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The electron transport in the tunnel Al/GaAs Schottky structures with two-dimensional �-doped channels is
investigated both experimentally and theoretically. We observe experimentally strong inhomogeneity and
“freezing” of the potential profile along the channel at large biases. Also, the total current saturates at large
biases and the differential resistance shows a characteristic nonmonotonous behavior. A theoretical model for
the structures is developed. It is in quantitative agreement with the measurements. The model explains the
observed features by the channel depletion and the decrease of its conductivity with bias. Our measurements
and theoretical calculations indicate that a local impurity-density-induced transition into insulator state is
taking place in our structures, when the electron concentration in the channel is still relatively high
��3�1011 cm−2�. We identify the poor conductivity of the locally depleted part of the channel as the bottle-
neck leading to the current saturation and to appearance of the other features mentioned above.
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I. INTRODUCTION

The experimental investigation of the tunnel Schottky
structures with �-doped two-dimensional �2D� channel1–6 has
led to demonstration of a number of new effects in the recent
years. In particular, the observation of a resonant intersub-
band polaron interaction,2 the effect of electron reflection
when tunneling into 2D system at the threshold of LO-
phonon emission,3 persistent tunnel photoconductivity,4

many-body effects,5 evidences for inherent negative differen-
tial conductance �NDC� of the Schottky contacts with 2D
channels,6,7 etc. That makes the structures attractive for fun-
damental studies and, additionally, some of the discovered
effects �e.g., NDC� could turn out to be useful in applica-
tions. There are two main reasons that have made the obser-
vation of the above effects possible. First, one can apply the
tunnel-spectroscopy measurement technique1,8,9 to such
structures. The tunnel spectroscopy has the advantage that
one can access both the occupied and empty subbands, in
contrast to the usual magnetotransport measurements of the
2D electron systems �see, e.g., Ref. 10�, where only the oc-
cupied subbands could be characterized. The second reason
is the high quality of the tunnel barrier in the Al/GaAs tunnel
structures that could be achieved by the in situ molecular
beam epitaxy �MBE� growth of a metal.2–6,11–13

Till now, such tunnel structures have been investigated1–6

at relatively low biases of ��100 mV only. Usually, the
inhomogeneity of the voltage distribution along the 2D chan-
nel under the metal �Al� gate is negligibly small in such
regime. The situation is different at larger biases. Here, on
one hand, the current density becomes relatively high. On the
other hand, at large applied bias the channel might become
depleted and poorly conducting. That leads to appearance of
the macroscopical inhomogeneities in the voltage and in the
electron-concentration distributions along the channel. Addi-
tionally, the local tunnel current density is changing expo-

nentially fast with the variation of the local bias across the
barrier and that results in strong inhomogeneity of the tunnel
current injected into the channel. The factors limit the reso-
lution of the tunnel-spectroscopy method and lead to pecu-
liarities in the I-V and other characteristics of the structures.
The present paper is devoted to the investigation of exactly
this regime and associated peculiarities in the Al/GaAs tun-
nel structure with �-doped 2D channel, when large biases are
applied.

Additionally, the investigation of the tunnel Schottky
structures with 2D channels at large biases is touching to
some extend the field of the metal-insulator transition �MIT�
in the 2D systems, see, e.g., Ref. 14. When a large bias is
applied, the channel becomes eventually enough depleted so
that the channel or a part of it might come close to the MIT
regime. That happens in our structures. The effects relevant
for MIT �channel depletion, large not-screened microscopical
potential fluctuations, their nonlinear screening, strong de-
crease in the channel conductivity� in addition to strong in-
fluence of the potential fluctuations on the tunnel current, all
these effects are taken place in our structure, they determine
the measured characteristics and they should be included in
the theoretical analysis of the measurement results. We can
also add that the impurity-density-induced MIT in the
heavily �-doped layers �as in our structures� has been ad-
dressed, to our knowledge, in just few publications15,16 in the
past.

The paper is organized as follows. We describe the
samples and their fabrication procedure in Sec. II. A short
description of the general properties and low-bias character-
istics of the structures is given in Sec. III. An account of the
experimental observations at large biases is given in Sec. IV
and the theoretical model for this case, together with the
calculation results are described in Sec. V. Conclusions are
presented in Sec. VI.
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II. SAMPLES

We were using an MBE grown Al/GaAs structure in our
experiments. Al was grown in MBE in situ to achieve high
quality of the metal/semiconductor interface. �-n-layer with
the doping level of �7�1012 cm−2 was grown at the dis-
tance of 20 nm from the Al/GaAs interface. The whole struc-
ture was p-doped at the level of �1016 cm−3.

The �-n-layer forms a narrow 2D electron channel with a
steep Schottky barrier on one side and a relatively gentle
sloping on the side of the deep GaAs layers. Due to the
relatively high p doping, the channel is quite narrow and the
separation between 2D subbands is �50 meV. The Schottky
barrier of the structure is quite thin and the electrons can
tunnel through it. Two subbands are occupied in the 2D
channel of our samples at zero bias. The calculated band
diagram of the structure is shown in Fig. 1.

The Al gates with different geometries were defined and
the Ohmic contacts were fabricated on the wafers afterwards.
The samples were prepared in the form of Hall bars with the
width of the 2D channel of 0.5 mm and the full length of 1.5
mm. We had two types of samples, see Fig. 2. One is with
two tunnel gates of the length of 10 �m close to the ends of
the Hall bar �sample “d”�, the another one �sample “e”� had
practically the whole Hall bar covered by the Al gate, the
gate length was 1.3 mm in this case. The rho contacts were
between the two gates in the first case and contacting the
channel under the gate in the second one. The distance be-
tween the gate edges and the nearest Ohmic �current� con-
tacts was 100 �m for both types of structures. Owing to the
rho contacts, we could measure the potential distribution at
several points under the gate of sample e, when the bias is
applied between the gate and the current �drain� Ohmic con-
tact.

III. LOW-BIAS BEHAVIOR

A. Experimental observations

The tunnel spectrum of the structure d with short gate
measured at low biases at 4.2 K is shown in Fig. 3. The
tunnel spectrum is the second derivative of the current, nor-
malized by the conductance ���. At low biases, when the

inhomogeneity of the voltage distribution in the channel is
negligibly small, the interpretation of the spectra is
straightforward:8,9 the minima in the spectrum correspond to
the bias points, where the metal �Al� Fermi level crosses the
bottoms of the 2D subbands in the channel. By measuring
the spectrum, one gets the energy position of the bottoms
�Ei� of the filled as well as empty subbands.

The spectrum minima at the negative biases give us the
energy positions of the bottoms of the two filled subbands,
they are E0�−120 meV and E1�−20 meV for the ground
and first excited subbands, respectively. The subband bottom
energies are related to the electron concentration in the
subbands via 2D density of states. Independently, we
have also measured the Hall electron concentration of
�3.1�1012 cm−2 in the channel under the gate in the
sample e. The �-layer conductivity �at 4.2 K� of the gated
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FIG. 1. �Color online� Band diagram of Al/GaAs structure at
zero bias, the 2D channel is formed by the �-n doping at
z=d�20 nm.
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FIG. 2. �Color online� Sample geometries. The samples had the
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FIG. 3. �Color online� The tunnel spectrum −d�ln���� /dU mea-
sured at low biases at T=4.2 K for d sample and the results of the
self-consistent calculations. The arrows indicate the positions of the
subbands: E0�−120 meV, E1�−20 meV, etc.
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channel at zero bias was measured to be 0.28 mS /� �mS
per square�, that gives us the subband mobilities of �0

0

=500 cm2 /Vs and �1
0=800 cm2 /Vs for the ground and

first-excited subbands, respectively, at zero bias. We used the
tunnel data �Fig. 3� for such estimations of mobilities: the
electron concentration in the two filled subbands in the gated
areas of the structure at zero bias are �2.8�1012 cm−2 and
�4�1011 cm−2 for the subbands E0 and E1, respectively,
see Fig. 4. Although the minimum of the ground subband is
not clearly recognizable in the spectrum in Fig. 3, the value
of the Hall electron concentration unambiguously indicate
that the slight minimum in the spectrum at �−120 mV
marked as E0 subband in Fig. 3 corresponds to the filled
ground subband in the channel. Additionally, the Hall mea-
surements with the sample d, where almost the whole Hall
bar was not covered by the gate, show that the electron con-
centration in the not-gated parts of the channel is somewhat
lower than under the gate, it is �2.4�1012 cm−2. The
�-layer conductivity was 0.15 mS /� in this case.

B. Theoretical calculations

Further, the band structure of our samples was calculated
self-consistently in the Hartree approximation, nonparabolic-
ity was taken into account in the two-band approximation.17

In the calculations, the �-n-layer was assumed to be at the
distance of 21.2 nm from the Schottky contact, the distance
is close to the nominal MBE-growth value of 20 nm. The
Schottky-barrier height at Al/GaAs interface is �0.9 eV at
the liquid-helium temperature, as determined with the spe-
cially grown Al /n-GaAs structures with homogeneous n
doping and using a method relying on tunnel I-V
measurements.18 The barrier height is in agreement with the
other literature data,19,20 where the value of �0.8 eV at
room temperature has been reported for the in situ grown
Al/GaAs. The levels of �-n doping �7.2�1012 cm−2� and p
doping �1.2�1016 cm−3� in our structure were determined

by fitting of the subband minima in the calculated and mea-
sured spectra �see Fig. 3�, the values are in reasonable agree-
ment with the nominal MBE growth parameters. When cal-
culating the tunnel spectra, the fitting of the subband
broadening and comparison of the minima width in the cal-
culated and measured spectra gives us information about the
broadening of the different subbands, they were determined
to be �E0�17 meV �half width� and �E1�7 meV for the
filled ground and first excited subbands, respectively, and it
was growing from �E2�5 meV to �E14�9 meV for the
empty higher subbands. The broadening of the lowest two
subbands is in good agreement with the measured mobilities
in the subbands at zero bias. The additional peaks and
minima one can see in the measured spectra in Fig. 3 are due
to the zero-bias anomaly �at �0 V� and phonon-assisted
tunneling �at ��36 mV�.1–3,5

We note here that, generally speaking, the positions of the
subband bottoms at zero bias do not correspond exactly to
the bias points ��e, here e is the electron charge� of the
minima in the spectrum. The deviation in our structures is
typically �10% of the bias points ��e� of the minima: the
subbands in the channel are shifting slightly with respect to
the channel Fermi level, when the bias is changing. The shift
is due to the change in the electron concentration in the chan-
nel and also due to small variation in the channel profile with
bias. The latter effect is usually much smaller than the first
one in our structures. If the electrons fill the ground subband
�E0� in the channel only, then one can write a simple relation
between the variation in E0 with respect to the channel Fermi
level ��ch� and the variation of the gate-channel Fermi-level
difference ��m is the Fermi level in the gate�

�E0 �
1

	
���m − �ch� , �1�

	 =
e2
2D

C
, �2�

where C=� /4�d is the specific gate-channel capacitance, �
is the lattice dielectric constant in the Schottky barrier, d is
the Schottky-barrier thickness �the separation between the �
layer and the metal gate� and 
2D is the 2D density of states
in a channel subband. The unitless factor 	

	 � 8 �3�

for our structures. To correct for the above variations and to
determine the subband positions at zero bias with an accu-
racy better than 10% from the measured spectrum, one can
use an approximate correction in Eq. �1� and the relation
�Ei��E0, where �Ei are the shifts of the bottoms of the
excited subbands with bias, or, more accurately, one has to
compare the measured spectra with the self-consistent calcu-
lations, as we have done that above in Fig. 3.

C. Inhomogeneities in the low-bias regime

The macroscopical inhomogeneities in the voltage distri-
bution along the channel might become important even in the
low-bias regime. The conductivity of the channel is not infi-
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FIG. 4. �Color online� The calculated electron concentrations
ne0 and ne1 in the lowest two subbands E0 and E1, respectively, at
different voltages. The continuous lines show the plots calculated
with low-bias model, the dashed lines are calculated with large-bias
model. ne0

act is an active electron concentration above the percolation
threshold. �ch is the channel Fermi level, �m is the Fermi level in
the Al gate. If one would neglect by the macroscopical inhomoge-
neities, then the bias �U� applied to the structure is related the
Fermi-level difference as eU=�m−�ch.
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nitely high, therefore an inhomogeneity of the voltage distri-
bution in the channel appears with increase in the current
flowing through it. In its turn, the tunnel current is growing
exponentially with increase of the bias applied to the struc-
ture. Already at relatively low biases, the voltage drop along
the channel under the gate ��Uch� might become comparable
to the width of the spectral features in the tunnel spectrum.
At this point, the inhomogeneities become a limiting factor
of the tunnel spectroscopy method. �Uch is given by the
following expression for a channel with a position-
independent conductivity:

�Uch =
jt

�0

L2

2
, �4�

where L is the length of the gate, jt is the density of the
tunnel current, �0 is the conductivity of the channel at zero
bias. As mentioned above, the measured value of �0 is equal
to 0.28 mS /� in our samples. The measurement data for jt
show that �Uch becomes comparable to the width of the
minima in the tunnel spectrum ��10 mV� already at
�50 mV for the sample e. One can see that the inhomoge-
neities can limit the resolution of the tunnel spectroscopy
already at pretty low biases in the structures with relatively
long gates. In the opposite case of the sample d, where the
gate is short, �Uch is less than 1 mV for the biases in the
range of �0.5 V. Equation �4� shows that the limitation of
the energy resolution of the tunnel spectroscopy method
drops as L2 with decrease of the length of the gate.

IV. LARGE-BIAS BEHAVIOR, EXPERIMENT

The experimentally measured I-V curves and the
differential-resistance characteristics of the samples e and d
in a wide range of applied biases are shown in Figs. 5 and 6.
One can see that the I-V curves and the differential resis-
tances have some peculiar features at large positive biases.
The currents saturate at around 0.9 V for both samples and
the differential resistances of the structures at positive
�channel-depleting� biases have distinctly nonmonotonous
behavior: they are first decreasing with bias, then they reach
a minimum at around 0.8 V and finally they are increasing.

At negative �channel-enriching� biases the structures behave
in a rather expectable way: the current saturation does not
appear and the differential resistance is steadily decreasing
with bias for both samples. At high negative biases, the dif-
ferential resistance comes to a saturation at the value equal to
�2 kOhm at 4.2 K, that corresponds approximately to the
resistance of 1.5 kOhm of the open part of the channel be-
tween the Ohmic contact and the gate.

The differential resistance of the structure d measured at
room temperature �see Fig. 6� looks qualitatively similar to
that measured at low temperature apart from two differences.
One is that the differential resistance lowers significantly at
room temperature by around 1–2 orders of magnitude at low
and positive biases and the saturation differential resistance
at the negative biases �the resistance of the nongated part of
the channel� is a factor of two lower than that at low
temperature. The second difference is that the subband fea-
tures at low biases are almost washed away at room tempera-
tures because of the thermal broadening of the Fermi
distribution.

In our structures, we could also probe the voltage at the
other side of the channel at the second current Ohmic �open
“source”� contact �see Fig. 2� and additionally we could
probe the voltage at the rho contacts under the long gate of
the structures of the type e. The voltages at the open Ohmic
and the rho contacts vs applied bias are shown in Fig. 7. One
can see that the voltages saturate with increase of the applied
bias. The saturation of the voltages indicates “freezing” of
the voltage distribution under the gate, which is taking place
in the current-saturation regime at the biases above �0.9 V.
Also one can see large inhomogeneity of the voltage distri-
bution under the gate of sample e in the current-saturation
regime: the voltage difference between the two rho contacts
is around 0.2 V for the sample. The voltages at the open
Ohmic contact �source� and the contact 
01 are almost coin-
ciding in the sample e. Such behavior is explained in the next
section.
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FIG. 5. �Color online� Calculated �dashed lines� and measured
�continues lines� I-V curves of the sample e and d. The dashed lines
at U0.3 eV are calculated with the large-bias model, the dashed
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V. THEORETICAL MODEL FOR LARGE-BIAS REGIME

A. Qualitative model

One can suggest an analogy to a high-electron-mobility
transistor �HEMT� to explain the operation of the tunnel
structures in the regime of large biases. At high voltages at
the drain of a HEMT �see, e.g., Ref. 21�, the channel under
the gate starts to be depleted, especially at the drain side of
the gate. The electric field along the channel is increasing
there, at some point it reaches the level, when the electron
drift velocity in the channel saturates, that leads to the satu-
ration of the total current of the HEMT. At even higher bi-
ases at the drain, the current stays basically constant and the
potential distribution in the channel under the gate is freez-
ing. If one takes a derivative of the current and plots the
source-drain differential resistance as a function of the
source-drain voltage, then the differential resistance will be
low at low voltages. Then the resistance will be increasing
with bias and, ideally, it should be diverging, when the cur-
rent at the drain side of the channel comes to a saturation.
Looking at the distribution of the voltage in the channel of
HEMT in the saturation regime, one should see that the volt-
age is smoothly changing going from the source in the direc-
tion of the drain, then the voltage is changing more and more
rapidly, the more channel is depleted, and finally the voltage
exhibits an almost steplike jump in the depleted part of the
channel under/near the drain side of the gate.

The tunnel structures, that we are investigating in the
present work, behave in a similar fashion. The major differ-
ence is that the current is not supplied by the source contact
�it is open�, as in HEMT. Instead, the tunnel current is in-
jected into the channel from the gate �at the channel deplet-
ing biases�. At low gate-drain biases, the drain current in our
structure is exponentially increasing with bias due to the in-
crease in the tunnel current under the whole area of the gate.
With further increase in the bias the inhomogeneities appear
because, on one hand, the channel current is growing. On the
other hand, the electron concentration in the channel drops

�inhomogeneously� and therefore the channel conductivity is
decreasing. At some point these two effects lead to appear-
ance of a strong electric field along the channel, especially
under the drain edge of the gate, where the channel current
has a maximum and the electron concentration has a mini-
mum. That causes the electron velocity in the channel under
the drain edge of the gate to saturate. When that happens,
then, ideally, that should lead to the saturation of the total
current of the structure �cf. Fig. 5�. The voltage distribution
and the electron concentration in the channel under the gate,
the distribution of the tunnel-current density should “freeze”
and stay constant �cf. Fig. 7�, when higher biases are applied
to the structure. We see that the mechanism of the current
saturation is completely analogous to that in HEMTs.

If we take a derivative of the current and take a look at the
voltage dependence of the gate-drain differential resistance
of our tunnel structure, then the differential resistance should
be decreasing with bias at low biases �cf. the range 0�U
�0.8 V in Fig. 6�, rather than staying constant as in
HEMTs. That happens due to a roughly exponential increase
of the tunnel conductivity of the tunnel Schottky barrier with
bias. At higher biases, at the transition to the current-
saturation regime, the gate-drain differential resistance
should be increasing �cf. the range 0.8 V�U in Fig. 6� and,
ideally, diverging. In such a way we see that the differential
resistance of our structures should have a characteristic mini-
mum at some bias �U�0.8 V in Fig. 6�, corresponding to
appearance of the channel depletion.

In reality, the characteristics of the tunnel structures are
not ideal and the current does not come fully to a saturation.
This is due to the fact that the gate-channel voltage changes
with bias in the depleted part of the channel under the gate
edge and that gives rise to an additional tunnel current in-
jected into the depleted part of the channel, see Fig. 8. Al-
though spatially the channel depletion region is usually small
as compared to the total gate area, the tunnel current density
is exponentially high there. Because of that, this “edge” cur-
rent might give an appreciable contribution to the total cur-
rent. In result, the gate-drain differential resistance does not
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diverge in the large-voltage regime �see Fig. 6�. Neverthe-
less, the voltages at the source and rho contacts under the
gate should still come to a saturation at large biases since the
edge effects should not affect the freezing of the potential
distribution in the deep parts of the channel under the gate
�cf. Fig. 7�.

To verify the qualitative picture above and its agreement
with the measurements, we have developed a quantitative
model for the large-bias regime. We consider two types of
inhomogeneities in our structures. One is macroscopical in-
homogeneities conditioned by the current flow. The other
one is microscopical inhomogeneities due to the fluctuations
in the doping concentration in the channel. Contrary to con-
ventional HEMTs, the channel of our structures is heavily
doped and the inevitable microscopical fluctuations of the
dopant density lead to large-amplitude potential fluctuation
in the channel. In its turn, the potential fluctuations have an
impact on the local and average tunnel current injected into
the channel from the gate. A model, which takes into account
the microscopical potential fluctuations in the channel, their
screening by the gate and by the channel electrons, percola-
tion effects and their impact on the electron mobility in the
channel, the tunnel-current fluctuations and also the macro-
scopical inhomogeneities, is described in the subsequent sec-
tions.

B. Nonlinear screening of charge fluctuations

The objective of this section is to determine the micro-
scopical potential fluctuations and the averaged electron con-
centration in the channel in the presence of the donor-density
fluctuations. Let us consider a �-doped 2D layer with an
average 2D dopant density of ND. The dopant atoms are ran-
domly distributed along the 2D layer, we assume here that
the dopants are located exactly in the plain of the �-layer
only. The probability of finding X atoms in an area S of the
2D layer is described by the Poisson distribution

P�X,S� =
�NDS�X

X!
exp�− NDS� . �5�

Assuming that

X � 1, �6�

treating X=ND
locS as a continues variable �ND

loc is a local do-
nor density averaged over an arbitrary-chosen area S� and
assuming that

�ND
loc − ND� � ND �7�

we can replace the Poisson distribution in Eq. �5� by the
Gaussian one

PND�ND
loc� �

1
	2��ND

exp
−
�ND

loc − ND�2

2�ND
2 � , �8�

where �ND is the standard deviation

�ND =
	ND

	�r
, �9�

if we take the area S in the form of a circle of a radius r.

The donor-density fluctuations lead to fluctuations in the
channel-bottom potential. Such fluctuations will be screened
by two mechanisms. One is screening by the gate, this
screening mechanism is always present and it is linear. The
second one is the screening by the electrons in the channel,
which is taking place in the regions of the channel filled by
electrons �below the Fermi level� only, i.e., this is a nonlinear
mechanism. Further we calculate the potential fluctuations
with the account of both screening mechanisms.

We assume that the fluctuations of ND
loc have a fixed radius

r �the radius will be defined later on�, which satisfies the
condition

2r  d . �10�

Assuming that the charge is distributed homogeneously in-
side the fluctuations of radius r and because of the condition
in Eq. �10�, we can apply the local-capacitance approxima-
tion

��ch =
e2

C
��ne0

loc − �ND
loc� , �11�

where ne0
loc is the local electron concentration in the channel

and �ch is the electron potential energy at the channel bot-
tom. The approximation allows us to treat both the gate and
electron screening in a simple fashion.

Let us assume that the channel is filled by electrons till a
Fermi level ��ch�. By N0 we denote a donor density in the
channel that would bring the bottom ��ch� of an empty chan-
nel to a given Fermi level

N0 = ND
loc��ch=�ch

. �12�

Now, using the local-capacitance approximation we can
write the following equation for the local value of �ch for
sufficiently low values of ND

loc:

�ch = �ch +
e2

C
�N0 − ND

loc�, if ND
loc � N0, �13�

where we take also the temperature equal to zero �T=0�, i.e.,
there are no electrons above the Fermi level in the channel

ne0
loc = 0, if ND

loc � N0. �14�

The situation is a bit more complicated, when ND
loc�N0,

those regions of the channel will be filled by electrons. We
can write the following equations for ne0

loc and for �ch,
screened by the channel electrons:

�ch − �ch =
ne0

loc


2D
, �15�

�ch − �ch =
e2

C
�ND

loc − N0 − ne0
loc� . �16�

Solving the Eqs. �15� and �16� and combining the solution
with Eqs. �13� and �14�, we get the following expressions for
the channel-bottom electron potential energy:
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�ch = ��ch +
e2

C
�N0 − ND

loc� if ND
loc � N0

�ch −
1

1 + 	

e2

C
�ND

loc − N0� if ND
loc � N0

 �17�

and for the electron concentration in the channel

ne0
loc = �0 if ND

loc � N0

	

1 + 	
�ND

loc − N0� if ND
loc � N0. �18�

The electron screening is a local screening mechanism in the
framework of the used local-capacitance approximation. The
neighboring regions are not affected by the screening of a
particular local fluctuation.

The above equations let us calculate the values of the
screened and not-screened �by electrons� fluctuations of the
electron potential energy in the channel. Equation �13�
shows, that when the channel is fully depleted of electrons
�N0−ND

loc��ND, the channel Fermi level is low, see Fig.
9�a��, then the electron-potential-energy fluctuations could be
described by the Gaussian distribution �since ��ch��ND

loc in
Eq. �13�� with the standard deviation given by

�� =
e2

C
�ND = 4	�

d

r

e2

�
	ND. �19�

In the opposite case, when the Fermi level in the channel
is high �ND

loc−N0��ND, see Fig. 9�c�� and all the electron-
potential-energy fluctuations are under the Fermi level, then
it follows from the lower part of Eq. �17� that the screened
channel-bottom fluctuations are also Gaussian, although with
a different standard deviation

��
scr =

1

1 + 	

e2

C
�ND �

	�1�ND


2D
. �20�

We see that the fluctuations are suppressed by the factor of
1+	 �which is �10 in our structures� due to the electron
screening, as compared to Eq. �19� but the electron-potential-
energy fluctuations stay symmetric with respect to a certain

average level and Gaussian in both cases. The screening is
linear in both limiting cases.

In the intermediate case ��ND
loc−N0���ND�, ��ch is not

simply ��ND
loc, the electron-potential-energy fluctuations are

not Gaussian any more, they become strongly asymmetric, as
we can see from Eq. �17�. The screening is essentially non-
linear in this case: a part of fluctuations will be screened
�ND

loc�N0� and a part will be not screened �ND
loc�N0�. The

latter fluctuations will have large amplitude, although the
screened ones will be suppressed, see Fig. 9�b�.

Now, let us define the radius of the fluctuations. We define
it in such a way, that it maximizes the amplitude of the
electron-potential-energy fluctuations in Eq. �19�. Equations
�9� and �19�, on one hand, show that the amplitude of the
fluctuations grows with the decrease in the radius of the fluc-
tuations and the amplitude of the fluctuations is diverging in
the limit r→0. On the other hand, the local-capacitance ap-
proximation, which was used to derive Eq. �19�, fails in the
limit 2r�d. Therefore, we need to refine the approximation
to determine an optimum radius.

For that purpose, we apply an approach similar to the
linear “uniform cluster” approximation used by Kane,22

where the fluctuations of fixed size were considered in a
doped three-dimensional �3D� sample. We modify the ap-
proach for the case of 2D dopant layer and include the gate
screening. The average electron potential energy created by a
donor in a cluster S of radius r is defined in the model as the
uniform average

�v� =
1

S2�
S

v�R� 1 − R� 2�dR� 1dR� 2, �21�

where v is the Coulomb potential energy of a donor screened
by the gate

v�R� � = −
e2

��R� �
+

e2

�	�2d�2 + �R� �2
, �22�

where R� is the coordinate in the plane of the � layer. Calcu-
lation of �v� shows �we skip the calculation details here� that

�v� � − 1.7
e2

�r
�23�

in the limit r�2d and �v� coincides with the local-
capacitance approximation in the opposite limit r�2d. The
analysis of the standard deviation for the electron-potential-
energy fluctuations ���

un.cl.=�NDS�v�� in this case shows that
��

un.cl. is a monotonously increasing function of r, when
r→0, with

��
un.cl.�r�2d � max���

un.cl.� � 1.7	�
e2

�
	ND. �24�

It has been also shown in Ref. 22 that the uniform-cluster
approximation, where the fluctuations with a fixed radius are
considered only, underestimates the amplitude of the
electron-potential-energy fluctuations, which are, generally
speaking, determined by the fluctuations with all possible
radii. For example, the Thomas-Fermi method,22 where the
fluctuations with different radii are taken into account, gives

x

a b c
E E E

scr
ϕη2

ϕη2

x x

chϕ

Φch

ΦmΦmΦm

Φch

Φch

chϕchϕ

FIG. 9. Illustration to the nonlinear screening of the microscopi-
cal fluctuations of the electron potential energy in the channel for
different values of the channel Fermi level ��ch�. Potential profile
in the case of �a� depleted �low �ch�, �b� partly filled �intermediate
�ch�, and �c� fully filled �high �ch� channel.
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the electron-potential-energy fluctuations of a factor of �2
larger as compared to the uniform-cluster approximation in
the case of doped 3D samples, see.22 Therefore, as a rough
approximation, we choose the fluctuation radius in our
local-capacitance approximation in such a way that
���2 max���

un.cl.�. Substituting Eqs. �19� and �24� into this
relation, we get the optimum radius of

r = d . �25�

The choice of the radius also fulfills the condition �10�. In
the following calculation we take into account such “opti-
mum” fluctuations with the radius given by Eq. �25� only.

Further, we can calculate the average electron concentra-
tion �ne0� in the channel. We average Eq. �18� over the dis-
tribution of the microscopical donor fluctuations in Eq. �8�

ne0 = �ne0
loc� = �

0

�

ne0
loc�ND

loc�PND�ND
loc�dND

loc. �26�

The electron-potential-energy fluctuations in the fully de-
pleted channel are symmetric with respect to a certain aver-
age level. That means that the percolation threshold coin-
cides with the average level. Since ��ch��ND

loc in Eq. �13�
and the fluctuations ND

loc are symmetric with respect to ND
�see, Eq. �8��, then the percolation threshold is determined by
the condition: N0=ND. The critical average electron concen-
tration �nc� in the channel corresponding to the percolation
threshold is �from Eqs. �18� and �26��

nc =
	

1 + 	
�

ND

�

�ND
loc − ND�PND�ND

loc�dND
loc =

	

1 + 	

�ND

	2�
.

�27�

The parameter 	 is �1 in our structure and nc becomes
independent of 	 and also of the Coulomb energy in this
limit. The independence of nc of the Coulomb energy might
seem strange, but this is not something unusual in the perco-
lation problems,23 when the density of the electron states is
much higher than some characteristic inverse Coulomb en-
ergy. In our case, that corresponds to the condition 	�1,
where 	 is a product of the 2D density of the electron states
and a Coulomb term in Eq. �2�.

Further, we can define a density of the “active” electrons
above the percolation threshold as

ne0
act = �0 if ne0 � nc

ne0 − nc if ne0 � nc.
� �28�

Now, let us make some numerical assessments for our
structures. The average donor density in our structures is
ND�7.2�1012 cm−2. That gives us ND�r2�100 for the av-
erage number of donors in a circle of the optimum radius
r=d and the condition �6� is satisfied. The standard deviation
of the donor-density fluctuations is �ND�7.5�1011 cm−2,
according to Eq. �9�. That means that �ND�ND and the
condition �7� is satisfied in the vicinity of the channel-
depletion regime, when ne0�nc. The critical electron con-
centration in the channel at the percolation threshold is
nc�2.7�1011 cm−2, according to Eq. �27�. The standard
deviations of the electron-potential-energy fluctuations

in the regime of fully depleted channel in Eq. �19� is
���250 meV. Such not-screened fluctuations have an un-
expectedly large amplitude. Although the regime is not
achievable in our structures, �� does describe the scale of the
not-screened fluctuations in the regime of a partly filled
channel, see Eq. �17� and Fig. 9�b�. In the case of channel
filled by electrons, the standard deviations of the fully
screened electron-potential-energy fluctuations in Eq. �20� is
��

scr�28 meV. The half width of 17 meV of the broadening
of the ground subband assumed in the low-bias calculations
is somewhat lower than ��

scr above. That could be explained
by the filling of the first-excited subband in the low-bias
regime. The filling of the next excited subband doubles the
density of states in the channel, the effective parameter 	
will be a factor of two larger and, according to Eq. �20�, the
standard deviation for the screened fluctuations will
be approximately one half of the value given above:
��

scr /2�14 meV. The latter value is already close the
ground-subband broadening assumed in the low-bias regime.
The broadening of the higher subbands is lower, this is prob-
ably because the corresponding wave functions are more de-
localized with respect to the � layer and less affected by the
electron-potential-energy fluctuations.

The bias dependences of ne0
act and ne0 calculated with Eqs.

�26� and �28� are shown in Fig. 4. One can see that the
percolation threshold is reached at the bias of 1 V in our
structures, when ne0

act=0 and ne0=nc.
The �-doped layers �although without gate� with similar

donor density have been studied in Ref. 16 before. The cal-
culations of the electron concentration at the percolation
threshold in Ref. 16 gave nc�1012 cm−2, which is approxi-
mately a factor of �3 higher than that in our calculations.
Since both our calculation method of nc and that used in Ref.
16 could be considered as an order of magnitude assessments
only, our calculation results are in reasonable agreement with
Ref. 16. A somewhat lower calculated value of nc in our case
probably should be attributed to account of the asymmetry
and of the non-Gaussian character of the microscopical po-
tential fluctuations in the nonlinear-screening regime. As one
can see from Eq. �17� and the illustration in Fig. 9�b�, the
potential fluctuations are strongly asymmetric in our model.
A qualitatively similar strong asymmetry of the potential
fluctuations has been also shown23 to take place in the related
not-gated structures, where the doping layer is a bit shifted
with respect to 2D channel.

C. Tunnel current

Now, let us calculate the tunnel current between the gate
and the channel with account of microscopical potential fluc-
tuations described in the previous section. At low and nega-
tive biases, the electrons are tunneling between the metal
gate and the lowest few subbands in the channel. An accurate
self-consistent solution of the Schrödinger and Poisson equa-
tions is necessary in this case, as it is outlined in Sec. III. In
the contrary, at large positive biases, the electrons are tunnel-
ing from the metal gate into the predominantly high-
numbered ��50� 2D subbands. Therefore, we can treat the
2D subbands in the channel quasiclassically in the large-bias
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regime. The equation for the local gate→channel tunnel cur-
rent density �jt

loc� can be written in the following form in this
case

jt
loc��ch� = e


2D

2��
�

�ch

�m

��m − E��Ttun�F��ch�,E��dE�,

�29�

where E� is the electron energy in the channel �correspond-
ing to the electron motion perpendicular to the barrier�, Ttun
is the barrier tunnel coefficient at the energy of the incident
electron of E� and F is the electric field in the triangular
barrier between the gate and the channel. The quasiclassical
expression for Ttun in the two-band approximation is

Ttun�F,E�� = exp
−
2	2m�

e�

Eg
3/2

F
G��b

Eg
�� , �30�

where

G�Z� = �
0

Z

	Y�1 − Y�dY, 0 � Z � 1,

=
1

4
�	Z	1 − Z�2Z − 1� + arcsin�	Z�� , �31�

�b = �b�E�� = �sch + �m − E�, �32�

F = F��ch� =
�sch + �m − �ch

ed
, �33�

�b�E�� is the height of the triangular barrier for an electron
incident on the barrier with the energy of E�, �sch is the
Schottky-barrier height relative to the Fermi level in the
metal gate ��m�, m� is the electron effective mass at the
conduction-band bottom, Eg is the band-gap energy.

Further, we need to calculate the local tunnel-current den-
sity �jt� averaged over the microscopical potential fluctua-
tions in the channel, i.e., over the fluctuations of the barrier
tunnel transparency as a consequence of the fluctuations of
the electric field inside the barrier. The current is given by
the equation

jt = �
−�

�

jt
loc��ch�ND

loc��PND�ND
loc�dND

loc, �34�

where PND is the distribution function for the donor-
concentration fluctuations in Eq. �8�, jt

loc is given by Eq. �29�
and dependence of �ch on ND

loc is described by Eq. �17�.
Now, we calculate the value of jt for our structures nu-

merically. For every bias point, we calculate the potential-
energy profile self-consistently for a given bias between the
gate and the channel, by �ch we define the energy of the
bottom of the ground subband in the channel. Then we find
the value N0 such that the Eq. �12� is satisfied. After that we
can calculate the nonlinearly screened fluctuations of the
electron potential energy with Eq. �17� and also the tunnel
current in Eq. �34�. The dependence of the tunnel current on
the local bias in the channel is shown in Fig. 10. The tunnel
current in Fig. 10 tends to saturation near and above the bias

of the percolation threshold of 1 V �see Fig. 4�. This is be-
cause the channel becomes depleted at such biases, the en-
ergy difference between �m and the channel bottom saturates
�see Fig. 9�a�� and that leads to the saturation of the tunnel
current.

At low and negative biases the microscopical fluctuations
in the channel are suppressed, therefore we neglect them and
use the low-bias model for calculation of the tunnel current,
as it is outlined in Sec. III B. The tunnel current calculated in
this regime is also shown in Fig. 10.

D. Channel current

Now that we know the electron concentration in the chan-
nel and the tunnel current averaged over the microscopical
fluctuations, let us consider the equations describing the elec-
tron flow along the channel and the corresponding macro-
scopical inhomogeneities. The channel current and the elec-
tron potential energy drop along the channel are described by
the following set of equations:

jch = − ne0
act��ch��0��ch�

��ch

�x
, �35�

� jch

�x
= jt��ch� , �36�

where jch is the 2D channel current density per unity of the
channel width, �ch=�ch�x� is the local Fermi level in the
channel, x is the coordinate along the channel with the zero
chosen at the source edge of the gate. The first Eq. �35� is a
material equation, which takes into account the conductivity
due to the lowest subband in the channel with the local active
2D electron concentration of ne0

act��ch� and the mobility
�0��ch�. Equation �35� is used in the “large-bias model,”
when a large positive bias is applied to the structure. At low
and negative biases, we replace Eq. �35� with the following
equation:

�0.5 0.0 0.5 1.0 1.5
10�4

0.001

0.01

0.1

1

10

Φm�Φch �eV�

j t
�A
�c

m
2 �

FIG. 10. �Color online� The light-blue line
��m−�ch�0.2 eV� is the local tunnel-current density calculated
with the large-bias model with averaging over microscopical poten-
tial fluctuations, as described by Eq. �34�. The dark-blue line
��m−�ch�0.3 eV� is the current density calculated with the
low-bias model, here the tunneling is taking place to/from few
lowest channel subbands only.
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jch = − �ne0��ch��0
0 + ne1��ch��1

0�
��ch

�x
, �37�

where �i
0 are the bias independent subband mobilities mea-

sured at zero bias. This equation is used in the calculations
with a “low-bias model.” The second Eq. �36� is the conti-
nuity equation, where jt��ch� is the local density of the tun-
nel current between the gate and the channel. jt��ch� has
been calculated either with Eq. �34� in the case of large bias
model or as it is outlined in the Sec. III in the low-bias
regime.

The Eqs. �35� �or Eq. �37� and �36� were solved with the
boundary conditions that jch=0 at the open source side of the
structure at x=0 and �m−�ch=eUch-dr at the drain edge of
the gate, where Uch-dr is related to the total bias U applied
between the gate and the drain Ohmic contact by �see sche-
matic in Fig. 8�

U = Uch-dr + Uch
op + Uedge, �38�

where Uch
op= jchLch

op /�ch
op is the voltage drop over the open

�not gated� channel between the gate edge and the drain con-
tact, �ch

op and Lch
op are the conductivity �per square� and the

length of the not-gated channel, Uedge is the voltage drop
over the depleted and transitional regions at the drain edge of
the gate between the gated and not-gated parts of the chan-
nel. Since the local capacitance approximation is not valid in
the transitional region at the edge of the gate, we need to
consider the region separately.

For assessment of Uedge we were assuming that
Uedge=FchLedge, here Fch is the electric field along the chan-
nel under its drain edge, Ledge is the length of the depleted/
transitional region. According to Ref. 24, the depletion
length in a 2D channel �with the electron concentration as in
our structures� at the edge of a gate is less than �20 nm
even for the bias of �2 V between the gate and the 2D
channel. The other relevant length scale for the transitional
region is the gate-channel distance, which is also �20 nm in
our structures. Therefore, we assume in the following that
Ledge�30 nm. Our calculations show that Uedge is always
negligibly small, except for the current-saturation regime
�Fch�Fsat�, where Uedge can amount to �0.15 V in our
structures. The length Ledge also gives roughly the length
scale of the edge region where the edge current �omitted in
the above model� is injected into the channel in the current-
saturation regime �above �0.9 V in Fig. 5�.

We have chosen the dependence of the channel mobility
in Eq. �35� on the Fermi level there in the form

�0��ch� = �0
0
1 + exp��m − �ch − 430 meV

90 meV
��−1

.

�39�

The parameters in the correction factor � . . . �−1 in Eq. �39� are
chosen in such a way, that, first, the mobility tends to zero at
large biases, when the channel is depleted and its electron
concentration is getting lower than the critical value at the
percolation threshold; second, �0 tends to �0

0 at low biases;
third, the values of the saturation currents at large applied
biases agree well with the measurements for both samples d

and e, see Fig. 5. Calculating the electron concentration for
given �ch, we can illustrate the dependence of the mobility
on the electron concentration in the channel, see Fig. 11. The
approximation in Eq. �39� is discussed in more details below.

E. Comparison with measured characteristics

The calculated I-V and differential resistance characteris-
tics of the structures are shown in Figs. 5 and 6, they are in
good quantitative agreement with the measurement results in
the full measurement range. Here we have used low-bias
model at the biases below �0.3 V and we have used the
large-bias model at higher biases. Somewhat overestimated
value of the calculated differential resistances at around
1.2 V is probably due to neglected additional “edge” tun-
nel current in the theoretical model. The edge current would
contribute to a slow growth of the current in the saturation
region in Fig. 5 and corresponding decrease of the large-
positive-bias differential resistance in Fig. 6 at the biases
above �1.2 V. The calculated voltages at the source and rho
contacts are shown in Fig. 7, they are also in quite good
agreement with the measured characteristics.

F. Inhomogeneities at large biases

In this section we will be discussing the potentials, elec-
tron concentrations, currents, etc. averaged over microscopi-
cal fluctuations discussed in Secs. V B and V C. At large
positive biases, the distribution of the tunnel current becomes
essentially macroscopically inhomogeneous along the gate.
The features, corresponding to the onset of tunneling to dif-
ferent subbands �see Fig. 3�, in the spectrum are washed
away in this case. One can even come to a situation, when
the total tunnel current flowing through the structure is de-
termined mostly by a small part of the structure at the end of
the gate, which is close to the drain Ohmic contact. Figure 12
illustrates strong macroscopical inhomogeneities of �ch�x�,
total channel current Ich�x�=Wjch �W is the channel width�,
ne0�x� and jt�x� for the samples e and d in the situations close
to the current saturation. We were assuming here that the
electric field along the channel under the drain edge of the
gate reaches Fsat=50 kV /cm. The value of Fsat has been
roughly chosen in such a way, that Fsat times the mobility of
�100 cm2 /Vs is close to the electron saturation velocity of
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FIG. 11. �Color online� Mobility in the ground subband vs elec-
tron concentration in the subband as described by Eq. �39�.
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�5�106–107 cm /s. As our calculations show, the choice of
the particular vale of Fsat does not have large impact on the
calculated characteristics of the structures. The ends of the
calculated curves at positive biases in Figs. 5–7 correspond
to the condition F=Fsat. At the very right edges of the gates
the electron concentration in the channels is getting close to
the minimum achievable value ne0→nc, see Fig. 12. One can
see in Fig. 12 that the tunnel-current density grows by almost
four orders of magnitude toward the right side of the struc-
ture e, where the Ohmic contact to the channel is placed, and
more than half of the total current of the structure is injected
into the channel through the last 50 �m of the gate, although
the whole structure is more than 20 times longer than that.
One can also see that the voltage drop along the channel
under the gate of sample e is pretty large, it is �0.8 V. The
inhomogeneities are also significant in the structure d with
the short gate. Here the tunnel current is changing by an
order of magnitude along the gate and the voltage drop along
the channel under the gate is as large as �0.3 V. In such a
way we see that the macroscopical inhomogeneities can be
very significant in the large-bias regime.

G. Mobility at large biases

As we have mentioned above in Sec. V D, the dependence
in Eq. �39� of the mobility on the Fermi level �or on the
electron concentration� in the channel is chosen in such a
way, that the mobility is getting very low at large biases,

when the electron concentration in the channel is approach-
ing the percolation threshold. The choice of the mobility de-
pendence on the electron concentration has significant influ-
ence on the current-voltage characteristics at large biases,
especially on the value of the saturation current. For ex-
ample, if we would take the electron mobilities in the chan-
nel as bias independent and equal to the mobilities measured
at zero bias, then we would get the calculated saturation
currents for both samples d and e by approximately factor of
four higher than the measured values. Therefore, the mea-
sured value of the saturation current gives an indirect evi-
dence for a decrease of mobility at large biases �at low elec-
tron densities in the channel�. Qualitatively, a high mobility
at large biases makes the region close to the drain edge of the
gate with large voltage drop over the barrier wider. The tun-
nel current is large in the region. Consequently, the total
current of the structure gets higher.

We could measure directly the mobility and the channel
conductivity in our structures at low biases only, the mea-
surements of the mobility at large biases were not possible
because of relatively high tunnel current and appearance of
macroscopical inhomogeneities. There are some, although
just few, reports15,16 in the literature, where the behavior of
the conductivity and mobility in the �-doped layers with high
doping level has been studied in the past. The investigations
have been done on not-tunnel structures. The conductivity of
the 2D channel was going to zero at n�1012 cm−2 in the
structures investigated in Ref. 15, where the �-n-doping level

FIG. 12. �Color online� Calculated nonhomogeneous distributions of the channel Fermi level �ch �Figs. �a� and �a���, the channel current
Ich �Figs. �b� and �b���, the electron concentration ne0 in the lowest subband �Figs. �c� and �c��� and the tunnel-current density jt �Figs. �d�
and �d��� in the current-saturation regime. The figures on the left �right� side show the plots for the sample e �sample d�. Here we have
chosen the biases applied to the structures in such a way that the electric field along the channel under the drain �right� edge of the gate is
50 kV/cm.

STRONG INHOMOGENEITY OF THE TUNNEL SCHOTTKY… PHYSICAL REVIEW B 82, 075318 �2010�

075318-11



was �1.6�1012 cm−2, with the conductivity of the channel
rapidly increasing at higher electron concentration. In
Ref. 16 it was shown that the mobility of the 2D
channel with �-n doping at the level of �6.6�1012 cm−2 is
decreasing rapidly already at the electron concentration of
n�2�1012 cm−2 and it tends to zero at n�1012 cm−2. We
have chosen the dependence of the mobility on the electron
concentration in the channel defined by Eq. �39� and shown
in Fig. 11 to be similar �except for two differences� to the
one reported in Ref. 16 in the � layers with similar doping
level. One difference is that the electron mobility at
high electron concentrations in our samples is somewhat
lower than that in Ref. 16 that could be due to a different
electron confinement in our structure. The other difference is
that the mobility is getting very low in our approximation
in Eq. �39� at the electron concentrations which are by
�5–7�1011 cm−2 lower than that in Ref. 16. That is due to
a lower value of the electron concentration at the percolation
threshold in our model for our structures. Our value is a
factor of three lower than �1012 cm−2 reported in Ref. 16
and that explains the shift of the mobility drop toward lower
electron concentrations in Eq. �39� and Fig. 11, as compared
to that in Ref. 16.

At this point we have to mention that both in our work
presented here and in Refs. 15 and 16 there are no direct
measurements of the electron concentration in the channel in
the regime, when the channel is getting depleted. Instead,
different characteristics of the structures were measured vs
bias while a relation between the bias and the electron con-
centration in the channel was always established on the basis
of self-consistent calculations of the potential profile of the
2D channels. Further, good agreement between different
measured and calculated characteristics was giving indirect
support to the calculated values of the electron concentration
both in our and in the cited works. Nevertheless, the values
of the electron concentration are not known for sure. The
outcome of the electron-density calculations strongly de-
pends on the assumptions made. For example, the density of
active donors in the channel is usually a poorly defined pa-
rameter but it has strong influence on the electron concentra-
tion in the channel. Also, the assumptions made in the mod-
eling of the microscopical charge fluctuations have an impact
on the calculated value of the electron concentration, e.g., in
the regimes close to the percolation threshold. As we have
mentioned in Sec. V B, the nature of the calculation ap-
proaches used in our work and in Ref. 16 gives an order of
magnitude assessment for the electron concentration at the
percolation threshold only. In view of such uncertainties, our
approximation in Eq. �39� and Fig. 11 for the dependence of
mobility on applied bias �and on the electron concentration�
agrees reasonably well with the earlier publications.

The rapid decrease in the conductivity and mobility in the
heavily doped � layer at nonzero electron concentration
��1012 cm−2� was attributed to disorder-induced metal-
insulator transition in Refs. 15 and 16. To support that, the

temperature dependence of conductivity and other character-
istics of the � layer were extensively investigated in Ref. 16.
We believe that the nature of the mobility decrease �Eq. �39�
and Fig. 11� at low electron concentrations in our structures
should be also related to the disorder-induced metal-insulator
transition. Although the mobility should be changing as a
power law25,26 close to the percolation threshold, this
behavior is a too subtle effect to be investigated/identified in
our structures, since it is limited to close vicinity
��ne0−nc��nc� to the percolation threshold only.25 As one
can see in Fig. 12, the electron concentration in the channel
is changing in a wide range ��ne0−nc�nc� close to the cur-
rent saturation regime �when a part of the channel is ap-
proaching the percolation threshold� in our structures even
with the shortest gate �type d�. Additionally, the electric field
in the depleted parts of the channel in our structures must be
very strong, therefore the usual percolation theory25 has lim-
ited applicability in this case. Consequently, a rough �expo-
nential� model in Eq. �39� and Fig. 11 seems to be a reason-
able approximation for our structures.

VI. CONCLUSIONS

In the present paper we were investigating the behavior of
the tunnel �-doped Schottky structures with 2D channel in
the regime of large bias applied between the gate and the
channel. The measurements reveal a number of peculiar fea-
tures in the I-V and other characteristics at large applied
biases. To describe the features, we have developed a model
which takes into account both microscopical fluctuations of
the donor density in the � layer and the macroscopical inho-
mogeneities due to the current-spreading effects. Consider-
ing the microscopical donor-density fluctuations, we take
into account the linear gate screening, nonlinear screening by
the electrons in the channel, percolation effects, the influence
of the fluctuations on the tunnel current, etc. Further, we
identify the local �macroscopical� depletion of the channel as
the bottleneck leading to the saturation of total current, to the
increase in the differential resistance and to the freezing of
the potential profile along the channel at large biases. Our
measurements and calculations indicate that the channel is
getting locally insulating due to the disorder-induced
metal-insulator transition in our structures, when the electron
concentration in the channel is still relatively high
��3�1011 cm−2�. The calculated tunnel characteristics of
the structures are in good quantitative agreement with the
measured ones at both low and large applied biases.
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