level to lower vibrational
levels by the Z-dependent transition rates, �v→u

r �Z�. Other
states are also accessible through potential coupling, i.e.,
transfer of energy from the r to the Z mode, however, dissi-
pation dominates. In the harmonic damping model, the scal-
ing law given in Eq. �3� is followed and according to Eq. �2�,
vibrational energy can only be transferred from a level to its
nearest downward neighbor. Note that because of Eq. �3�, the
lifetime of highly vibrationally excited NO molecules can be
very short close to the surface. For example, the transition
time to the next lowest level at around Zeq=2.08 Å drops
from 1.8 ps for v=1, to about 120 fs for v=15.

Figure 3 shows the evolution of the population of selected
vibrational levels as a function of time. The initial kinetic
energy was set to 0.6 eV in this case, and vin=15. After the
wave packet has reached the high-damping region, the popu-
lation of the 15th state shows a significant decrease during
the first 100 fs, accompanied by a sequential increase in
population of lower-v states. This behavior is essentially
given by the fact that in our model, the population transfer is
stepwise as previously stated. Closer inspection reveals that
the population of the 15th state shows a particular behavior.

A particularly rapid decrease is observed twice, at around 70
fs and at around 130 fs. We attribute this to the fact that the
initial wave packet explores two times the region around Z
=3.3 Å where the damping rates are high, one time when
approaching the surface, and again after scattering. Note that
this behavior is reflected as well by two subsequent increases
in population of lower vibrational levels. After the final
propagation time of t=236 fs, the asymptotic region is
reached and changes in all populations no longer occur.

An analysis of the asymptotic populations is done in Fig.
4�a�. It is clearly seen that the major part of the population
has been transferred to lower vibrational levels. A maximum
at v=12 occurs, and the final vibrational state distribution is
broad: States v=8 to v=15 all carry populations of about
0.05 or larger. Also states with v�15 carry some small
amount of population �not shown�, which is due to the fact
that even without dissipation the vibrational state distribution
broadens by vibration-translation coupling. The latter fact is

FIG. 3. �Color online� Population analysis as a function of time.
The 15th vibrational level is occupied at t=0, initial translational
energy is 0.6 eV.
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FIG. 4. �Color online� Asymptotic vibrational state populations
for scattered NO�v� molecules. �a� For initial vibrational state vin

=15 and initial kinetic energy Ek=0.6 eV, �b� vin=15 and Ek

=0.3 eV, �c� vin=14 and Ek=0.6 eV. The inset to �a� shows non-
negligible final state populations for the dissipation-free case and
vin=15, Ek=0.6 eV.
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demonstrated in the inset of Fig. 4�a�, which shows the
dissipation-free case with nonvanishing populations not only
for v=15 but also for v=16, v=17, and v=14.

The black curve in Fig. 5 shows the system energy during
the scattering event for the same initial conditions �i.e., ini-
tial vibrational state vin=15 and Ek=0.6 eV�. For dissipative

dynamics, the system energy, calculated as E=tr�	̂Ĥ� is not
conserved. It is seen again that after the total propagation
time of 236 fs the scattering process is over, and the energy
dropped from 3.95 eV to about 3.28 eV. Thus, about 0.67 eV
of energy has been transferred to the substrate during this
time. Here, the initial energy defined as the initial vibrational
energy of the molecule �3.35 eV including zero-point energy�
plus the translational energy. The energy difference between
the 15th and the 12th vibrational state of free NO, when
calculated with our potential, is 0.58 eV which shows that in
average about three vibrational quanta were lost, consistent
with the vibrational state distribution in Fig. 4�a�. Closer
inspection of the black curve in Fig. 5 shows again two
phases with slightly accelerated dissipation, reflecting the in-
coming and outgoing molecule passing through the
enhanced-damping region around Z=3.3 Å.

In Figs. 4 and 5, we also study the effect of initial vibra-
tional state and translational energy. In Figs. 4�c� and 5, blue
curve �starting at 3.75 ev at t=0 fs�, the lower initial state
vin=14 is considered while retaining Ek=0.6 eV, and in
Figs. 4�b� and 5, red dashed curve, the effect of lower kinetic
energies is tested by choosing vin=15 and Ek=0.3 eV. Con-
sidering Figs. 4�a� and 4�c� we note that the effect of initial
vibrational state is merely to shift the final vibrational state
distribution by about one quantum to lower vibrational
states. Figure 5, blue curve, shows in fact that the energy loss
curves for vin=15 and vin=14 run almost parallel �their ini-
tial energy difference of 0.19 eV corresponds to ��15,14 of
free NO�, and the final energy loss is only slightly lower for
vin=14 than for vin=15 �0.65 vs 0.67 eV�. For much lower
initial vibrational quantum numbers vin, on the other hand,
the energy loss is smaller in particular because the relaxation

rates become smaller according to Eq. �3� �not shown�.
The effect of initial kinetic energy, however, is always

large. This is demonstrated in Fig. 4�b�, where we see a
further broadened final vibrational state distribution when
going from Ek=0.6 eV to Ek=0.3 eV. Also, the maximum
of the final-state distribution is now at around v=10, which
corresponds to an average loss of about five vibrational
quanta during scattering. The energy difference between the
15th and 10th vibrational states of free NO is ��15,10
=0.97 eV according to our potential. This fits well to the
calculated energy loss reported in Fig. 5 �red dashed curve�,
which is 0.95 eV after t=400 fs. Note that the time period of
the propagation is in this case longer than in the cases where
the kinetic energy was higher. The final propagation time had
to be extended in order to reach the asymptotic limit. For the
same reason, the prolonged relaxation period at lower kinetic
energies is a simple consequence of the longer contact time
of the slower NO molecule with the surface.

In the experiment by Huang et al.,6 the authors see a
broad distribution of final vibrational populations, with a
maximum around v=7–8. This corresponds to a loss of 7–8
vibrational quanta when starting from v=15. Assuming that
other energy redistribution channels can be neglected, this
corresponds to an energy loss of about 1.5 eV to the surface.
�The energy differences ��15,7 and ��15,8 are 1.59 eV and
1.38 eV, respectively.� The experiments in Ref. 6 were done
at an initial kinetic energy of Ek=0.05 eV as stated earlier.
The relaxation is a complicated, multiexponential decay pro-
cess. However, according to Fig. 5, it can be roughly ideal-
ized as an effective damping process, in which the energy
decreases about linearly during a contact time, tc. This can be
used to estimate the energy loss at low initial kinetic ener-
gies. According to this simple model, the energy loss is �E
�Rtc where R is the energy damping rate. From Fig. 5, we
estimate for vin=15 and Ek=0.6 eV, tc�150 fs and R
�0.67 /150 eV / fs�4.5 meV / fs. Assuming that �i� the en-

TABLE II. Parameters calculated for the fitting function
V�r ,Z�.

Parameter Value

D0 4.65231 eV

Dinf 10.427 eV

a0 2.62512 Å−1

ainf 2.08049 Å−1

r0 1.20697 Å

rinf 1.16908 Å

Du 0.28756 eV

au 1.94118 Å−1

Zu 1.96264 Å

ZD 3.12897 Å

nD 1.28184 Å−1

Za 3.302 Å

na 1.00096 Å−1

Zr 2.40656 Å

nr 1.99576 Å−1
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FIG. 5. �Color online� Energy loss as a function of time. The
different curves correspond to different values of initial vibrational
state and kinetic energy. Due to the low kinetic energy used to
calculate the red dashed curve, the final propagation time had to be
extended to tf =400 fs in order to reach the asymptotic limit.
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ergy damping rate is approximately constant for a given vin,
and �ii� that, if the potential well is neglected, the velocity of
the incoming NO is v=
2Ek /mNO�1 / tc, the ratio of energy
losses for two different initial kinetic energies is given by

�E1

�E2
�
Ek,2

Ek,1
. �22�

From this last equation, we estimate with Ek,1=0.6 eV and
Ek,2=0.05 eV, an energy loss of about �E2

�0.67
0.6 /0.05 eV=2.3 eV at the experimental impact en-
ergy. Clearly, this analysis is grossly oversimplified but it
demonstrates, that substantial amounts of vibrational energy
can be dissipated into the solid within the quantum-
mechanical version of the electronic friction scenario. The
quantum-mechanical friction model also accounts for a broad
vibrational population distribution, similar to the one ob-
served in experiment.6

IV. SUMMARY AND CONCLUSION

We have studied the vibrational relaxation of a highly
vibrationally excited NO molecules scattering off a gold sur-
face by means of the open-system density-matrix formalism,
which allows for dissipative energy transfer from the mol-
ecule to the EHP continuum of the metal. Prior to our dy-
namical calculations, we used density functional theory to
determine by geometry optimization the relevant quantities
of the adsorbed system such as adsorption energies and vi-
brational lifetimes. The lifetimes were extracted from a
Fermi golden rule expression involving the coupling of the
vibrations of NO with the electronic degrees of freedom of
the metal. Computed vibrational lifetimes are in the order of
2 ps for the N-O stretch mode of the adsorbed molecule, and
about 7 ps for the NO-surface vibration. These two coordi-
nates were also used to set up a two-dimensional potential-
energy surface for dynamics. Coordinate-dependent damping
rates were computed as well. The N-O vibrational damping
rate shows an interesting spatial variation, with increased
damping rates �shorter lifetimes� at NO-surface distances
where the electron spin of NO is quenched during adsorp-
tion. Finally, the Liouville-von Neumann equation was
solved in the coupled channel density-matrix formalism in a
mixed representation.

It has been shown that our quantum-mechanical version
of the electronic friction model, which allows only for step-
wise relaxation along the vibrational ladder, can account for
experimental facts found for NO�v=15� scattering from
Au�111�: �i� substantial vibrational energy losses in the order
of electron volts and �ii� a broad distribution of final-state
populations. It has further been demonstrated that the non-
trivial coordinate dependence of damping has subtle conse-
quences for the dynamics.

Within the harmonic electronic friction model, multiquan-

tum relaxation is a consequence of several, consecutive
single-quantum transitions. These can occur, however, be-
cause the transition rates �v→v−1 for large v are in the order
of 100 fs and below �depending on the molecule-surface dis-
tance�, which is in the order of magnitude or shorter than,
typical molecule-surface contact times. This explains also the
broad vibrational state distribution of the scattered mol-
ecules. Thus, to explain the multiquantum energy loss and
broad final-state distributions, we believe that electronic fric-
tion models are fully sufficient. However, in the friction
model only low-energy electron-hole pairs are created be-
cause in a single energy transfer process, only one vibra-
tional quantum needs to be absorbed at a time by the metal.
This is fundamentally different from the electronic multistate
models,23 which allow for direct multiquantum relaxation
and high-energy EHP creation, and thus, for electron emis-
sion from low-work function materials. It may very well be
that these direct multiquantum relaxation processes and ex-
plicit multistate models to explain them, are needed in order
to account for all experimental facts known for nonadiabatic
molecule-surface scattering. We note, however, that in an
anharmonic version of Fermi’s golden rule to treat non-Born-
Oppenheimer couplings, and/or when going beyond the
linear-coupling approximation �see Eq. �19��, direct multi-
quantum relaxation becomes possible also in electron friction
models. Their contribution is usually small, however, and it
remains to be seen if they can make a significant contribution
to NO scattering from Au�111�. The inclusion of anharmo-
nicities and nonlinearities leads also to smaller relaxation
rates for high-v states than predicted by Eq. �3�,47 which may
explain why the present friction model actually seems to lead
to stronger dissipation than needed �cf. results of the simple
extrapolation scheme of Sec. III C�. We are also fully aware
of the fact that our model can be improved in many other
directions, most notably by including molecular rotations in
order to make quantitative comparisons with experimental
data possible.
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APPENDIX: ANALYTICAL FIT OF THE
POTENTIAL-ENERGY SURFACE

Here we give the functional form of the function fitting
the first-principles data explicitly using the switching func-
tions discussed in Sec. III A,
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V�r,Z� = Du�1 − exp�− au�Z − Zu���2 + 1

2
D0�1 − tanh�nD�Z − ZD��� +

1

2
Dinf�1 + tanh�nD�Z − ZD����

��1 − exp− �1

2
a0�1 − tanh�na�Z − Za��� +

1

2
ainf�1 + tanh�na�Z − Za�����r − �1

2
r0�1 − tanh�nr�Z − Zr���

+
1

2
rinf�1 + tanh�nr�Z − Zr�������2

. �A1�

The parameters are given in Table II.
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