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Resonant transmission of light through a microcavity in the strong coupling regime is used to estimate the
strength of the interaction between polaritons with parallel ��1� or antiparallel ��2� spins. The ratio �2 /�1 is
found to be strongly dependent on the detuning between exciton and photon modes. From negative to zero
detuning it changes from about 0 to less than −1. Our observations indicate that at certain conditions the
polaritons might rather condense in the real space than form a Bose-Einstein condensate. We analyze theoreti-
cally different mechanisms of polariton-polariton interaction including the mean-field electrostatic interaction,
the direct exchange interaction, the Van-der-Waals interaction and the indirect exchange interaction via dark
exciton and biexciton states.
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I. INTRODUCTION

Exciton-polaritons �polaritons�1 in planar semiconductor
microcavities2 containing quantum wells are usually formed
by heavy-hole excitons and cavity photons.3 A heavy-hole
exciton has four allowed spin projections on the axis of the
structure �−2, −1, 1 , 2� but only two of them �−1, 1� are
coupled to light.4 Thus, polaritons in microcavities have two
allowed spin states, which are degenerate in the absence of
external magnetic fields. This is an unusual spin structure for
a bosonic quasiparticle: an even number of allowed spin pro-
jections is rather characteristic of fermions. Due to their pe-
culiar spin structure, coherent condensates of polaritons ex-
hibit very unusual and interesting polarization properties.
These include the self-induced Larmor precession of
polarization,5 the optical spin Hall effect,6 the “spin Meiss-
ner” effect,7 and formation of half-quantum vortices in po-
lariton superfluids.8 The polariton-polariton interactions
which are crucial for superfluidity and responsible for many
other nonlinear effects are strongly spin-dependent. Due to
the specific spin structure of polaritons, they can be de-
scribed using two constants which characterize the strength
of interaction of polaritons having identical spin projections
to the axis of the cavity ��1� and the one of those having
opposite spin projections ��2�.9,10

The parameters �1 and �2 have a crucial impact on the
critical conditions for the condensation of exciton polaritons
in microcavities �see, e.g., Ref. 11�. Figure 1 shows the phase
diagram of a uniform polariton gas in the coordinates of

interaction constants �1 and �2. In order to interpret it, let us
recall that the free energy of exciton polaritons in an infinite
planar cavity at zero temperature can be represented in the
form2,7

F = − �n +
�1 + �2

4
n2 + ��1 − �2�Sz

2. �1�

Here � is the chemical potential, n is the concentration of
polaritons, Sz is linked with the circular polarization degree
of the condensate by �c=2Sz /n. The system must have a
minimum free energy at equilibrium. Four regions can be
delimited depending on the signs of the quantities �1 , �1
+�2 and �1−�2.

If �1−�2�0, the minimum of free energy is achieved at
Sz=0 so that the polariton gas is linearly polarized �dense
hatched regions in Fig. 1�. The energy shift of the polariton
gas is found by minimization of the free energy over concen-
tration

Elin = � =
�1 + �2

2
n . �2�

Depending on the sign of �1+�2, the minimum of the free
energy F is achieved either at the minimum or at the maxi-
mum of the polariton concentration n. �i� If �1+�2�0 �re-
gion I� the minimum of free energy is achieved at the mini-
mum polariton concentration. The uniform polariton gas is
stable and linearly polarized. The uniform distribution of the
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condensate in the real space is equivalent to its condensation
in the reciprocal space. The Bose-Einstein condensate �BEC�
of polaritons is formed in the lowest energy quantum state of
the system corresponding to zero in-plane wave vector. �ii� If
�1+�2�0 �region II� the minimum of free energy is
achieved at the maximum polariton concentration. There are
two possible scenarios of maximization of the polariton con-
centration. First of all, in a system with a finite number of
exciton polaritons, the condensation in real space may take
place, in which case the local concentration of polaritons
would increase in certain spots of the sample while in the
other spots the concentration would decrease. This would
lead to the fragmentation of the condensate, similar to what
has been observed in Refs. 12 and 13. The location of real-
space condensates would be pinned if a lateral potential dis-
order is present in the cavity. We note that the fragmentation
of the condensate is only possible if the increase of its kinetic
energy due to localization is weaker than the decrease of
polariton-polariton interaction energy. According to Eq. �1�,
once started, the condensation in real space may go on until
the collapse of the condensate. In reality, the increase of
polariton concentration would be saturated due to the higher
order positive terms in the free energy �omitted in Eq. �1��
which would eventually compensate the decrease of the free
energy. If the increase of kinetic energy prevents fragmenta-
tion of the condensate and if the condensate is fed by a
reservoir of exciton polaritons situated in the excitonlike part
of the lower polariton branch, another scenario would be
realized. The condensate in this case would accumulate the
polaritons while remaining spatially homogeneous. We note
that the increase in polariton concentration is actually limited
in this regime as well due to the higher order terms in the
free energy omitted in Eq. �1�.

If �1−�2�0 the minimum of free energy is achieved at
Sz= �n /2, which means that the polariton gas is circularly
polarized �rare hatched regions in Fig. 1�. In this case the
shift of the polariton energy is

Ecirc = � = �1n . �3�

Depending on the sign of �1, the minimum of the free energy
F is achieved either at the maximum ��1�0, region III� or at
the minimum ��1�0, region IV� of the polariton concentra-
tion n. In the region IV the polariton gas condenses in the
reciprocal space and Bose-Einstein condensation takes place.
In the region III classical condensation of exciton polaritons
and fragmentation of the condensate in real space are ex-
pected for the systems with a finite number of exciton po-
laritons. If the number of polaritons is unlimited, the virtu-
ally unlimited accumulation of polaritons in the condensate
would take place, as we discussed above for the region II.

There have been various attempts to estimate �1 and �2
from the experimental data14–17 and to calculate them
theoretically.18–22 The most part of authors believe that these
constants should not be strongly dependent on the in-plane
wave vector of interacting polaritons if it remains inferior to
the inverse exciton Bohr radius. Despite of the deviations
between different works, they agree in two essential conclu-
sions: �1�0 and ��1�� ��2�. Some works suggest that �2 is
negative.14 These conditions are satisfied in the region I of
the phase diagram, where a linearly polarized Bose-Einstein
condensate is the ground state of the system. The aim of this
work is to measure relative values of �1 and �2 as a function
of the exciton-photon detuning, in order to explore the pos-
sibility for polariton condensate to collapse or to acquire
circular polarization in the ground state.

In this paper we present the direct measurement of the
ratio �2 /�1 by polarization-resolved nonlinear transmission
spectroscopy. The transmission of the square-shaped light
pulse tuned to excite the lower polariton branch allows an
accurate measurement of its shift due to polariton-polariton
interactions. We took advantage of the fact that in the circu-
lar basis the energy shift of the polariton states is propor-
tional to �1 while in the linear basis it is proportional to
��1+�2� /2. Therefore, the ratio of the polariton shifts mea-
sured in linear and circular polarizations is given by �1
+�2 /�1� /2 and does not depend on the excitation power
�while the interaction constants themselves can depend on
the excitation power, in principle�. This allows obtaining the
ratio �2 /�1 without any supplementary assumptions.

Our results suggest that at some regions of the sample, in
the vicinity of zero detuning between exciton and photon
energies, the ratio �2 /�1 may strongly decrease, so that
�2 /�1	−1. The polariton gas stability analysis as a function
of �1 and �2 shows that in such region the polariton-
polariton interaction in the linearly polarized Bose gas be-
comes attractive, rather than repulsive. Therefore, a real-
space condensation and collapse of Bose-Einstein
condensate is expected.23 Such situation has already been
realized in atomic condensates,24 where a collapse of the
Bose-Einstein condensate was induced by application of an
external magnetic field.

FIG. 1. �Color online� Phase diagram of a gas of interacting
exciton-polaritons. Regions of the parameter space corresponding to
the real �reciprocal� space condensation are shown by black �red�
color. The polarization of the polariton gas is shown by hatching.
Dense hatch stands for linearly and rare hatch for circularly polar-
ized state. The values of interaction constants measured at 400 �W
excitation intensity for different values of the exciton-photon detun-
ing are shown by circles. Calculated values of the interaction con-
stants are shown by line. The arrow points the direction, where the
detuning changes from negative to positive.
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In the theoretical part of the paper we analyze possible
contributions to the polariton pairwise interaction strength,
depending on detuning and mutual spin orientation of polari-
tons. We show that the interaction between polaritons with
opposite spins can be attractive ��2�0�, and at positive de-
tuning it may be as strong as repulsive interaction between
polaritons with the same spin. This is mainly due to enhance-
ment of the polariton-polariton exchange interaction via
biexciton and dark exciton states with increasing detuning.

The paper is organized as follows. Section II presents the
experimental results, and their discussion in terms of the po-
lariton phase diagram. Section III presents possible contribu-
tions to polariton-polariton interaction constants while Sec.
IV compares experiment and theory. Conclusions are sum-
marized in the last Section.

II. EXPERIMENT

We have studied a GaAs 
 /2 cavity sandwiched between
two AlAs /Al0.1Ga0.9As Bragg mirrors �23 and 29 pairs for
top and rare mirrors, respectively�, grown on the GaAs sub-
strate. An In0.05Ga0.95As quantum well of 8 nm width has
been embedded in the middle of the cavity, at the electric
field antinode position. The sample has been grown on a
wedge �3 meV/mm�. In the strong coupling regime, the cav-
ity shows the vacuum field Rabi splitting of 3.5 meV. In
order to study the polarization-resolved transmission we il-
luminated the sample with the square pulses of light of 12
meV spectral width, obtained by spatial filtering of 150 fs
pulses of a Ti-sapphire laser. We have been able to excite
either both polariton branches simultaneously, or selectively
the lower polariton branch. The transmission spectra have
been analyzed as a function of the pumping power, polariza-
tion and the position of the spot. Because the sample is
grown on a wedge, the cavity width changes with the posi-
tion of the spot on the sample surface. This allows to explore
different detuning energies between the exciton and cavity
modes. The light beam at normal incidence is focused at a
25-�m-diameter spot on the sample surface. The intensity of
light transmitted within the solid angle of 1.5° has been de-
tected using a photomultiplier and spectrally resolved by a
monochromator. In order to circumvent the polarization de-
pendence of the monochromator response, light was fully
depolarized in the optical fiber of 5 m long. The sample has
been placed in the cold finger cryostat at 4 K.

We start our discussion from the results obtained when
exciting both polariton branches simultaneously, which is the
easiest way to catch the overall behavior of the system. Fig-
ure 2�a� shows the map of the linear transmission through the
sample at low power and under simultaneous excitation of
two polariton branches. On can see that the transmittivity of
the sample is substantially reduced in the vicinity of zero
detuning. Moreover, the transmittivity appears to be a non-
monotonous function of the detuning. Indeed, the oscillations
of the intensity of the transmitted light show up at both
branches. We tentatively attribute these oscillations to the
substrate corrugations having a characteristic size of 0.4 mm,
which induce the absorption variations across the sample. In
order to represent the spectra which evidence the polariton

energy shifts as a function of detuning, we use the normal-
ized differential transmission �Fig. 2�b��. To obtain these
spectra we first normalize both low �20 �W� and high
�200 �W� power spectra to unity, separately at each polar-
iton branch. Such normalization is mandatory to extract the
polariton energy shift from the power-induced modification
of transmission, which is directly related to the polariton line
shift.16 After that, the differential transmission �Thigh−Tlow�
at each branch is deduced for each polarization state. The
amplitude of differential transmission is proportional to the
power-induced shift of the polariton branches. The shape of
the signal is that of the first derivative of the transmission
peak and its sign is directly related to the sign of the power
induced polariton line shift.

Figures 2�c� and 2�d� show the color maps of differential
transmission in circular �c� and linear �d� polarizations. The
detuning varies along the horizontal axis and the vertical axis
shows energy. In both polarizations we observe the oscilla-
tions of the differential signal. They are correlated with the
oscillations of the transmittivity and will not be important for
the physics discussed below. In both polarizations the signal
tends to be more important at the low polariton branch but it
has the same sign at both branches. As discussed in a previ-
ous work,16 this signifies that both branches exhibit a blue
shift, suggesting that the nonlinear effects are mainly due to
the exciton resonance shift and not to the variation of the
polariton splitting due to reduction in the exciton oscillator
strength at high pumping. While at the low polariton branch
the difference between circular and linear polarizations is
noticeable, it is very tiny at the upper branch. Both the non-
linear shift and the difference between the polarizations dis-
appear when the absolute value of detuning increases.

In principle, the maps of polarization-resolved differential
transmission allow the determination of the polariton shift as

FIG. 2. �Color online� �a� Color map of the low power transmis-
sion through the microcavity as a function of detuning between
photon and exciton modes; normalized differential transmission
spectra in linear �red dashed line� and circular �black solid line�
polarizations. �b� The normalization is done independently for
lower and upper polaritons �below and above dashed line�; color
map of the normalized differential transmission Thigh−Tlow in �c�
circular and �d� linear polarization; color map of the high power
transmission at 1.5 mW in �e� circular and �f� linear polarization.
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a function of pumping power and thus provide the insight to
the physics of polariton-polariton interactions. However, a
special care should be taken of two factors affecting these
maps. First, it is the range of pump powers to study. Indeed,
Figs. 2�e� and 2�f� show the transmission maps measured at
1.5 mW, exciting both branches. The Rabi splitting is not
reduced at this power and thus the system is still in the
strong coupling regime but an additional peak grows up in
the transmission spectra, exactly at the energy of the bare
photon mode. This third peak appears to be polarization de-
pendent and shows up in circular polarization at the lower
pumping power than in linear polarization. It can be under-
stood either in terms of the coexistence of strong and weak
coupling,25 or in terms of purely quantum effects.26 In this
work we limit ourselves to the pumping powers where the
polariton shifts are not affected by the third peak, i.e., about
600 �W. The second factor is the excitation of the upper
polariton branch. All the spectra shown in Fig. 2 are obtained
under simultaneous excitation of two branches. The nonlin-
ear effects measured in this case are affected by interbranch
scattering and likely by escape of upper polaritons to the
excitonlike part of the lower polariton branch characterized
by large in-plane wave vectors.27 This is why, for the quan-
titative study of the polariton-polariton interaction we chose
the excitation of the lower polariton branch only and we use
the excitation powers below 600 �W.

Figure 3 shows a set of normalized differential transmis-
sion spectra �Thigh−Tlow� of the low polariton branch, mea-
sured in circular �solid symbols� and linear �open symbols�
polarizations for three different powers and two different de-
tunings. The low power �20 �W� means that for such pump-
ing intensity the shifts of the transmission line are close to
zero in both circular and linear polarizations. Three different
power values were used: 300, 400, and 550 �W. At the most
negative detuning �−1.9 meV� the spectra clearly have the

shape of the first derivative of the transmission peak, which
is a signature of the blue shift of the polariton line. In con-
trast, at very small negative detuning the shape is more com-
plex, indicative of both shift and broadening of the polariton
spectral line with increasing power. In order to extract the
polariton shift from the spectra, at each detuning we first fit
the low-power transmission with a Gaussian function, and
then fit the differential transmission with the difference of
two Gaussians. The two fitting parameters are the shift be-
tween polariton lines and the broadening. The resulting
curves are shown in Fig. 3 by solid lines.

The systematic fits allowed us to extract the polariton en-
ergy shift as a function of detuning. The results obtained
after averaging over three different pumping powers are
shown in Fig. 4�a�. One can see that in the vicinity of zero
detuning, the polariton energy tends to experience a little
redshift in linear polarization, which means that ��1+�2�
�0. This is remarkable, as it signifies that the system may
find itself in the Sec. II of the phase diagram �Fig. 1�. Indeed,
the values of �1 and �2 obtained from the measured polariton
shifts at 400 �W are shown in Fig. 1 by circles. The arrow
points the direction where the detuning increases. One can
see that at some points of the sample �close to zero detuning�
the system does find itself in the region II of the phase dia-
gram, where the condensation of polaritons in real space is
expected.

FIG. 3. �Color online� Normalized differential transmission
spectra Thigh−Tlow of the lower polariton branch at two different
photon-exciton detunings: ��a�–�c�� �=−1.9 meV, ��d�–�f�� �=
−0.25 meV, and at three different pumping power values. Open
symbols stand for linear polarization, solid symbols stand for circu-
lar polarization. Solid lines are fits with two fitting parameters,
namely, the shift and the broadening �narrowing� of the transmis-
sion line at high power.

FIG. 4. �Color online� �a� The lower polariton line shift per unit
power obtained from the transmission spectra in circular �black
squares� and linear �red circles� polarizations. The error bars are
given by the averaging over three different excitation powers:
300 �W, 400 �W, and 550 �W. Solid and dashed lines are the
values of �1 and �2, respectively, calculated as described in the Sec.
IV. �b� Ratio between polariton interaction constants averaged over
three different powers. �c� The same ratio as in �b� but without
averaging. Solid lines show the theoretical results.
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Figure 4�b� shows the ratio of coupling constants as a
function of photon-exciton detuning. For the detunings ��
−2 meV and ��0, the distribution of the experimental
points is wide, suggesting that the accuracy is poor. This is
not surprising because at strong negative detuning the polari-
tons from the lower dispersion branch have a dominating
photon component. Therefore, the polariton-polariton inter-
action strength is significantly reduced. On the other hand, at
positive detuning the transmission itself is very weak be-
cause the polariton states at the lower dispersion branch are
essentially excitonlike. Thus the polariton energy shifts are
difficult to measure. Nevertheless, the overall tendency
seems to be the decrease in the �2 /�1 ratio from nearly zero
at negative detuning to about −1 and even less at zero detun-
ing. In order to understand this behavior, we analyze possible
contributions to the polariton interaction, taking into account
their spin and detuning dependence.

III. ANALYSIS OF POLARITON-POLARITON
INTERACTIONS

We calculate the energy shift of the polariton ground state
in this system assuming that all polaritons are uniformly dis-
tributed in the plane of a quantum well �QW� of width Lz,
and can be described by a two-dimensional concentration n.
We account for the direct Coulomb and exchange interac-
tions between polaritons as well as for the indirect interac-
tions via the intermediate virtual states.

It is important to note that at the polariton concentrations
typical for our experiments �1010 cm−2�, the average number
of polaritons per squared thermal wavelength of the polariton
was on the order of 102. Therefore, the use of Bose statistics
is obligatory. For this reason, we consider interactions within
a polariton ensemble described by a many-particle wave
function.

A. Blueshift of the exciton-polariton ground state due to direct
interactions

1. Mean-field electrostatic energy

This is the energy of electric charges of an electron and a
hole forming an exciton in the electrostatic potential formed
by other excitons.28 Obviously, it turns to zero if the electron
and hole envelope functions in the normal to the QW plane
direction coincide. However, if they are different, the exciton
possesses some quadrupole moment so that the mean-field
electrostatic energy is different from zero and positive.

If the electron wave function penetrates into the barriers
deeper than the hole wave function, the population of exci-
tons in a QW creates an inhomogeneous charge density con-
sisting of a positive sheet at the center of the well and two
negative sheets at the edges of the well. The well acts as a
plane capacitor in this case. The energy shift induced by this
effect per one polariton is given by

Uq = 2�nX2e2



�

−�

�

dz��h
2�z� − �e

2�z��

��
−�

z

dz��z − z����h
2�z�� − �e

2�z��� , �4�

where �e�h��z� is the electron �hole� envelope function in the

normal to QW plane direction, 
 is the background dielectric
constant, e is the electron charge, X is the exciton Hopfield
coefficient of the polariton state, which defines the weight of
the excitonic contribution to the polariton state. This term is
expected to depend nonmonotonously on Lz, having a maxi-
mum dependent on the QW geometry and electron and hole
masses. The electrostatic interaction is spin-independent and
therefore it equally contributes to �1 and �2 constants.

2. Direct exchange interaction of polaritons with parallel spins

The exchange interaction of excitons is described by a
Hamiltonian21

Hij
ex = −

1

2
Jij

ee�1 + 4si� sj� � −
1

2
Jij

hh�1 + 4ji� j j� � , �5�

where Jij
ee and Jij

hh are exchange integrals for electrons and
holes, s� and j� are electron spin and heavy hole pseudospin,
respectively. If the exciton polaritons have parallel spins the
exchange contribution to the energy shift is positive and
given by the exchange integral.

Uex
d � �aBnX2e2



�6�

This term contributes only to �1.

B. Redshift of the exciton polariton ground state due to
indirect interactions

As any second order perturbation process, the indirect in-
teractions reduce the energy of the ground state. Here we
consider three types of such interactions: the Van-der-Waals
interaction, where the next quantum confined exciton state in
a QW serves as an intermediate state;28 the interaction via
optically forbidden exciton states with spins +2 and −2;29

and interactions via the biexciton state.22 To calculate the
contributions of these interactions to the polariton energy
shift, one has to find the matrix element of each of indirect
processes between the ground state having N polaritons and
the excited state having N−2 polaritons. The symmetrized
wave function of this excited state can be written as

�N−2 =
1

�N�N − 1�/2
	

i,j�i�j�
�ij . �7�

Here �ij is the polariton wave function, where ith and jth
polaritons are removed to the excited state. The matrix ele-
ment reads

M = 
�N−2�Hind��N� �
�2

N
	

i,j�i�j�

�i

ex� j
ex�Hind��i� j� , �8�

where Hind is the Hamiltonian of the indirect interaction, �i
and �i

ex are single particle wave functions in the ground �po-
laritonic� and excited state, respectively. Here we assume N
�1. If the number of excitations is much less than the total
number of polaritons �N�, one can introduce the effective
Hamiltonian of the system as
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H̃ =
1

2
E1�a+a + aa+ − 1� + M�a+a+ + aa� , �9�

where E1 is the energy difference between the state with a
single excitation and the ground state, a+ and a are creation
and annihilation operators of the excitations. By substitution

a+ =
b+ cos � + b sin �

�cos 2�
; a =

b cos � + b+ sin �

�cos 2�
,

�10�

where operators b+ and b satisfy the same commutation re-
lations as a+ and a, the Hamiltonian is transformed into

H̃ = � E1

2 cos �
+ M tan 2�
�b+b + bb+�

+ �E1

2
tan 2� +

M

cos 2�

�b+b+ + bb� −

E1

2
. �11�

Choosing sin 2�=−2M /E1 we obtain

H̃ =
E1

2
�1 −

4M2

E1
2 �b+b + bb+� −

E1

2
. �12�

The ground state energy of this Hamiltonian is

E0 =
E1

2
��1 −

4M2

E1
2 − 1
 �13�

E0 is negative; if M �E1 /2, it is approximately equal to
−M2 /E1, the result of the second-order perturbation theory.21

The excitation energy, proportional to the square root in Eq.
�13�, goes to zero at 2M =E1, indicating that the ground state
becomes unstable.

1. Van-der-Waals (dipole-dipole) interaction of exciton polaritons

The interaction Hamiltonian in this case is

HVdW =� P� �r��E� �r��d3r , �14�

where P� is the dielectric polarization of polaritons and E� is
the electric field produced by this polarization. Since Eq.
�13� assumes averaging over all the polaritons, we must sub-
stitute P� and E� in Eq. �14� with their mean values. In planar
structures, the in-plane polarization does not induce any elec-
tric field. The exciton polaritons interact with each other due
to mixing of their ground states having even electron and
hole wave functions with respect to the center of the quan-
tum well with the excited states having either electron or
hole wave functions odd with respect to the center of the
well. The matrix element of such interaction writes as

MVdWe,VdWh

= 2�nX2e2
−1�
−�

�

�0e,0h�z��1e,1h�z��0e,0h�z��

��1e,1h�z���z − z��dzdz�, �15�

where �0e,0h�z� and �1e,1h�z� are electron, hole envelope func-

tions in normal to the QW plane direction for the ground and
first excited energy levels, respectively. Having in mind that
the hole is heaver than the electron, the first excited state
would be one having an electron in the ground state and the
hole in the first excited state, which is why in the following
we shall be interested only in MVdWh. The dipole polarization
Pz and electric field Ez induced by exciton polaritons in the
normal to the cavity plane direction can be estimated as

Pz � dznX2/Lz � 
Ez, �16�

where dz is the matrix element of the Z component of dipole
moment. Therefore, we obtain for the matrix element

MVdWh � �2
dz

2nX2


Lz
� e2LznX2/
 . �17�

The energy shift of the lowest energy exciton-polariton state
due to the Van-der-Waals interaction writes

UVdW =
�eo

2
��1 −

�e2LznX2�2


2�eo
2 − 1
 , �18�

where �eo is the splitting between the lowest energy exciton-
polariton state characterized by even electron and hole wave
functions and the next exciton state which has the even elec-
tron and odd hole wave functions. The Van-der-Waals inter-
action is spin-independent and contributes to both �1 and �2.

2. Indirect exchange via dark excitons

The average value of the Hamiltonian �5� for two polari-
tons with opposite spins is zero. Therefore, for linearly po-
larized polaritons � 1

�2
�↑⇓+↓⇑� or 1

�2
�↑⇓−↓⇑�� the energy of

direct exchange is one half of that for like-polarized polari-
tons. The off-diagonal matrix element coupling these states
with the states of dark excitons writes

� 1
�2

�↑ ⇓ � ↓⇑�i
1
�2

�↑ ⇓ � ↓⇑� j�Hij
ex�

1
�2

��↑⇑�i�↓⇓� j

+ �↑⇑� j�↓⇓�i�� = �
1

2
�Jij

ee + Jij
hh� . �19�

Then, we have for the matrix element Mex
in

Mex
i � Uex

d �20�

while the energy difference between the polariton state and
the dark exciton state �bd stands for E1 in Eq. �13�. For the
energy shift induced by the indirect exchange via dark exci-
tons we obtain

Uex
i =

�bd

2
��1 − �Uex

d

�bd

2

− 1
 , �21�

3. Indirect exchange via a biexciton state

The energy splitting between the relevant biexciton state
and the ground exciton polariton state is one half of the sum
of excitation energies of the exciton Eex and the biexciton Ebe
minus the energy of the relevant polariton branch Epol
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�be =
Eex + Ebe

2
− Epol. �22�

There is no off-diagonal matrix element between the biexci-
ton state and free exciton states, because both are eigenstates
of electrons and holes coupled by the Coulomb interaction.
However, if we consider exciton polaritons, there is a finite
amplitude of absorption of the photon �part of one polariton�
by the exciton �part of the other polariton� with formation of
a biexciton state. The polaritons should, of course, have op-
posite spins. The matrix element of this process is on the
order of the Rabi frequency times the fraction of the QW
volume occupied by excitons. It can be estimated as

Mbe � X�1 − X2��R�aB
2n , �23�

where �R is the Rabi frequency. For the energy shift induced
by the indirect interaction via biexcitons we obtain

Ube = f
�be

2
��1 −

�1 − X2��X��R�aB
2n�2

�be
2 − 1
 , �24�

where f is a numerical factor on the order of 1. The indirect
interaction via biexcitons only contributes to �2.

IV. COMPARISON WITH THE EXPERIMENT

The constants of polariton-polariton interaction are de-
fined by

�1n = Uq + UVdW + Uex
d , �25�

�2n = Uq + UVdW + Uex
i + Ube. �26�

The direct comparison of this theory to the experiment is
complicated by the fact that there is an apparent strong de-
viation between the value of the polariton blueshift due to
direct exchange interaction Uex

d given by theory �Ciuti et al.9

and our Eq. �6�� and obtained experimentally. The reasons
for this difference are not entirely clear.16 In order to fit rea-
sonably well our data we need to extract Uex

d from the ex-
periment. We obtain it from the energy shift �Ecirc measured
in circular polarization from which the calculated Coulomb
and Van-der-Waals interaction energies are subtracted: Uex

d

��Ecirc−Uq−UVdW. The resulting polariton line shifts
�Ecirc per unit power are shown for three different powers by
solid lines in Fig. 4�a�. Then, in order to fit the measured
ratio �2 /�1 we also adjust the numerical factor f in the biex-
citon induced energy shift Ube given by the Eq. �24�, which
was found to be equal to 2. In numerical calculations we
have used the following parameters: exciton Bohr radius of
aB=10 nm, the dielectric permittivity 
=13
0, where 
0 is
the permittivity of the vacuum, exciton binding energy Eb
=5 meV, the quantum well width Lz=8 nm, the Rabi split-
ting ��R=3.5 meV. Bright and dark exciton energy was
1.475 eV, biexciton energy 1.474 eV, energy of the first ex-
cited state 1.477 eV. In order to calculate the electron and
hole wave functions, we have used the electron and hole
effective masses: me=0.063m0, mh=0.5m0, where m0 is the
free electron mass, assuming that the effective masses of
identical particles are the same in well and barrier materials.

The barrier heights have been taken Ve=41.4 meV, Vh
=32.6 meV for electrons and holes, respectively.

The theoretical results are compared with the experimen-
tal data in Fig. 4�b�, showing the ratio �2 /�1 as a function of
detuning for three different polariton densities n=3.8
�1010 cm−2, n=5�1010 cm−2, and n=7�1010 cm−2. One
can see, that �2 /�1 becomes more negative, as one goes
from negative to positive photon-exciton detuning, in agree-
ment with the data. From the theoretical point of view,
��2 /�1� is also expected to grow with the pumping power but
this behavior is not resolved experimentally. Indeed, the
power dependence of the polariton line shift in both linear
and circular polarizations seems to be linear within the ex-
perimental accuracy, as shown in Fig. 5. This justifies aver-
aging of the values of ��2 /�1� obtained at different pumping
powers for each given value of the detuning. To give a reader
an idea about the accuracy of the experimentally obtained
ratio of the interaction constants we report in Fig. 4�c� the
full set of measurements of ��2 /�1� for three different powers
and show the calculation results for comparison. One can
see, that the data are strongly dispersed so that the expected
power dependence of ��2 /�1� cannot be resolved. Major
amendments of the experimental setup would be required to
resolve the nonlinearity of the polariton shifts.

The important experimental result, which is confirmed
theoretically, is that the ratio �2 /�1 may fall below −1 in the
vicinity of zero detuning. In this regime, the Bose-Einstein
condensation cannot take place and the condensation in the
real space would occur instead. This can also be seen in Fig.
1, where the calculated values of the coupling constants �1
and �2 for different values of the exciton-photon detuning in
the microcavity are shown by a thick solid line.

To compare the relative importance of each mechanism of
the polariton-polariton interaction we plot Uq, UVdW, Uex

d ,
Uex

i , and Ube separately as a function of detuning �Fig. 6�.
One can see that both dipole-dipole and indirect exchange
components are negative and remain negligible in the range
of the detunings that we explore. The mean-field electrostatic
interaction energy is positive, it does not depend on the spin
and is supposed to be calculated with relatively good preci-
sion using Eq. �4�. The direct exchange interaction is deter-
mined by the polariton shifts measured in circular polariza-
tion, which is why the high values of the ratio �2 /�1 can
only be explained by the strong biexciton term.

FIG. 5. �Color online� An example of power dependence of the
of the lower polariton line shift measured in linear �circles� and
circular �squares� polarizations. Solid lines are linear fits of the data.
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The detuning dependence of interaction constants can be
understood as follows. When the detuning changes from
negative to positive, the splittings �eo, �bd, and �be decrease,
as illustrated in Fig. 7. Therefore, the contribution of the
indirect interactions to the polariton energy shift increases.
This influences both �1 and �2 constants but �2 is affected in
a greater extent, as neither indirect exchange nor the interac-
tion via biexciton states contribute to �1.

Finally we note, that despite the apparent agreement be-
tween theory and experiment, there is a strong intrinsic de-
viation between the data and the model. The model explains
attraction of polaritons and the negative sign of �2 by the
indirect polariton-polariton interactions via some intermedi-
ate states �most likely, biexcitons�. The strength of these in-
teractions depends on the polariton concentration, which is
why the theory predicts a nonlinear dependence of the polar-
iton energy shift in linear polarization on the pumping power.

Qualitatively, it can be understood in the following way.
The probability for each polariton to meet another polariton
is proportional to the concentration. Thus the probability of
scattering of two polaritons into the virtual intermediate
states is also proportional to the concentration. Their scatter-
ing back from the virtual states to the condensate is stimu-
lated by the occupation of the condensate, thus its probability
is also proportional to the polariton concentration �in the
mean-field approximation�. Consequently, the product of
probabilities of polariton scattering to the virtual states and
back to the ground state is proportional to the squared con-
centration.

Experimentally, we observe no indication of such nonlin-
ear dependence in the power range available in our experi-
ment �Fig. 5�. Further studies are needed to achieve better
understanding of the mechanisms of polariton attraction in
microcavities.

V. CONCLUSIONS

Our measurements show that the amplitude of exciton-
polariton interactions is strongly spin-dependent. The exci-
tons with parallel spins attract each other while the excitons

with antiparallel spins repel each other. The attraction is
weaker than the repulsion at negative photon-exciton detun-
ing that is why the Bose-Einstein condensation of exciton
polaritons in planar microcavities is possible. We have found
certain regions of our sample, where the attraction is stronger
than the repulsion. This indicates the possibility of coexist-
ence of a classical condensate �condensation in real space�
and a Bose-Einstein condensate �condensation in reciprocal
space� of exciton polaritons within the same sample. The
factors responsible for the repulsion of the exciton-polaritons
are the mean-field electrostatic interaction �independent on
spin� and direct exchange interaction �only for the triplet
configuration�. The factors responsible for attraction are the
Van-der-Waals coupling �independent on spin and small�, the
indirect exchange coupling via the dark states, and interac-
tion via the biexciton state �main factor�. The two latter fac-
tors contribute only in the singlet spin configuration. Analyz-
ing the resonant transmission spectra of microcavities in the
nonlinear regime, we have obtained a more negative value of
the ratio between singlet and triplet polariton-polariton inter-
action constants �2 /�1, than that suggested in earlier
works.14–16 The ratio decreases down to about −1, when the
detuning changes from negative values to zero. Our model
suggests that this is due to the interaction via biexciton
states. Measurements at positive detunings are too noisy and
do not allow formulating definitive conclusions. However,
both theory and experiment indicate that in this regime the
ratio of interaction constants can be less than −1, which is
crucial for the regime of polariton condensation in micro-
cavities. The Bose-Einstein condensation is expected to be
substituted by condensation in real space in this case. Finally,
we underline that our results have been obtained on a micro-
cavity sample with a single embedded quantum well. The
ratio of interaction constants �2 /�1 may vary in a different
way in the structures containing several quantum wells.
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FIG. 7. �Color online� Different contributions to the polariton
energy shift due to polariton-polariton interaction.

FIG. 6. �Color online� Energies of the lower polariton state
�black solid line�, bright �red dashed line�, and dark �green dotted
line� exciton states, excited exciton state �blue dashed-dotted line�
as a function of detuning. One can see that both �oe and �bd split-
tings decrease when the detuning changes from negative to positive
values.
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