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Exciton-polariton propagation in a quantum well, under center-of-mass quantization, is computed by a
variational self-consistent microscopic theory. The Wannier exciton envelope functions basis set is given by the
simple analytical model of D’Andrea and Del Sole �Phys. Rev. B 41, 1413 �1990��, based on pure states of the
center-of-mass wave vector, free from fitting parameters and “ad hoc” �the so-called additional boundary
conditions—ABCs� assumptions. In the present paper, the former analytical model is implemented in order to
reproduce the center-of-mass quantization in a large range of quantum well thicknesses �5aB�L���. The role
of the dynamical transition layer at the well/barrier interfaces is discussed at variance of the classical Pekar’s
dead layer and ABCs. The Wannier exciton eigenstates are computed and compared with various theoretical
models with different degrees of accuracy. Exciton-polariton transmission spectra in large quantum wells
�L�aB� are computed and compared with experimental results of Schneider et al. �Phys. Rev. B 63, 045202
�2001�� in high-quality GaAs samples. The sound agreement between theory and experiment allows to unam-
biguously assign the exciton-polariton dips of the transmission spectrum to the pure states of the Wannier
exciton center-of-mass quantization.
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I. INTRODUCTION

Exciton-polariton propagation in mesoscopic superstruc-
tures has shown interesting physical phenomena. Super-
radiant effects in multi-quantum wells,1–4 polariton propaga-
tion in uniaxial mesoscopic crystals,5 soliton-polariton and
shock waves propagation,6 and polaritons condensation in
distributed Bragg reflector �DBR� cavities7 are present in the
recent literature. All these phenomena are usually observed
in exciton-polariton propagation experiments performed in
optically nonlocal mesostructures. Among these, DBR mi-
crocavities and multi-quantum wells under Bragg condition
are usually studied as paradigmatic systems showing strong
radiation-matter interaction.8–11 For instance, periodic
N-quantum wells are usually well suited for studying super-
radiant exciton-polariton propagation that crucially depends
on the optical properties of theirs 2N interfaces.4,5 Moreover,
if no overlapping between the exciton envelope functions,
localized in adjacent quantum wells, are present, the so-
called dead-layer model was largely used in order to describe
the optical properties of the 2N interfaces of the system.12–19

Recently, a large dead-layer effect was also observed in col-
loidal ZnO nano crystals and this surface optical passivation
should be responsible on shorten the exciton lifetime in this
kind of systems.20

In his pioneering paper,21 Pekar introduced the concept of
exciton “dead layer” �or extrinsic dead layer� in order to
justify the three-layer model of the electric dipole polariza-
tion necessary to reproduce the reflectance line shape of
Wannier exciton spectra in a semi-infinite semiconductor. In
a subsequent paper,22 Thomas and Hopfield discussed the
microscopic basis �interface structural disorder, chemical dis-
order, image potential, impurities, etc.� of this classical ef-
fect. Looking forward a self-consistent microscopic compu-
tation of polariton propagation in semi-infinite samples in the
semiclassical framework, D’Andrea and Del Sole23 intro-
duced an “intrinsic dead layer” �or transition layer� by im-

posing the minimization of the exciton envelope function
mismatch at the vacuum/semiconductor surface, expanded in
an hydrogenic basis set. In the same paper an analytical ap-
proximation of the semi-infinite exciton envelope function
that exactly accomplishes the so-called no-escape boundary
conditions �NEBCs� at surface plane �Z=0� of the sample,
namely, �K�ze=0�=�K�zh=0�=0, was also given for com-
puting the optical response at semiconductor band edge,23,24

�K�r�,R� � = NK�e−iKZ + AeiKZ − �1 + A�e−P̄Z��1s�r�eiK� �·R� �/�S ,

�1�

where r� and R� are the coordinates of the electron-hole �e-h�
relative and center-of-mass motion, respectively, �1s�r� is the
n=1 hydrogenic wave function of the relative motion, K is
the wave vector of the center-of-mass along Z axis �with Z
�0�, K� � is the corresponding in-plane wave vector, A=

− P̄−iK

P̄+iK
is the exciton reflection amplitude on Z=0 vacuum/

semiconductor surface ��A�2=1�, and P̄ is an average coeffi-
cient of the evanescent waves due to the higher energy hy-
drogenic wave functions �n�1� taken close to the
continuum states �n→��.23,24 Moreover the exciton energy
is: EK=−R��aB�+ 	2

2M �K2+K�
2�, where R��aB� is the three-

dimensional �3D� Rydberg, M and 
 are total and reduced
mass, respectively, and aB is the 3D Bohr radius of the exci-

ton. The transition layer 1 / P̄=�� is strongly dependent on
the center-of-mass wave vector value K along Z axis23 and
coincides with the zone, close to the surface plane Z=0,
where the exciton envelope function �K�ze ;zh ;r���0.23,24

Notice that the transition layer of Eq. �1� is a quantum-
mechanical quantity derived self-consistently by a varia-
tional principle, and due to the distortion of the exciton en-
velope function at surface, where center of mass and relative
motion of the exciton are entangled, while Pekar’s dead layer
is a classical quantity characterizing the zone of the surface
where the electric polarization is zero �additional boundary
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condition—ABC� and due to the selvedge layer present in
real samples.22 Therefore, since Pekar’s dead layer is usually
determined as fitting parameter, its value can take into ac-
count not only the effect due to the boundary conditions
imposed on the exciton envelope function �intrinsic dead
layer� but also other physical effects present in real
surfaces22 �extrinsic dead layer�.

The former analytical model of Eq. �1� was extended to
the slab geometry25 where the transition layer and the effec-
tive Bohr radius were determined by a variational minimiza-
tion of the first momentum of the exciton Hamiltonian. Also
in this case the average level was chosen close to the energy
of the hydrogenic continuum states �n→��.25 Notice that the
former choice, not strictly necessary for the consistency of
the theory, induces some inconsistency as pointed out by the
authors of Refs. 26 and 27. In the present paper a different
choice, not affected by the former problem and that nicely
reconciles28 the transition layer in semi-infinite solids and in
slabs, is suggested.

Exciton envelope functions in quantum confined systems
�wells, wires, and dots� are usually computed by variational
minimization of the exciton energy in a so-called “ABC
free” theory.29 Notice that in the large quantum well limit
�L�aB� a very accurate numerical minimization is necessary
in order to determine a sensible dead-layer value. In fact, we
remind that the interband transitions at semiconductor band
edge are on the order of some electron volts in the visible
range of energies and the Wannier exciton energies are close
to the hydrogenic Rydberg: R��aB�= 	2

2

1
aB

2 �on the order of
tens of millielectron volt� while the center-of-mass energy of
the exciton is given by: ECM�L�aB�� 	2

2M � �
L �2 �on the order

of tens of microelectron volt�. Finally, the sensitiveness of
the optical spectrum to the dead-layer effect can be given by
the center-of-mass energy difference with and without the
dead-layer effect, namely, E�d�=E�L−2d�−E�L�
� 	2

2M � �
L �2 4d

L �from about tens of microelectron volt to zero�,
where E�d� /E�L��4d /L. Therefore, many orders of
magnitude30 in the energy accuracy should be necessary for
computing the Wannier exciton dynamics under the center-
of-mass quantization.

Notice that the transition layer affects the exciton center-
of-mass momentum �spatial dispersion effect� and gives ad-
ditional light waves propagating into the sample, therefore its
effect on the optical properties cannot be neglected neither in
the presence of a large energy broadening. Even if it has a
rather negligible effect on the energy position of exciton-
polariton peaks in transmission spectra, we expect that it
should have a non-negligible effect on the line-shape analy-
sis and its role should be even enhanced in the time resolved
optical spectra in multi-quantum well systems.6,7

The aim of the present work is twofolds: �i� a nonadia-
batic Wannier exciton envelope function, obtained as a gen-
eralization of the analytical model of Ref. 25, is solved by a
variational method, and compared with other model calcula-
tions at different degree of accuracy, namely, a more accurate
variational expansion in e-h subband products,31 an exact
adiabatic solution,27 and the heuristic so-called “hard-
sphere” model. Notice that the former extension is necessary
in order to study the limit of validity of the analytical model

itself, and it becomes also mandatory when a complete one
exciton basis set must be used, as in nonlinear optical
computation.32 �ii� In order to check the ability of the former
analytical model in reproducing the exciton center-of-mass
dynamics, the self-consistent optical transmission spectra in
a single quantum well is computed and compared with ex-
perimental results of Schneider et al.33 performed in high-
quality GaAs quantum wells. A sound agreement is obtained
for high-quality quantum wells both for intensity and phase
measurements of the optical transmission spectrum with our
analytical model for exciton masses ratio from the positro-
nium limit �
 /M =0.248� to the hydrogenic one �
 /M
=0.111�; moreover, it allows to unambiguously assign the
higher energy peaks, present in the spectrum of Ref. 33, to
the pure states of the center-of-mass quantization.

In Sec. II the analytical Wannier exciton function model
of Ref. 25 is revisited and generalized. We here remind all
the approximations involved in order to facilitate the gener-
alization of the analytical model at an order higher than the
1s hydrogenic wave function as explicitly reported in Appen-
dix A. In Sec. III the optical response of a single quantum
well is computed and compared with the experimental results
of Schneider et al.33

II. WANNIER EXCITON IN A SLAB: VARIATIONAL
ANALYTICAL MODEL REVISITED AND IMPLEMENTED

Let us consider a Wannier exciton of energy E, confined
in a single quantum well of thickness L�aB, and clad be-
tween two infinite potential barriers �−L /2�Z�L /2�. The
exciton function, in a two-band model and in effective-mass
approximation, can be expanded in a complete basis set of

hydrogenic eigenstates:25 Ĥr��nlm�r��=�n�nlm�r��, where Ĥr�=

− 	2

2
�� r�
2− e2

�br ,

�K�r�,R� � = �E�r�,Z�eiK� �·R� �/�S , �2a�

�E�r�,Z� = 	
nlm

�anlmeiKnZ + bnlme−iKnZ��nlm�r�� . �2b�

The modulus of the exciton center-of-mass wave vector
along Z axis is Kn=�K2−K�

2=�� 2M
	2 �E−�n��−K�

2, where K� � is
the wave vector along the �x ,y� plane. Now, the sum on the
hydrogenic basis set of Eq. �2� can be separated in a finite
�for E��n+	2K�

2 /2M� and an infinite sum �with E��n
+	2K�

2 /2M�, that, at normal-incidence configuration �K�

=0.0�, give the following exciton envelope function:

�E�r�,Z� = 	
nlm


E��n�

��nlm cos�KnZ� + �nlm sin�KnZ���nlm�r��

+ 	
nlm


�n�E�

�anlme−PnZ + bnlmePnZ��nlm�r�� , �3�

where Pn= iKn= � 2M
	2 ��n−E��1/2 and �nlm=anlm+bnlm, �nlm

= i�anlm−bnlm�.
The analytical approximation of the former wave function

is obtained by adopting the procedure of Ref. 30. First of all,
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we restrict the finite sum to only one hydrogenic function:
the 1s �n=1� state; the general case will be discussed in
Appendix A and specialized for n=2.

The computation for a symmetric quantum well proceeds

by defining the operator: R̂�z→−z ;Z→−Z� that, applied to
the exciton envelope function of Eq. �3�, gives the relation-

ship: R̂�E�r� ,Z�= ��E�r� ,Z�. From this relation two sets of
exciton envelope functions are generated for even and odd
symmetries, respectively,

�E
e �r�,Z� = �1 cos�K1Z��1s�r� + 2	

nlm

n�1

��nlm cosh�PnZ��nlm
e �r��

− �nlm sinh�PnZ��nlm
o �r��� , �4a�

�E
o�r�,Z� = �1 sin�K1Z��1s�r� + 2	

nlm

n�1

��nlm cosh�PnZ��nlm
o �r��

− �nlm sinh�PnZ��nlm
e �r��� , �4b�

where the coefficients �1 and �1 are �1=�100 and �1=�100.
In order to perform a smart truncation of the former series

expansion, let us consider N-hydrogenic functions �with N
→��, and substitute the infinite sum of virtual states with an
�N−1� times degenerate state, located at an energy value
much higher than E. Notice that the former approximation
can be obtained by substituting Pn�1 with an average value

P̄=1 /�, where � is the transition layer of the Wannier
exciton.25 Therefore the former “one-transition layer” ap-
proximation of Wannier exciton envelope function is based
on the substitution of the infinite sum of the hydrogenic basis
set in Eqs. �4a� and �4b� with four analytical terminators that
accomplish the NEBCs at the well/barrier interfaces. In fact,
by imposing the NEBC: �E�ze= �L /2,zh ,���=�E�zh
= �L /2,ze ,���=0.0 we can determine, as shown in Refs. 25
and 30, the following four rational functions:

Fee�r�� = 2	
nlm

n�1

��nlm/�1��nlm
e �r�� = fee�z��1s�r� ,

Foo�r�� = 2	
nlm

n�1

��nlm/�1��nlm
o �r�� = foo�z��1s�r� ,

Feo�r�� = 2	
nlm

n�1

��nlm/�1��nlm
o �r�� = feo�z��1s�r� ,

Foe�r�� = 2	
nlm

n�1

��nlm/�1��nlm
e �r�� = foe�z��1s�r�

that give the requested terminators as shown explicitly in
Refs. 25 and 30 �and also in Appendix A see Eqs. �A5a�,
�A5b�, �A6a�, and �A6b��. This approximation gives rather
accurate numerical results when a large energy gap is present
between the traveling 1s state and the virtual higher energy
states, as will be carefully checked in the calculation and
further discussed in this section. With the use of the former

terminators the exciton envelope functions assume a compact
analytical form,

�m
e �r�,Z� = Nm

e �cos�KmZ� + cosh�P̄Z�fee
�m��z� − sinh�P̄Z�feo

�m�

��z���1s�r�

=Nm
e gm

e �z,Z��1s�r� for m = 1,3,5, . . . , �5a�

�m
o �r�,Z� = Nm

o �sin�KmZ� + cosh�P̄Z�foo
�m��z� − sinh�P̄Z�foe

�m�

��z���1s�r�

=Nm
o gm

o �z,Z��1s�r� for m = 2,4,6, . . . , �5b�

where Km�K1�m� with m the center-of-mass quantum num-
ber for even and odd symmetries, and �1s�r�=e−r/a /��a3 is
the 1s hydrogenic function of the relative motion.

Finally, from the continuity of the exciton wave function
��i��z→0+�=��i��z→0−� and its first derivative ���i�

�z �z=0+

= ���i�

�z �z=0− for i=e ,o at z=0 surface of the relative motion,
the relationships for the center-of-mass quantization are ob-
tained. Notice that, due to the symmetry properties of the
exciton envelope functions, the two former relations are re-
duced to the condition of approaching the z surface with zero
first-order derivative, namely,

�Fee

�z �z=0=0 and
�Foe

�z �z=0=0.
These conditions give the center-of-mass dispersion relations
for even �m=1,3 ,5 , . . .� and odd �m=2,4 ,6 , . . .� excitons,
respectively, namely,

Kmtg�KmL/2� + P̄tgh�P̄L/2� = 0 for m = 1,3,5, . . . ,

�6a�

P̄tg�KmL/2� − Kmtgh�P̄L/2� = 0 for m = 2,4,6, . . .

�6b�

Obviously, the difference between the former quantization
conditions and the simple condition Km= �

L m for m
=1,2 ,3 , . . . is due to the composed nature of the Wannier
exciton and Eqs. �6a� and �6b� will recover the former simple
condition in the limit value m→�.

The variational minimization of the first momentum of the
exciton Hamiltonian is computed for the lowest even and

odd energy states �m=1,2�: �m�Ĥex��m� / �m���m�=min,
by taking as variational nonlinear parameters the effective
Bohr radius �a� and the inverse of the transition layer

�P̄=1 /��. Even and odd variational parameters assume rather
the same value for large quantum wells �L�aB� and exactly
the same value in the bulk limit �L→��.23,25

Since the dynamics of an exciton, perfectly confined in a
quantum well, strongly depends on the well thickness
�L /aB�, let us consider the following different zones of quan-
tum well dimensions, namely, �i� a zone of very large quan-
tum wells �L�aB� or bulk limit L→�, where both the varia-
tional parameters assume their bulk values, and therefore the
exciton energy converges to the “hard-sphere model,”
namely, Em=−R��aB�+m2 	2

2M � �
L−2d �2 for m=1,2 , . . . In this

zone the transition layer assumes its saturation value ��
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=�L→�� �Ref. 30� in numerical agreement with that obtained
in a semi-infinite sample.34,35 �ii� The center-of-mass quanti-
zation zone �10aB�L�30aB�, where the Bohr radius
changes smoothly and its value remains rather close to the
bulk one while the transition layer strongly depends on the
quantum well thickness and dominates the exciton dynamics
from hydrogenic �
 /M =0� to positronium behavior �
 /M
=1 /4�. Notice that in this zone the former analytical model is
well suited for describing the exciton composite dynamics.
Moreover, �iii� by decreasing the quantum well thickness in
the range 5aB�L�10aB also the Bohr radius value shrinks.
In this zone strong nonadiabatic effects, due to the entangle-
ment between center-of-mass and relative motion, are
present, and the analytic model could be implemented by
higher energy hydrogenic wave function �see Appendix A�.
�iv� Finally, in the transition zone where Wannier exciton
behavior changes from 3D→2D dynamics, the transition
layer and the center-of-mass quantization along Z-axis loose
their meanings.

In order to study the Wannier exciton behavior in the
center-of-mass quantization the m=1 energy minimization is
computed by adopting the formula reported in Ref. 30. In
Fig. 1 the exciton energy, in a rather large AlGaAs/
GaAs�001� quantum well, is shown as a function of the
variational parameters value. The physical parameter values
of the model are the same of Ref. 36, namely, me=0.067mo,
mhh=0.457mo, nb=3.71, and L=20aB=250 nm. In this sys-
tem the heavy-hole Bohr radius and the Rydberg energy are
aB=12.4649 nm and R��aB�=−4.1965 meV, respectively.
Therefore, the Wannier exciton is in the center-of-mass quan-
tization zone with a mass ratio 
 /M =0.111, rather close to
the hydrogenic behavior.

Notice that in a scale where the minimum energy with
respect to the effective Bohr radius is clearly shown, the one
due to the transition layer is hardly observed �see the inset of
Fig. 1�.37 Moreover, the minimized effective exciton radius is

a=12.4850�0.002 nm and the transition layer �=1 / P̄
=21.160�0.002 nm while the exciton energy for m=1 en-

velope function is �1=−4.17975 meV and the computed
center-of-mass wave vector along Z axis is Km=1=0.795340
�10−3 a.u. The wave vector and the exciton energy, derived
from the minimization, are both in rather good agreement
with those computed by the hard-sphere model by taking the
dead-layer value equal to the minimized transition layer
�d=��. In fact, the hard-sphere model gives �̃1=−R��aB�
+	2K̃1

2 /2M =−4.17985 meV and K̃1=� / �L−2��=0.800525
�10−3 a.u. while exciton wave vector computed by zero

dead-layer value is strongly different �K̃=� /L�0.665012
�10−3 a.u.� from both the former values.

Notice, from Eqs. �6a� and �6b�, that the minimized tran-
sition layer of the analytical model coincides with the dead
layer ��=d� for m=1 center-of-mass wave vector while in-
creasing the m value �m�1� the dead-layer value decreases
���d�, till the limit value m→� where the center-of-mass
wave vector is Km=m� /L in correspondence of negligible
dead-layer value �d→0� �see also Figs. 5 and 6�.

In conclusion, the lowest energy exciton state �m=1� of
our analytical model is in good agreement with the results
obtained by the heuristic hard-sphere model when the dead
layer is substituted by the corresponding minimized transi-
tion layer value. Moreover, the sound agreement with the
“exact” adiabatic solution of Ref. 29 is fully discussed in
Ref. 30 and will not be reported here again.

The transition layer of the nonadiabatic exciton envelope
function of Eqs. �5a� and �5b� introduces an entanglement
between relative and center-of-mass motion of the exciton
that is the very reason that makes needless the ABC imposed
to the Maxwell equations and that causes many electromag-
netic waves propagation �spatial dispersion effect� also in
semiconductor with cubic symmetry.21,38

A systematic analysis of the effective Bohr radius and of
the transition layer as a function of the quantum well thick-
ness, and for different values of the mass ratio 
 /M are
shown in Figs. 2 and 3, respectively. The dependence of the
effective Bohr radius on the well thickness �Fig. 2� is a
strong function of the mass ratio 
 /M. In fact, it reaches its
saturation limit at about 10aB for positronium, while the hy-

FIG. 1. �Color online� Exciton energy as a function of effective
Bohr radius �a� and transition layer ��� parameters in a AlGaAs/
GaAs�001� quantum well of thickness L=250 nm. In the inset the
minimum exciton energy is clearly shown.

FIG. 2. Effective Bohr radius �a /aB� as a function of quantum
well thickness �L /aB� computed for five different masses ratios
�
 /M :0.050;0.094;0.142;0.219;0.249�.
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drogenic limit converges to the correct bulk value for well
thicknesses larger than 30aB, and shows a small increment
�less than 1/100� with respect to its bulk value at L�7.5aB.
Notice that also the transition layer value reaches its satura-
tion for L�10aB in the positronium while well thicknesses
as large as 30aB are necessary in order to obtain the hydro-
genic limit �Fig. 3�.

The asymptotic values of the transition layer for very
large quantum wells �L→��, as a function of mass ratio, are
shown in Fig. 4. We observe that the transition layer is as
large as four times the Bohr radius in the limit of hydrogenic
masses ratio �mh�1836me⇒��4aB� while it is a bit greater
than half the Bohr radius in the positronium limit �M
=4
⇒��0.7aB�; its behavior is also in agreement with the
exact adiabatic exciton envelope function27 as shown in a
previous computation for quantum well in the range of thick-
nesses 10aB�L�20aB �see Fig. 3, Ref. 30 where the two

curves must be exchanged�. We would like to remind that a
former evaluation,27 derived from the energy balance equa-
tion: −R��a�+ 	2

2M Km
2 =− 	2

2M � 1
� �2, at the continuum limit of the

hydrogenic set of states gives not a correct behavior of the
transition layer28 as a function of exciton masses ratio �see
also Ref. 30 and the discussion therein�.

Notice that exciton transition layer of Fig. 4, computed in
the limit of slab thickness L→�, should be equal to those in
semi-infinite sample of Eq. �1�. Therefore, the former choice
can reconcile the transition layer effect in semi-infinite
samples34,35 and in slabs,25 without introducing a further “ad
hoc” dead layer �added to the transition layer� as hypoth-
esized in Ref. 34.

We have observed before that in the analytical model of
Eqs. �5a� and �5b� the most intriguing approximation is the
hydrogenic series truncation adopted. In the present paper,
the correct energy location of the average virtual state27 is
obtained by comparing the analytical model with the full
theory of Ref. 31.

In Figs. 5 and 6 the heavy- and light-hole exciton ener-
gies, computed by the full theory of Ref. 31 and by the
former analytical model for a quantum well of thickness
L=20aB=250 nm are given as a function of an energy order
parameter m that in the case of our analytical model coin-
cides with the center-of-mass quantum number. The physical
parameters adopted in the calculations are the same of
Ref. 36, and the minimized parameters are alh
=19.977�0.002 nm and ahh=12.483�0.002 nm for light-
and heavy-hole effective Bohr radii respectively, and �lh
=14.277�0.002 nm and �hh=21.133�0.002 nm for the
corresponding transition layers.

We observe, from Figs. 5 and 6, that the contribution of
n=2 hydrogenic function becomes important for heavy-hole
exciton states with the center-of-mass quantum number
greater than m�12 corresponding to the exciton energy

FIG. 3. Transition layer values �� /aB� as a function of quantum
well thickness �L /aB� computed for five different masses ratios
�
 /M :0.050;0.094;0.142;0.219;0.249�.

FIG. 4. Saturation value of the transition layer ��L→� /aB� as a
function of mass ratio 
 /M.

FIG. 5. Heavy-hole exciton energy as a function of center-of-
mass quantum number m in a AlGaAs/GaAs�001� quantum well of
thickness L=250 nm. The energy is computed by full theory �dots�,
analytical model �crosses�, and hard-sphere model with �solid
curve� and without dead layer �dashed curve�.
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�2.3 meV greater than the heavy-hole m=1 state, and
analogously for light-hole states m�8��3.8 meV�. There-
fore, the analytical model, also in its lowest order of
formulation,25 should be able to reproduce the optical re-
sponse in this range of quantum well dimensions since both
the former ranges of energy are greater than those shown in
the experimental spectra �see Fig. 14�b�� of Schneider et al.33

Finally, in Figs. 5 and 6 also the hard-sphere model ener-
gies, computed with and without �d→0� the dead-layer ef-
fect, are shown. The rather sound agreement between the full
theory and the hard-sphere model with dead-layer effect for
the lower m values is essentially due to the values adopted in
the present calculation that coincide with the transition layer
values obtained by a variational minimization �namely, �hh

=1 / P̄hh�21.1 nm and �lh=1 / P̄lh�14.4 nm� while those
computed with the hard-sphere interpolation equation: d
= �1−2
 /M�aB are strongly different from the former ones
�dhh�10 nm and dlh�6.5 nm for heavy- and light-hole ex-
citons, respectively�.

Now, let us compute the lowest energy envelope function
of an exciton in the hydrogenic limit �mh→�� for the heavy
hole trapped at the site Zo=0 of a rather large quantum well
�L=20aB�. The analytical envelope function is: �m�z ;Zo
=0�=Nmgm�z ;Zo=0��1S�r� and, for transition layer limit �

→0�P̄→��, the exciton energy converges to the bulk value.
Indeed, in this limit, from Eqs. �5a� and �5b�, we obtain
tg�KmL /2�→−� and tg�KmL /2�=0, respectively, therefore
the wave-vector quantization of the electron is Km= �

L m for
m=1,2 ,3 , . . . In Appendix B the first momentum of the low-
est energy state of the trapped exciton Hamiltonian in a large
quantum well is given in an analytical form. The bulk exci-
ton energy can be obtained also by a variational minimiza-
tion as a function of effective Bohr radius a=aB
=10.8711�0.002 nm and the effective Rydberg is Ryd=

−4.81173 meV. In Fig. 7, the confinement function
g1�z ;Zo=0� is computed as a function of the electron-hole
relative motion along z axis. Notice that, at variance of a
simple cosine function that describes electron confinement in
a 2D quantum well,26 this function shows a rather flat shape,
except at the interfaces �Z� �L /2� and, as fully discussed
in Refs. 26 and 27, this behavior is a fingerprint that the
present analytical model is well suited for describing the
center-of-mass quantization. In Fig. 8 we compute the former
system by imposing a transition layer value different from
zero ��=21.133 nm�; also in this case the shape remains
rather smooth but the transition layer effect is clearly shown
at the boundaries of the well.

In conclusion we would like to remind that the optical
response of exciton polaritons is strongly dependent, not
only on the exciton energy but also on its envelope function
shape. Therefore for very large quantum wells �L�20aB� the
former analytical model should be able to describe the opti-
cal experimental measurements of Ref. 33.

In order to generalize the former model, also in the zone
very close to the quantum well thicknesses 5aB�L�10aB,
we will have to extend the finite sum of Eq. �3� to higher

FIG. 6. Light-hole exciton energy as a function of center-of-
mass quantum number m in a AlGaAs/GaAs�001� quantum well of
thickness L=250 nm. The energy is computed by full theory �dots�,
analytical model �crosses�, and hard-sphere model with �solid
curve� and without dead layer �dashed curve�.

FIG. 7. �Color online� Trapped exciton confinement function
�gm=1�ze ;zh=0�� �Eq. �B2��� of AlGaAs/GaAs�001� quantum well of
thickness L=250 nm as a function of electron Z coordinate with
transition layer �→0.

FIG. 8. �Color online� Trapped exciton confinement function
�gm=1�ze ;zh=0�� of AlGaAs/GaAs�001� quantum well of thickness
L=250 nm as a function of electron Z coordinate with transition
layer �=21.16 nm.
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energies of the hydrogenic wave function, as discussed in
Appendix A. Moreover, since the real symmetric matrix
Hamiltonian is rather diagonal only for large wells, in this
range of thicknesses, we must solve a generalized eigenvalue

problem, namely, AJ�� =EBJ�� , where �n�Ĥex��m�
= �m�Ĥex��n�=AJ and the matrix of the normalized exciton
states is quasiunit real symmetric matrix �n���m�
= �m���n�=BJ. Notice that the generalized analytical enve-
lope function is not a pure state of the center-of-mass wave
vector, even if it still remains under the one-transition layer
approximation. In conclusion, we have pointed out that the
analytical model is essentially based on a smart truncation of
the hydrogenic basis set expansion, and it must be imple-
mented �see Appendix A� to correctly take into account the
Wannier exciton dynamics in all the range of thickness till
the semi-infinite limit �5aB�L���.

III. OPTICAL RESPONSE OF A SINGLE QUANTUM
WELL UNDER THE CENTER-OF-MASS QUANTIZATION

In this section, the exciton-polariton propagation in a
single quantum well under center-of-mass quantization is
computed by the former analytical exciton model in a large
range of quantum well thicknesses �5aB�L�20aB�, and
compared with the full theories of Refs. 31, 33, and 36, and
with the heuristic hard-sphere model. Moreover, we will
compute self-consistently the polariton propagation in a slab
in order to reproduce, without introducing fitting parameters
�except the homogeneous nonradiative broadening�, the ex-
perimental transmission spectra in the high-quality GaAs
samples of Schneider et al.33

First of all, let us consider a GaAs quantum well of thick-
ness L=5aB=62.5 nm, that is in the non-adiabatic zone, as
discussed in the former section. The parameter values,
adopted for the calculation, are taken from Ref. 36, namely,
me=0.067mo, mhh=0.457mo, background refraction index
nb=3.71, energy gap Egap=1.42 eV, and nonradiative broad-
ening �=0.03 meV. The electric dipole moment is replaced
by the Kane’s energy39 �EK=22.71 eV for GaAs� that is con-
ceptually more suitable than the electric dipole moment for
describing the radiation-matter interaction in translational
periodic systems.

The transmittance spectrum is computed by a self-
consistent solution of Schroedinger-Maxwell equations in the
effective-mass approximation, as reported in Ref. 30, where
all the analytical formula necessary for the calculation are
given explicitly. The Fabry-Perot effect is suppressed in the
spectra33,36 by using the same background dielectric function
in whole the space; this allows to observe exciton-polariton
peaks free from the interferences due to the Fabry-Perot
oscillations.33 In Fig. 9 the absorption spectrum is shown for
the lowest five polariton states; the energy positions of the
optical peaks are labeled with the same quantum number m
of the corresponding center-of-mass exciton state �m=1–5�.
For this quantum well thickness �L=� /4� the even and odd
exciton-polariton states show almost comparable intensities.

The phase of the transmittance amplitude is shown in Fig.
10. Notice that the maxima of the absorption are in corre-

spondence of the inflection points of the phase curve; there-
fore, there is a complete correspondence in the polariton
spectra between phase and intensity. To properly reproduce
both these quantities is a very severe check for the exciton
model adopted in the calculation as fully discussed in Ref. 33
and underlined in the present theory versus the experimental
results.

Now, let us compare the exciton energies computed by the
analytical model with those derived by the full theory of Ref.
31. In Fig. 11 these exciton energies are shown as a function
of the quantum number m of the center-of-mass motion. The
minimized effective Bohr radius and transition layer of the

analytical model are a=12.464�0.002 nm and �=1 / P̄

FIG. 9. Optical absorbance �1−T� of the heavy-hole exciton as a
function of photon energy ��E−Egap� /Ryd� in AlGaAs/GaAs�001�
quantum well of thickness L=62.5 nm.

FIG. 10. Phase of the optical absorbance of the heavy-hole ex-
citon as a function of photon energy ��E−Egap� /Ryd� in AlGaAs/
GaAs�001� quantum well of thickness L=62.5 nm.
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=10.228�0.002 nm, respectively. The exciton energy com-
puted with the simple hard-sphere model are also reported
for vanishing dead layer and for a dead layer as large as the
minimized transition layer value. We note a rather large en-
ergy difference �about 1.23 meV for m=4� between analyti-
cal model and full theory in correspondence with higher en-
ergy states �m�4� that rapidly decreases for the lower
energy states; for instance for m=3 it drops to 0.6 meV and
for m=2 is about 0.2 meV. The last value is rather acceptable
if we take into account that the nonradiative broadening is
about �NR=0.5–1.0 meV in typical samples and �NR
�0.25 meV in high quality quantum wells. Obviously, the
large discrepancy observed for the high-energy states is not
surprising if we take into account that the exciton envelope
functions of the analytical model, labeled with the quantum
number m, are pure states of the center of mass while the
exciton states of the full theory are a general superposition of
states with different center-of-mass wave vectors and are ex-
panded on a rather complete set of the relative motion wave
functions.

In conclusion, in this thicknesses range of values the low-
est exciton states are in sound agreement with those obtained
by the full theory while for describing higher energy states of
the center of mass �m�4� we will have to implement the
simple analytical model as discussed at the end of the former
section. Moreover, we observe that the full theory gives ex-
citon states located between the two curves of the hard-
sphere model with and without the dead-layer effect and this
leads to the well-known possibility of recovering the rather
correct exciton energies by using the Pekar’s dead layer as a
fitting parameter. Now, let us consider GaAs quantum wells
in the zone of the center-of-mass quantization 10aB�L
�20aB. In Fig. 12 the exciton energies of the analytical
model and of the full theory31 in a single quantum well of
thickness L=10aB=125 nm are shown as a function of the

center-of-mass quantum number m. The physical parameters
values are the same of the former sample, and the minimized
variational parameters are a=12.560�0.002 nm and �
=1 / P=16.400�0.002 nm. We observe that, while the effec-
tive Bohr radius is very close to the 3D Bohr radius, the
transition layer value is rather different from its saturation
value, underlining the strong influence of the transition layer
effect on the exciton dynamics in this range of thicknesses.
The calculation confirms a negligible difference between the
two models for the lower energy states �m�4� and an in-
crease in this difference till 0.75 meV for the m=8 state
where higher energy �n�1� hydrogenic states cannot be ne-
glected. In fact, exciton states with m�8 drop into the sec-
ond parabolic curve due to the n=2 hydrogenic states, there-
fore the agreement between the analytical model and the full
theory can be improved along the line discussed in Appendix
A. In Fig. 12 also the exciton energies computed by Pekar’s
model with and without dead layer are shown for sake of
comparison.

In Fig. 13 the optical spectra, computed self-consistently
with the analytical exciton envelope function and with the
full exciton model, are shown; due to the photon wavelength
that is about ��2L the odd exciton functions �m
=2,4 ,6 , . . .� give a stronger contribution than the even �m
=1,3 ,7 , . . .� ones. In fact, in the computed spectrum of the
full exciton theory31 the intensity of m=7 exciton-polariton
peak is vanishingly small while it is shifted toward the
higher energies for the analytical model. We would like to
underline that the transmission spectrum computed by our
full theory is in very good agreement, both in energy posi-
tions and in line shapes, also with those computed by the full
theories of Refs. 33 and 36, not reported here.

In order to go a bit deeper in the optical spectrum analy-
sis, notice that the double peak, due to the lowest exciton
energies �m=1,2�, is very sensitive to the radiation-matter

FIG. 11. Heavy-hole exciton energy as a function of center-of-
mass quantum number m in AlGaAs/GaAs�001� quantum well of
thickness L=62.5 nm. The energy is computed by full theory
�dots�, analytical model �crosses�, and hard-sphere model with
�solid curve� and without dead layer �dashed curve�.

FIG. 12. Heavy-hole exciton energy as a function of center-of-
mass quantum number m in AlGaAs/GaAs�001� quantum well of
thickness L=125 nm. The energy is computed by full theory �dots�,
analytical model �crosses�, and hard-sphere model with �solid
curve� and without dead layer �dashed curve�.
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interaction. Moreover, due to the small nonradiative broad-
ening value adopted in the calculation, we can appreciate the
difference in energy between the analytical model and the
full theory for all the range of energies of the polariton spec-
trum even if theirs values remain in any case rather small for
m�8 exciton-polariton states. In fact, let us consider the two
peaks for m=6: they seem very well separated in the spec-
trum but the energy difference ��0.4 meV� is lower than the
optical broadening �see also Fig. 12�.

Finally, we would like to underline that in the range of
energies reported in Fig. 13 our microscopic model gives a
more accurate result than that based on Pekar’s ABC. In fact,
in Ref. 36 �see Fig. 4� the energy difference between full
theory and Pekar’s model for m=6 exciton-polariton state is
about 0.7 meV, that is two times our difference, and it is
greater than the broadening value. Therefore, we can con-
clude that our analytical model can reproduce the full theory
till m�6 exciton-polariton state and that, in any case, it
gives a better agreement with the full theories than that ob-
tained by Pekar’s model.36

Now, let us try to reproduce the experimental transmission
spectrum of a high-quality GaAs quantum well reported in
the work of Schneider et al.33 by our analytical self-
consistent theory. In Fig. 7b of Ref. 33, reproduced here in
Fig. 14�b�, many peaks due to the center-of-mass quantiza-
tion of both heavy- and light-hole excitons in a large quan-
tum well of GaAs �L=20aB=250 nm� are clearly shown by
arrows. We would like to underline that we have chosen to
reproduce the experimental results of Schneider et al.33 be-
cause they are well suited for checking the present analytical
model. In fact, the Wannier exciton is perfectly confined in a
self-sustained quantum well, and the Fabry-Perot effect, due
to the modulation of the background dielectric function, is
suppressed by the presence of antireflection coating on both
the sample surfaces. Moreover, in a large quantum well the
anisotropic electron-hole masses induce a very small energy
shift on the exciton energies, therefore, we can use isotropic
exciton masses in the present range of thicknesses.

In the former section, we have shown that the analytical
exciton model is in perfect agreement with the full theory31

in a sufficient large range of energies �9 meV�, and this is
well suited for reproducing the experimental spectrum of
Ref. 33. The parameter values adopted for the calculation
are33 L=20aB=250 nm, me=0.067, mhh=0.457mo, mlh
=0.080mo, Egap

lh =1.5105 eV, nb=3.71, Egap
hh =1.5130 eV,

and Kane’s energy EK=22.71 eV; the minimized parameter
values, given in the former section �see also Figs. 5 and 6�,
underline the different behaviors, from positronium for light
hole to hydrogenic atom for heavy hole, of Wannier excitons.
The energy shift between heavy- and light-hole energy gaps,
due to the residual strain of the sample, is discussed and
evaluated in Ref. 33.

The high quality ��NR�0.25 meV� of the samples should
allow to study the effect induced by the wave-vector quanti-
zation of the center-of-mass motion at T=2 K. Indeed, the
polariton effect is important only in the case where the exci-
ton broadening value is less than a critical value,14 namely,

�c= �
8LTEex

2 �b

Mc2 �1/2, that for the parameters chosen is �c
�0.21 meV. Notice that the nonradiative broadening value
chosen in the present calculation, in order to reproduce the
experimental spectra line shapes ��NR=0.15 meV�, is in
rather close agreement with that given in Ref. 33 and, more-
over, since ���c, exciton-photon coupling becomes domi-
nant with respect to the exciton acoustic phonon interaction.
Since the exciton is computed in a simple two-band model,
the optical response of heavy- and light-hole exciton polari-
tons will be shown in the pictures by different curves but in
the same energy scale.

The absorption of light- and heavy-hole excitons are
shown in Fig. 14�a�. We would like to underline that the

FIG. 13. Optical absorbance �1−T� of the heavy-hole exciton as
a function of photon energy ��E−Egap� /Ryd� in AlGaAs/GaAs�001�
quantum well of thickness L=125 nm: full theory �dashed curve�
and analytical model �solid curve�.

FIG. 14. �a� Optical absorbance �1−T� computed for light- and
heavy-hole excitons as a function of photon energy in AlGaAs/
GaAs�001� quantum well of thickness L=250 nm. �b� Experimen-
tal optical absorbance of light- and heavy-hole excitons of Ref. 33
as a function of photon energy in AlGaAs/GaAs�001� quantum well
of thickness L=250 nm.
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agreement between theory and experiment is very good both
in the line shapes and in energy positions, as shown by the
arrows in correspondence of the maxima of the experimental
spectrum of Schneider33 reported in Fig. 14�b�. In fact, the
characteristic double peak of the light-hole exciton polariton
and the asymmetric line shape of the main peak of the heavy
hole, due to the interplay of polaritonic effect and center-of-
mass quantization of the Wannier exciton, are clearly repro-
duced. This agreement is particularly meaningful when we
take into account that it is obtained for the same parameter
values in the presence of rather different exciton dynamics.
In fact, light-hole exciton is close to positronium limit
�
 /M =0.248� while the heavy hole is rather close to the
hydrogenic behavior �
 /M =0.111�. Moreover, the analytical
model allows to unambiguously assign the center-of-mass
character for any features present in the experimental spec-
trum. For instance, the peak at m=7, not assigned in Ref. 33,
has even-parity character, due to the photon wavelength
�L��� that gives odd exciton-polariton peaks negligible
small in the spectrum. Finally, notice that for the heavy-hole
exciton polariton in Ref. 33 �see Fig. 10�c�� the m=11 peak
is shifted toward the lower energy side, with respect to the
experimental spectrum while the m=13 one is out of the
energy scale.

In Figs. 15�a� and 15�b� the computed phase of exciton-
polaritons absorption spectrum and the corresponding ex-
perimental results of Ref. 33 are shown, respectively. Also in
this case the agreement between theory and experiment is
sound both for energy positions and line shapes. Obviously,
the long tail shown by the heavy-hole exciton-polariton

phase toward the lower photon energies cannot be matched
with the light-hole phase by the simple two-band model.
Moreover, all the features observed in the absorption spec-
trum have a counterpart in the phase spectrum and also the
characteristic two peaks feature of the light-hole exciton po-
lariton and the center-of-mass peaks at higher energies are
reproduced. In conclusion, the simultaneous measurements
of phase and transmission spectra allow to assign the
exciton-polariton peaks of the experimental spectrum to the
pure center-of-mass exciton-polariton quantization.

We would like to underline that in Ref. 33 the authors
compare the optical properties, computed by their accurate
microscopic exciton model, with a number of heuristic mod-
els, based on different ABCs, in order to conclude that “A
simultaneous description of the measured amplitude and
phase of the transmitted electric field is only possible with a
full model.” The sound agreement between our analytical
microscopic model, based on the one-transition layer ap-
proximation, and the experimental results of Ref. 33 strongly
suggest the replacement of the adjective full with micro-
scopic.

IV. CONCLUSIONS

In the present work the analytical microscopic exciton
model in a large �L�aB� single quantum well, proposed in
Ref. 25 is revised and implemented in order to reproduce the
Wannier exciton center-of-mass quantization in the range of
quantum well thicknesses 5aB�L��.

The microscopic transition layer effect, observed at the
well/barrier interfaces in a single quantum well, is discussed
at variance of the classical dead layer introduced by Pekar21

and compared with various full theoretical models.31,33,36

Moreover, this new formulation has allowed to reconcile the
Wannier exciton dynamics in large quantum wells �L�aB�
and in semi-infinite semiconductor samples �L→�� de-
scribed by the same analytical microscopic model.25,34

Finally, exciton-polariton transmission spectra in large
quantum wells �L=20aB� are computed and compared with
experimental results in high-quality GaAs samples obtained
by Schneider et al.33 The sound agreement between theory
and experiment has allowed to unambiguously assign the
transmission spectra peaks to the pure states of the exciton
center-of-mass quantization.
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APPENDIX A: A GENERALIZED VARIATIONAL
WANNIER EXCITON ENVELOPE FUNCTION

We generalize the Wannier exciton envelope function ex-
panding Eq. �2� of the text by taking into account also the 2s
hydrogenic function. Since 2s is symmetric with respect to
the z axis we can adopt the same procedure of Sec. II based
on the following three steps.

FIG. 15. �a� Phase of the optical absorption computed for light-
and heavy-hole excitons as a function of photon energy in AlGaAs/
GaAs�001� quantum well of thickness L=250 nm. �b� Measured
phase of the optical absorption �Ref. 33� of light- and heavy-hole
excitons as a function of photon energy in AlGaAs/GaAs�001�
quantum well of thickness L=250 nm.
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�1� From the relationship R̂�E�r� ,Z�= ��E�r� ,Z� we ob-
tain the even and odd envelope functions, namely,

�E
e �r�,Z� = �1�E

e �r�,Z� + 2	
nlm

n�2

��nlm cosh�PnZ��nlm
e �r��

− �nlm sinh�PnZ��nlm
o �r��� , �A1a�

�E
o�r�,Z� = �1�E

o�r�,Z� + 2	
nlm

n�2

��nlm cosh�PnZ��nlm
o �r��

− �nlm sinh�PnZ��nlm
e �r��� , �A1b�

where �1=�100 and �1=�100; the functions �E
i �r� ,Z� for i

=e ,o are

�E
e �r�,Z� = cos�K1Z��1s�r� + �̃200 cos�K2Z��2s�r� ,

�A2a�

�E
o�r�,Z� = sin�K1Z��1s�r� + �̃200 sin�K2Z��2s�r� ,

�A2b�

where �̃200=�200 /�1 and �̃200=�200 /�1. Indeed, the func-
tions of Eqs. �A1a� and �A1b� will be reduced to Eqs. �A4a�
and �A4b�, respectively, for �200=�200=0.

By adopting the one-transition layer approximation an av-
erage value for the inverse of the transition layer depth,
Pn�2= P=1 /� is taken and the envelope functions assume
the following analytical form:

�E
e �r�,Z� = Ne��E

e �r�,Z� + cosh�PZ�Fee�r�� − sinh�PZ�Feo�r��� ,

�A3a�

�E
o�r�,Z� = No��E

o�r�,Z� + cosh�PZ�Foo�r�� − sinh�PZ�Foe�r��� ,

�A3b�

where Ne=�1 and No=�1.
�2� We impose the NEBCs: �E�ze= �L /2,zh ,���=�E�zh

= �L /2,ze ,���=0.0 in order to compute the F functions. For
the even solution �E

e �r� ,Z�, Eq. �A3a�, we obtain

Fee�r�� = fee�K1��1s�r�� + �̃2fee�K2��2s�r�� , �A4a�

Feo�r�� = feo�K1��1s�r�� + �̃2feo�K2��2s�r�� �A4b�

for 0�z�L /2, Z1�z�=�ez−L /2, and Z2�z�=−�hz+L /2. The
f functions for even exciton functions are

fee�K� =
cos�KZ2�sinh�PZ1� − cos�KZ1�sinh�PZ2�

sinh�P�Z2 − Z1��
,

�A5a�

foe�K� =
sin�KZ2�cosh�PZ1� − sin�KZ1�cosh�PZ2�

sinh�P�Z2 − Z1��
�A5b�

and analogously for the odd ones,

foo�K� =
sin�KZ2�sinh�PZ1� − sin�KZ1�sinh�PZ2�

sinh�P�Z2 − Z1��
,

�A6a�

feo�K� =
cos�KZ2�cosh�PZ1� − cos�KZ1�cosh�PZ2�

sinh�P�Z2 − Z1��
.

�A6b�

�3� From the continuity of the exciton wave function and its
first derivative at the z=0 surface we obtain the conditions
for the center-of-mass quantization. Also in this case, due to
the symmetry properties of the different components of the
envelope functions, the center-of-mass quantization must ac-
complish the two following relationships:

�fee

�z �z=0=0 and
�feo

�z �z=0=0 for the even exciton function �analogously for the
odd one�. It is simple to check that the center-of-mass wave
vector K follows the even dispersion: Km

e tg�Km
e L /2�

+ Ptgh�PL /2�=0 for m=1,3 ,5 , . . . and the odd one,
Ptg�Km

o L /2�−Km
o tgh�PL /2�=0 for m=2,4 ,6 , . . ., according

to the even �fee�z� , feo�z�� and odd �foo�z� , foe�z�� f functions,
respectively. The generalized even �m=1,3 ,5 , . . .� exciton
function of Eq. �A3a�, assumes the analytical form,

�m1,m2

e �r�,Z� = Nm1,m2

e 
cos�Km1
Z��1s�r�� + �̃2 cos�Km2

Z��2s�r��

+ cosh�PZ��fee�Km1
��1S�r�

+ �̃2fee�Km2
��2S�r�� + − sinh�PZ�

��feo�Km1
��1S�r� + �̃2feo�Km2

��2S�r��� �A7�

and analogously for the odd Wannier exciton function.
Notice that the inclusion in the analytical model of the 2s

hydrogenic function not only increases the number of varia-
tional parameters but also gives off-diagonal envelope func-
tion components in the center-of-mass wave vector.

The inclusion in the model of 2p hydrogenic functions is
a bit more tricky since the finite sum is composed of two
even components �2px ,2py� but also of an odd one �2pz�.
Therefore, the generalized envelope functions should mix
even and odd center-of-mass wave vectors. In fact, let us
choose �� , f ,�� as the direction cosines of the relative motion
coordinate with respect to the Cartesian axis: �2p�r��
=��2px

�r��+ f�2py
�r��+��2pz

�r��. In this case Eqs. �A2a� and
�A2b� become

�E
e �r�,Z� = cos�K100Z��1s�r� + �̃200 cos�K200Z��2s�r�

+ �̃211 cos�K211Z����2px
�r�� + f�2py

�r���

+ ��̃210 sin�K210Z��2pz
�r�� , �A8a�

�E
o�r�,Z� = sin�K100Z��1s�r� + �̃200 sin�K200Z��2s�r�

+ �̃211 sin�K211Z����2px
�r�� + f�2py

�r���

+ ��̃210 cos�K210Z��2pz
�r�� , �A8b�

where �̃200=�200 /�1, �̃211=�211 /�1, �̃210=�210 /�1 and

�̃200=�200 /�1, �̃211=�211 /�1, �̃210=�210 /�1. Now, let us im-
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pose the NEBCs: �E�ze= �L /2,zh ,���=�E�zh
= �L /2,ze ,���=0.0 in order to compute the F functions. For
the even solution �E

e �r� ,Z� of Eq. �A3a� we obtain

Fee�r�� = fee�K100��1s�r�� + �̃2fee�K200��2s�r�� + �̃211fee�K211�

���̂�2px
�r�� + f̂�2py

�r��� + �̂�̃210foo�K210��2pz
�r�� ,

�A9a�

Feo�r�� = feo�K100��1s�r�� + �̃2feo�K200��2s�r�� + �̃211foe�K211�

���̂�2px
�r�� + f̂�2py

�r��� + �̂�̃210foe�K210��2pz
�r�� .

�A9b�

Finally, the generalized even �m=1,3 ,5 , . . .� exciton func-
tion derivation proceed as before. Notice that the former gen-
eralization leads to increase the number of variational param-
eters; in fact, while for n=1 we have two nonlinear
parameters �a ,��, for n=2 we have two nonlinear �a ,�� plus

three linear ��̃200, �̃211, �̃211� parameters of minimization.
Analogously for odd exciton state �m=2,4 ,6 , . . .� and also in
this case the solution embodies odd and even center-of-mass
wave vectors.

Finally, by adopting the former procedure, we obtain a set
of normalized-independent exciton states, and afterward, it is
necessary to solve the generalized problem in order to obtain
an orthogonal set of states as discussed in Sec. II.

APPENDIX B: TRAPPED EXCITON IN A
QUANTUM WELL

Let us consider a Wannier exciton trapped as a neutral
atom at the site R� o= �0,0 ,Zo�, whose electron mass is me,
and the hole mass is taken in the limit mhh→�. In this case
the Z component of the center-of-mass coordinate is Z=zh
=Zo while the coordinate of the relative motion is z=ze−zh
=ze−Zo; therefore, the motion of the electron along Z axis is
confined in the segment: −Zo−L /2�z�−Zo+L /2. Since the
envelope function of the trapped exciton has not defined par-
ity, except for the site Zo=0, a general variational trial func-
tion can be obtained as a linear superposition of even and
odd exciton envelope functions in order to remove the re-
stricted symmetry properties. Here, we adopt a more intui-
tive procedure observing that even and odd exciton envelope
functions, defined in Sec. II, lost their symmetry property if
projected into a nonsymmetric domain as the segment −Zo
−L /2�z�−Zo+L /2. In this case, m=1 envelope function,
projected into the segment −Zo−L /2�z�−Zo+L /2, can be
used for a variational determination of the effective Bohr
radius that should converges to the 3D Bohr radius for large
quantum well �L�aB� while the transition layer assumes the
limit �→0. Obviously, many physical properties of exciton
analytical model have to be redefined for trapped exciton. In
fact, the projected envelope function is

�m�r�;Zo� = Nmgm�z;Zo��1S�r� . �B1�

For m odd �m=1,3 ,5� we have

gm�z;Zo� = cos�KmZo� + cosh�PZo�fee�z� − sinh�PZo�feo�z�
�B2�

and for m even �m=2,4 ,6 , . . .�,

gm�z;Zo� = sin�KmZo� + cosh�PZo�foo�z� − sinh�PZo�foe�z� ,

�B3�

where the f functions are obtained by imposing the NEBCs
at the surfaces of the well �Z= �L /2�. For 0�z�L /2 the
confinement boundaries are Z1=−Zo−L /2=−L /2 and Z2=
−Zo+L /2=−z+L /2,

f̃ ee�z� = �cos�KZ1�sinh�PZ2� − cos�KZ2�sinh�PZ1�� ,

f̃ eo�z� = �cos�KZ1�cosh�PZ2� − cos�KZ2�cosh�PZ1��
�B4�

and for −L /2�z�0 the confinement boundaries are Z1
=L /2 and Z2=−z−L /2,

f̃ oe�z� = �sin�KZ1�cosh�PZ2� − sin�KZ2�cosh�PZ1�� ,

f̃ oo�z� = �sin�KZ1�sinh�PZ2� − sin�KZ2�sinh�PZ1��
�B5�

and f ij�z�= f̃ i j�z� /sinh�P�Z2−Z1�� for i , j=e ,o. Remember
that the continuity of the exciton envelope function and its
first derivative at the surface z=0 are the same of those given
in Eqs. �5a� and �5b� but in the trapped exciton appears the
electron quantization condition at variance of the former case
that describes the center-of-mass motion of Wannier exciton.

Taking into account that we have two different analytical
equations for z�0 and z�0, the normalization integration is

�m���m� = 2��
0

�

�d���
z1

0

dz

+ �
0

z2

dz�gm
2 �z;Zo��1S

2 ���2 + z2� �B6�

and the first momentum of trapped exciton Hamiltonian,

Ĥex
t = −

	2

2

�� r�

2 −
e2

�br

is

�m�Ĥex
t ��m� = −

	2

me

1

a2 �m���m� + 2��
0

�

�d���
z1

0

dz

+ �
0

z2

dz�� 	2

me
�1

a
−

1

aB
�gm

2 �z;Zo��
+ −

	2gm�z;Zo�
2me

���z� +
a

2
� �2gm

�z2

− 2
z

a

�gm

�z
��1S

2 ���2 + z2� . �B7�

The nth derivative with respect to the relative motion along z
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axis of the confinement functions gm�z ;Zo� are

��gm

�z� = − cos�PZo�
��f ij

�z� + sin�PZo�
��f ij

�z� . �B8�

Taking into account that dZ2=−dz, the derivative are

� f ij

�z
= �Pfij cosh�P�Z2 − Z1�� +

� f̃ i j

�z
�/sinh�P�Z2 − Z1��

�B9�

and

�2f ij

�z2 = − P2f ij�z� + � �2 f̃ i j

�z2 + 2P
� f ij

�z

�cosh�P�Z2 − Z1���/sinh�P�Z2 − Z1�� . �B10�

Finally, for very large quantum wells the variational energy
of trapped exciton recover the 3D Rydberg value while the
confinement function �gm�z ;Zo�� is an asymmetric function
except for the hole coordinate Zo=zh=0 and −L /2�ze
�L /2 as discussed in the text �Figs. 7 and 8�.
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