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The effect of electron-impurity and electron-electron interactions on the energy spectrum of electrons mov-
ing in graphene is investigated in the presence of a high magnetic field. We find that the width of the broadened
Landau levels exhibits an approximate 1 /B dependence near half filling for charged impurity scattering. The
Landau-level width, the density of states, and the Fermi energy exhibit an oscillatory behavior as a function of
magnetic field. Comparison with experiment shows that scattering with charged impurities cannot be the main
scattering mechanism that determines the width of the Landau levels.
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I. INTRODUCTION

Graphene, a new material, was stabilized for the first time
several years ago by the team of Prof. Geim and co-workers1

at the University of Manchester. A graphene crystal consists
of a carbon honey comb lattice of hexagons which consists
of two sublattices leading to pseudospin degrees of freedom.
Its electron transport for Fermi energy �EF��0.8 eV is es-
sentially governed by the massless Dirac equation with a
linear energy dispersion relation around the two nodal points
in the Brillouin zone. The carrier density �both electron and
hole� can be tuned by the gate voltage. Due to its unique
electronic band structure and its potential for applications in
nanoelectronic devices,2,3 it is necessary to explore its fun-
damental physics in the presence of an electric, magnetic,
and/or optical field.

In a quasi-two-dimensional electron gas �2DEG�, a mag-
netic field �B� perpendicular to the two-dimensional sheet
leads to Landau-level �LL� quantization with energy EN
= �N+1 /2���c, N=0,1 ,2 , . . ., where �c is the cyclotron fre-
quency. The free-electron density of states �DOS� consists of
� functions located at the quantized Landau energies. In real
systems, due to the presence of disorder and scattering from,
e.g., phonons and impurities, the LLs are broadened which
will have a smoothening effect on the singular DOS. In
graphene, the energy of the LLs is very different compared to
those of a conventional 2DEG: �1� the N=0 LL has zero
energy and is shared equally by electrons and holes, and �2�
the LL energy is proportional to �B rather than B. This re-
sults into peculiar and unusual quantum features in two-
dimensional transport, e.g., half-integer quantum Hall
effect1,4 and anomalous absorption.5 In order to explain these
phenomena, simple estimations based on a finite impurity
scattering rate or scattering time were imposed in order to
avoid the singularity in the DOS. For example, a LL broad-
ening of �=15 K��1.3 meV� was assumed in Refs. 5 and 6
for all LLs when calculating the magneto-optical absorption.
Also in calculating the magneto-optical properties of
graphene Koshino and Ando7 used ��3.9 meV. Orlita et
al.8 estimated the peak widths to be 2–10 meV in order to fit

the far-infrared optical absorption. The peak width was mea-
sured to have a �B dependence in a weak magnetic field �i.e.,
B�1 T� which approached a sublinear function of �B at
higher magnetic fields �1 T�B�4 T�. In the work of Jiang
et al.9 a Lorentzian broadening was assumed for the LLs to
fit the resonances measured in infrared spectroscopy and they
found that the half width nonmonotonically increased with
increasing magnetic field �4 T�B�25 T�.

Theoretically, the self-consistent Born approximation
�SCBA� was used more than 30 years ago by Ando et al.10,11

when calculating the LL broadening of a 2DEG. In their
work, the interaction between different LLs was neglected in
the limit of a strong magnetic field. The LL broadening due
to long-range impurity potentials was able to qualitatively
explain the experimental results.12 The effect of the coupling
between different LLs and the effect of several kinds of scat-
tering mechanics, e.g., electron-impurity �e-i� and electron-
phonon interactions were investigated in Refs. 13 and 14. In
graphene, in the absence of a magnetic field, Hu et al.15,16

used the Born approximation and SCBA to calculate the
DOS and the single-particle relaxation time in the presence
of disorder due to charged impurity and short-range defect
scattering. And in the presence of a magnetic field Peres et
al.17 calculated the DOS taking into account vacancy impu-
rity scattering within a single impurity T matrix approxima-
tion. In their work, short-range impurity scatterers were as-
sumed and the Fourier transform of the impurity potential V
was assumed to be a constant, Vq�V, i.e., independent of q
which is totally different from ionized impurity scattering
where Vq=2�e2 /�q in the absence of static screening. The
LL width as a function of magnetic field was calculated self-
consistently. It was found that the ratio � /�B decreases with
increasing B which implies a broadening ��B	 with 	
�1 /2. The LL width around zero energy was found to be
strongly broadened and the LL width away from zero energy
was much small. Using the Born approximation18 and as-
suming a delta-function scattering potential, the level broad-
ening was found to be proportional to �B and dependent on
the impurity density and the effective impurity potential. For
intermediate short-range disorder, the N=0 LL is well sepa-
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rated from the other LLs which is different from the result
obtained within the T matrix approximation. The theoretical
B dependence and values of the LL width are not good in
agreement with the experimental LL width8,9 in strong mag-
netic fields. It should be noted that from the linear density
dependence of the conductivity of graphene it was concluded
that the relevant disorder is due to charged impurities.19 This
conclusion is currently under debate20 which motivated us to
investigate whether the magnetic field dependence of the
width of the DOS can contribute to this discussion. Different
from previous works we also investigate the effect of LL
coupling on our result.

Motivated by the experimental and theoretical works
mentioned above, we use the Green’s-function approach in
this paper in order to give a more detailed analysis of the
effect of charged impurity scattering on the high magnetic
field DOS. In the present work, first we assume that the
impurity-induced disorder is sufficiently weak, such that we
may rely on single impurity scattering and average over a
random distribution of impurities. We derive the full Green’s
function instead of the bare Green’s function through the
self-energy. Second, the magnetic field is taken sufficiently
strong that scattering between different LLs can be ne-
glected. Third, the impurities are distributed randomly and
homogeneously. The full q dependence of the Fourier trans-
formed e-i interaction in q representation is taken into ac-
count and we consider Coulomb impurity scattering. Intra-
band electron-electron �e-e� screening is considered which
implies that the singularity at small q is removed. The broad-
ened LL width is determined self-consistently. In contrast
with previous works, we do not assume any particular func-
tional form for the broadened LL and take the full q depen-
dence of the impurity potential into account.

The paper is organized as follows. In Sec. II we define the
retarded Green’s function of the density-density �d-d� corre-
lation function. The e-e screening and the dynamical dielec-
tric function are obtained within the random-phase approxi-
mation �RPA�. Then the self-energy induced by impurity
scattering are presented. The numerical results are discussed
in Sec. III. The conclusions are summarized in Sec. IV where
we relate our theoretical results with experiments.

II. THEORETICAL APPROACHES

Here we consider a configuration where the graphene
sheet is in the xy plane and the uniform static magnetic field
with strength B is applied along the z direction. A carrier in
monolayer graphene can be described by Weyl’s equation for
a massless neutrino.21,22 Thus, the single-particle Hamil-
tonian describes a carrier in the � bands near the K point of
graphene which can be obtained from, e.g., the k ·p
approach.21 k= �kx ,ky�→k+eA /� is the wave-vector opera-
tor along the 2D plane, and A= �0,Bx ,0� is the vector poten-
tial of the applied perpendicular magnetic field in the usual
Landau gauge. The corresponding Schrödinger equation
H0
�x ,y�=E
�x ,y� can be solved analytically. The wave
function and energy spectrum for a carrier in graphene are
obtained, respectively, as23

�	� = 
	�r� = CNe−iyX/lB
2�SNh�N�−1�x − X�

h�N��x − X� � �1�

and

�	 = �N = SN
��N���B. �2�

Here, r= �x ,y� is the 2D spatial coordinate, the electronic
states for a carrier are specified by the set of quantum num-
bers 	= �N ,X�, where N�=0, �1, . . .� is the LL index, CN

=��1+�N,0� /2, X=kylB
2 relates to the carrier wavevector

along the y direction, lB= �� /eB�1/2 is magnetic length, ��B
=�2
 / lB is the effective magnetic energy, 
 is the band pa-

rameter, and hN�x�= iN�2NN !��lB�−1/2e−x2/2lB
2
HN�x / lB�, where

HN�x� is the Hermite polynomial. Furthermore, SN=1 for an
electron when N�0, SN=−1 for a hole when N�0, and SN
=0 for N=0. The N=0 LL is both the bottom of the conduc-
tion band and the top of the valence band in graphene which
is gapless. In graphene, the Zeeman spin splitting is rela-
tively weak and, therefore, we neglect the Zeeman effect in
the present study.

From the wave function and energy spectrum of the car-
rier, the carrier d-d correlation function �or pair bubble� can
be derived. To study the electronic and optical properties of
monolayer graphene in a quantizing magnetic field, it is con-
venient to derive the pair bubble in �q , t� representation. In
such a case, the carrier d-d correlation function is defined as

��q,t� =
��t�
i�

gsgv

2�lB
2 	

	�,	


��	�	�q,t�,�		��− q,0��� , �3�

where gs and gv are the spin and valley degeneracy gs=gv
=2, D0= �2�lB

2�−1 is the degeneracy of each LL, �	�	�q , t�
=D	�	�q�ei��	�−�	�t/�c	�

† c	 is the space Fourier transform of
the density-matrix element, c	

†�c	� is the creation �annihila-
tion� operator for a carrier in LL state 	, and D	�	�q�
= 
	��e−iq·r�	�. Due to the relation 
�c	�

† c	 ,c	
†c	���= f��	��

− f��	� with f�x� being the Fermi-Dirac function, the time
Fourier transform of the d-d correlation function is rewritten
as

��q,�� =
gsgv

2�lB
2 	

N�,N

CN�N�u�
f��N�� − f��N�

�� + �N� − �N + i�
, �4�

where u= lB
2q2 /2 and CN�N�u�=CN�

2 CN
2 �M ! / �M +J�!�e−uuJ

� �LM
J �u�+SN�SN

�M+J
M LM−1

J �u��2, with M =min��N�� , �N��, J
= ��N��− �N��, and LN

J �x� being the associated Laguerre poly-
nomial. �� is the electronic excitation energy, and an infini-
tesimal quantity i� is introduced to make the integral con-
verge when doing the Fourier transform from time
representation to energy representation.

In the present work, we assume that the Fermi energy is in
the conduction band, i.e., the carriers are electrons. For the
case the e-e interaction is given by the Coulomb potential,
the space Fourier transform of the scattering energy for bare
e-e interaction is Vq=2�e2 / ��q� with � the static dielectric
constant for electrons in graphene. Under the usual RPA, the
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effective e-e interaction can be obtained as Vq
ef f =Vq /��q�,

where ��q�=��q ,�=0�=1−Vq��q ,�� is the static dielectric
function.24,25

Here we consider the case that the LL broadening is
mainly induced by scattering with charged impurities, e.g.,
coming from localized charges in the substrate that supports
the graphene monolayer and/or charged adsorbates. When
the e-i scattering is given by the Coulomb potential, the in-
teraction Hamiltonian is

He−i =
Ze2

�1

1

�R − Ra�
, �5�

where R= �r ,0� is the coordinate of a carrier in the graphene
layer and the impurity with charge number Z is located at
Ra= �ra ,za�. �1 is the dielectric constant for impurities in the
SiO2 wafer. After assuming that the system can be separated
into carriers of interest �	� and impurities �I� which are dis-
tributed randomly in the xy plane, namely, �	 ; I�= �	� � �I�,
the matrix element for e-i interaction is obtained, in the ab-
sence of e-e screening, as

V	�	�q,Ra� = Vq
i D	�	�q�e−q�za�eiq·ra
I��I� , �6�

where 
I� � I�=�ni�za� with ni�za� being the charged impurity
distribution along the z direction, q= �qx ,qy� is the change in
the carrier wave vector during an e-i scattering event, and
Vq

i =2�Ze2 /�1q. Here, we consider the charged impurities
spatially separated from the graphene layer and situated in a
2D layer at a distance d from graphene, the square of the
matrix element for e-i scattering in the presence of e-e
screening14,24,26 is obtained as

�UN�N�q��2 = ni
 2�Ze2

�1�q + Kq�
e−qd�2

CN�N�lB
2q2/2� , �7�

where ni=�dzani�za���za−d�. Kq= �−2�e2 /��Re ��q� is the
RPA inverse screening length with ��q�=lim�→0 ��q ,��. It
should be noted that e-e scattering at the Fermi level is ba-
sically elastic. As a result, the RPA screening length is
mainly determined by the intra-LL �i.e., N�=N� scattering
channels at low temperature T→0 and in the limit of long-
range scattering.26–28 In such a case, −�f /��N→��EF−�N�
→−�1 /��Im GN�EF� and the RPA inverse screening length
becomes

Kq � −
gsgve2

��lB
2 	

N

CNN�lB
2q2/2�Im GN�EF� . �8�

With the e-i interaction matrix, the self-energy induced by
e-i scattering can be evaluated within the Born
approximation,13,14 which reads

�N�E� = 	
N�,q

�UN�N�q��2GN��E� , �9�

where E is the carrier energy and

GN�E� = �E − �N − �N�E��−1 �10�

is the Green’s function. The self-energy for a carrier in the
Nth LL can be written as

�N�E� = �N�E� − i�N�E� , �11�

where the real part �N�E� results in an energy shift and the
imaginary part �N�E� determines the width of the LL. From
Eqs. �10� and �11�, the real and imaginary parts of the
Green’s function for a carrier in the Nth LL can be obtained
straightforwardly.

Because e-i interaction basically is an elastic-scattering
mechanism, the self-energy induced by e-i scattering is
mainly determined by intra-LL transition processes at least in
a strong magnetic field where the LLs do not
overlap.12,18,26,27 In such a case, neglecting the interaction
between different LLs, we only consider N=N� in Eq. �9�
which results in

�N�E� = �E − �N�/2,

�N�E� = Re���N�2 − �E − �N�2/4,

and

Im GN�E� = −
1

�N
Re�1 − 
E − �N

2�N
�2�1/2

�12�

which is a semielliptic type of LL broadening, where

�N
2 = 	

q
�UNN�q��2 �13�

is given by Eq. �7�. It can be seen that the level broadening
depends strongly on the scattering potential and the impurity
distribution. The DOS for carriers in the Nth LL is then given
by

DN�E� =
gsgv

2�lB
2 �− 1/��Im GN�E� . �14�

From the above analysis, the LL broadening is determined
by the screened e-i scattering. And the inverse screening
length is determined by the imaginary part of the Green’s
function �or DOS� which in its turn is determined by the
broadened LL width. So the spectrum of broadened LLs and
the DOS should be calculated self-consistently. First, at a
fixed magnetic field B and electron density ne, we assume an
initial value for the LL width, and the imaginary part of the
Green’s function �Eq. �12�� and the DOS �Eq. �14�� can be
derived straightforwardly. Second, the Fermi energy of this
system can be determined from the condition of electron
number conservation ne=�N�EdEf�E�D�E�. Third, the RPA
inverse screening length Kq is obtained from Eq. �8�. Fourth,
the potential induced by the screened impurity scattering
gives a new value for the widths of the LLs from Eq. �13�.
Then, the new imaginary part of the Green’s function, EF and
Kq and new broadening width can be obtained until EF and
�N�E� are converged. In this way, the width of the LLs in the
presence of the screened e-i scattering is obtained iteratively.

III. RESULT AND DISCUSSION

For the numerical calculation, we take the band parameter

=6.5 eV Å for graphene, the static dielectric constant for
electrons in graphene �=2.5 and for impurities in the SiO2
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substrate �1=4.25. We consider an electron density ne
�1012 cm−2 whose value can be tuned by the gate voltage.
The charged impurities are assumed to be located in the sub-
strate separated from the 2D graphene interface by d
�1 nm with the impurity density ni�1011 cm−2. In the cal-
culation, we take Z=1 for the charge impurity.

In Fig. 1 we show the DOS for two values of the magnetic
field. Let us first focus our attention to the LL broadening at
a fixed magnetic field. In Fig. 1 the restriction ����B is
satisfied in the presence of a strong magnetic field. However,
because the LL energy is proportional to ��N�, the spacing
between subsequent LLs ���N+1�−��N����B decreases with
N, which behaves as ��B /2�N for large N. Thus if the LL
width would be independent of N these levels will start to
overlap beyond a certain LL.

Similar for the case of a normal 2DEG we find that the
DOS oscillates as a function of energy and the peaks of the
DOS are centered around �N but the overall magnetic field
dependence is very different. The e-i potential Vq depends on
the modulus q=�qx

2+qy
2. When an electron is scattered by a

single impurity, momentum conservation is required
�ky=ky�−qy

, where ky and ky� are the electrons momentum before
and after scattering, and qy is the change in the carrier wave
vector. The summation over the states �N ,ky�� in the self-
energy is related with qy, which is connected to the scattering
potential Vq. This q dependence of the self-energy causes a
different broadening for the various LLs. And neglecting the
interaction between different LLs, the oscillation of the as-
sociated Laguerre polynomial results in a small broadening
of the LL at the Fermi energy �EF�. The corresponding
broadening width �N�E� and the energy shift �N�E� for dif-
ferent LLs are plotted as a function of energy in Figs. 1�b�
and 1�d�. At the center of each LL, a peak in �N�E� occurs
and �N�E� changes sharply. This is different from Ref. 17,
where short-range e-i scattering was assumed and the self-
energy �1�E� for the N=0 LL was calculated and �2�E� was
taken for the other LLs. The imaginary part of their self-
energy showed a single broadened peak at zero energy which
smeared the N=0, �1 LLs. Their self-energy was indepen-
dent of the LL number �except for the N=0 LL� and as a

consequence they found that the energy shift and the broad-
ening of each LL did not exhibit any obvious oscillatory
behavior as a function of the LL energy.

In Fig. 2, we show the self-consistent widths of the broad-
ened LLs at a fixed electron density ne=1012 cm−2. We no-
tice the following: first, periodic oscillations are observed.
When the Fermi energy determined by the electron number
conservation is in the middle of a broadened LL, screening is
the most effective which results in a smaller width. When N
LLs are fully occupied and the �N+1�th LL is empty, the
absolute value for the imaginary part of the Green’s function
at the Fermi energy is small in Eq. �12� with a small RPA
inverse screening length in Eq. �8�. In this situation, screen-
ing is weak and the e-i interaction gives rise to a large width.
Second, the degeneracy D0= �2�lB

2�−1 of each LL is propor-
tional to the magnetic field and the inverse screening length,
on the average, increases with B. This implies that the effect
of screening is stronger with increasing B. Third, ignoring
the LL overlap in the self-energy calculation, the oscillation
of the associated Laguerre polynomial in the coefficient
CN,N��lB

2q2 /2� as a function of lBq leads to a minimal value
for the width at EF. This feature can be clearly seen in the
inset in Fig. 2. The inset shows the different LL widths for
four values of the magnetic field taken at near half-filling
occupation. The highest occupied LL is N=3, 2, 1, and 0 at
B=3.4 T, 5.2 T, 10.4 T, and 24.0 T, respectively. The width
of the LL is minimum at the Fermi energy.

Figure 3 shows clearly the close relation between the fill-
ing factor and the periodic variation in the DOS and the LL
width at the Fermi energy with the magnetic field. The DOS
�EF�, the LL width at EF, and the self-consistent Fermi en-
ergy near integer LL filling exhibit strong variations with
magnetic field. In Ref. 26, the LL width was calculated in
case of Coulomb e-i interaction and e-e screening was con-
sidered to remove the divergence in the LL width’s calcula-
tion. They simplified the polarization function, proportional
to �−1, and obtained the broadening � which increased
monotonically with lB�1 /�B. In the present paper, the in-
verse screening length is a function of � in Eqs. �8� and �12�
and is proportional to �−1 at E=�N, i.e., at half filling. Apart

FIG. 1. ��a� and �c�� The DOS and ��b� and �d�� the Landau-level
width �N�E� �dashed curves� and the energy shift �N�E� �solid
curves� as a function of energy for a fixed electron density ne

=1012 cm−2 and impurity density ni=1011 cm−2. D0= �2�lB
2�−1 is

the degeneracy of each LL. The vertical dashed lines in �a� and �c�
indicate the position of the Fermi energy EF.

FIG. 2. �Color online� The width of the Nth LL as a function of
magnetic field at a fixed electron density ne=1012 cm−2 and impu-
rity density ni=1011 cm−2. Solid line �black�, dashed line �red�,
dotted line �blue�, and dashed-dotted line �olive� are for the N=0, 1,
2, and 3 LLs, respectively. The inset shows the width of different
LLs for different values of B.
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from the peak structure in the LL width at EF our result
indicates that this width �i.e., near half filling� decreases with
increasing magnetic field and can be fitted approximately to
�B−1 �see the red dashed and the olive dashed-dotted-dotted
curves in Fig. 3�b��. Away from half filling, the screening
effect decreases which results in an increase in � and an
oscillatory behavior as a function of B. Near integer filling,
the screening length is very weak and is not able to remove
the divergence which implies that other short-range scatter-
ing should be included. Our results are markedly different
from those of delta-function scattering where it was found
���B in the Born approximation and ��B	 with 	�1 /2
in the T matrix approximation. In Fig. 3�b� we plotted the LL
width at EF for ne=2�1012 cm−2 and ni=0.5�1011 cm−2.
In order that the LL does not overlap at high energy, the LL
width should be smaller than ��B /2�N��B /N for large N.
Therefore, for the higher electron-density case, we reduced
the impurity density by a factor of 2. The ��B−1 depen-
dence is found in both cases.

The value of the LL width is a function of ne ,ni ,B and EF.
And � is proportional to �ni �see Eq. �7��, and thus increas-
ing the impurity density will obviously increase the LL
width. In Fig. 4 the DOS of each LL is shown for the case of
a higher impurity density at a fixed magnetic field. The self-
consistent DOS is much broader and the LL overlap is sig-
nificant in this case, in particular, at relative low magnetic
field. The total DOS shows substructure between the LLs in
Fig. 4�c�. The corresponding self-energy is plotted in Figs.
4�b� and 4�d�. Increasing the charged impurity density, the
real and imaginary parts of the self-energy increases which
causes the LLs to overlap and coupling between the LLs
should be included. The effect of such coupling is investi-
gated in Fig. 5 where we compare the DOS in the absence

�Fig. 4�c�� and the presence �Fig. 5� of LL coupling. When
the inter-LL coupling with ten adjacent LLs �i.e., including
UN,N ,UN,N�1 , . . . ,UN,N�10 in the self-energy of Eq. �9�� are
included, the DOS is determined by �N,N and the adjacent
�N,N� for energies near the center of each LL. From Fig. 5 we
can clearly see that this LL coupling has a very small effect
on the N=0 and N=1 LLs which are still well separated from
the other LLs. The DOS for the other LLs are more strongly
influenced by the coupling between different LLs but the
overall effect is not large. Notice also that applying a strong
magnetic field, the degeneracy increases which increases the
screening effect and subsequently decreases the LL width.
This is the reason why at high magnetic fields the overlap
between LLs can decrease.

IV. CONCLUSION

At low temperatures, e-i scattering is believed to be the
principal channel for electron momentum relaxation in
graphene that is supported by SiO2. In this paper, a detailed
self-consistent calculation method was applied to calculate
the Green’s function, self-energy, and the DOS in the pres-

FIG. 3. �Color online� �a� The DOS at the Fermi energy D�EF�,
�b� the LL width at EF, and �c� the LL energy in units of millielec-
tron volt as a function of magnetic field �or filling factor� for ne

=1012 cm−2 and ni=1011 cm−2. The dashed line �red� in �b� fits the
width dependence �B−1 near half filling. The solid thick line �red�
in �c� is the Fermi energy. The curves �blue dashed-dotted and olive
dashed-dotted-dotted curves� in �b� are the result for ne=2
�1012 cm−2 and ni=0.5�1011 cm−2.

FIG. 4. ��a� and �c�� The DOS and ��b� and �d�� the Landau-level
width �N�E� �dashed lines� and the energy shift �N�E� �solid lines�
as a function of energy for the same parameters as in Fig. 1 except
for a higher impurity density ni=2�1011 cm−2. The bold solid line
in �c� is the total DOS. The vertical dashed lines in �a� and �c�
indicate the position of the Fermi energy EF.

FIG. 5. �Color online� The DOS as a function of energy for the
same parameters as in Fig. 4�c� including the coupling between ten
adjacent LLs. The solid �black� curve indicates the total DOS and
the dashed �color� curves are the DOS of each LL. The vertical
dotted line indicates the position of the Fermi energy.
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ence of a strong magnetic field and charged impurity scatter-
ing. In our numerical self-consistent calculation we have
taken into account intraband screening and neglected the in-
teraction between different LLs when the restriction �
���B is satisfied. The LL widths are determined which de-
pend on the electron density, magnetic field, impurity den-
sity, and the screened e-i coupling strength. When the condi-
tions of strong magnetic field and weak disorder are satisfied,
the width of each LL oscillates as a function of magnetic
field and/or electron density. Peaks in the LL width � are
found for electron energy situated between the LLs which
are expected to be reduced when including inter-LL e-e
screening29 and short-range e-i scattering.

An approximate dependence ��1 /B is obtained near half
filling. A decreasing width with increasing magnetic field is
in disagreement with experimental results from magneto-
optical properties.8,9 The experimental LL width in high
magnetic fields shows a sublinear �B dependence8 and non-
monotonically increasing with magnetic field.9 Thus we have
to conclude that charged impurity scattering cannot be the
main mechanism that determines the broadening at high
magnetic fields. Therefore, it is expected that other scattering
mechanisms will be very important in the determination of
the width of the LLs. The screened e-i potential depends on

q and as a consequence it contributes differently to each LL
width, which differs from the case of the short-range scatter-
ing model presented by Peres et al.17 The LL width at EF
exhibits smaller broadening as compared to the neighbor
LLs. Because e-i scattering strength is proportional to the
square root of the impurity density, i.e., �ni, broader LLs are
observed in the case of high-impurity concentrations which
eventually may lead to coupling between different LLs. We
found that the scattering between different LLs in this case
has only a small effect on the DOS especially for low LLs.
Note that the Landau widths is not exactly linearly propor-
tional to �ni because the widths, the DOS, and the Fermi
energy are determined by several parameters, i.e., ne, B, and
ni in a self-consistent way.
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