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We calculate the linear optical absorption spectrum for a semiconductor in the presence of a strong constant
�dc� electric field �the Franz-Keldysh effect�. An independent particle theory is developed that treats the dc field
nonperturbatively and the optical field perturbatively. Results are presented from a calculation using a 14-band
k ·p model for the band structure of GaAs that includes remote band effects to order k2. We also include remote
band effects in the matrix elements for consistency. Coupling between nearly degenerate bands due to the dc
field plays an important role, both near the valence band degeneracy in the center of the Brillouin zone and
along lines where spin-split bands become degenerate. We calculate the electroabsorption spectrum with a dc
field pointing along various crystal directions and predict experimentally accessible effects due to band warp-
ing. Calculations using the 14-band model show a change in the absorption spectrum that depends on the sign
of the electric field, reflecting the lack of a center of inversion symmetry in GaAs. The theoretical framework
presented can be easily extended to nonlinear absorption.
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I. INTRODUCTION

The Franz-Keldysh effect �FKE� is the modification of the
optical properties of a semiconductor caused by the interac-
tion of photoexcited carriers with a static electric field.1–4 For
light with energy below the band gap, the electric field en-
ables absorption through tunneling, producing an exponential
tail in the absorption spectrum, potentially useful in optical
modulators.5 For light with energy above the band gap, co-
herent acceleration of photoexcited carriers leads to Franz-
Keldysh oscillations. In the presence of lifetime broadening
and decoherence, the oscillations are damped, but there re-
mains an enhanced signal at band structure critical points.6

This forms the basis for electroreflectance and electroabsorp-
tion, widely used techniques for studying the electronic
structure of materials. Analysis of Franz-Keldysh oscillations
has also been used as a way of determining effective masses
in new materials and heterostructures.7

An analytical theory3 based on the parabolic band ap-
proximation �PBA� has been found to be consistent with
most experiments. There the absorption spectrum can be ex-
pressed in terms of Airy functions, and the Franz-Keldysh
oscillation period is simply related to the effective mass and
electric field strength. The oscillation period has been shown
to be remarkably robust against the effects of
nonparabolicity.8,9 Where bands become degenerate, such as
near the � point for the uppermost valence bands in GaAs,
interband coupling caused by the electric field seriously
complicates the theory, but it has been found that to a good
approximation the contributions of the bands can be calcu-
lated separately as if they are uncoupled, and then simply
summed.10,11 Numerical calculations of the FKE using model
band structures have been performed,8,12 but, perhaps be-
cause of the qualitative agreement between the PBA theory
and experiment, the effects of band structure on the FKE
have not received much attention.

Our goal here is to set up a complete formalism appropri-
ate for describing the FKE within the independent particle

approximation. We treat band structure effects essentially ex-
actly and to all orders in the applied dc field; while in our
example calculations we will use simple model band struc-
tures, the formalism we develop could be applied utilizing
full band structure calculations over the entire Brillouin
zone. We perturbatively treat the optical field, and consider
both the effect of short pulses of light, where the total density
of carriers injected is the relevant quantity to be calculated,
and the effect of continuous radiation, where a Fermi’s
golden rule expression for the rate at which a density of
carriers is injected is the quantity of interest. Although our
focus in this paper is on one-photon absorption as modified
by the dc field, and hence the usual FKE, the approach we
take is easily generalized to other absorption processes, such
as two-photon and higher absorption, and interferences be-
tween such processes. The formalism is structured in such a
way that it illustrates how the dc field leads to modifications
in the familiar, dc field free expressions.

We use the framework to calculate electroabsorption in
GaAs using a 14-band k ·p model for the band structure. We
find that the coupling induced by the electric field between
nearly degenerate bands near the � point and along high
symmetry directions is extremely important. If it is ne-
glected, the strong variation of the matrix element phase
resulting from the near degeneracy causes an extremely
distorted spectrum that is inconsistent with experiment.
While the role of degeneracy in the FKE near the � point in
zincblende semiconductors has been discussed
previously,8,10–14 the importance of interactions near lines of
degeneracy in models with spin splitting was not previously
recognized. We feel that the general importance of the strong
coupling between degenerate bands in the FKE is not widely
appreciated so we discuss it in detail here.

A major limitation of our approach, of course, is the ne-
glect of carrier-carrier interactions. Both excitonic effects as-
sociated with the electron-hole interaction,15,16 and more
subtle effects due to decoherence of the Bloch states17 caused
by interactions with phonons and other electrons, are ne-
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glected. Our interest in the FKE is driven in part by the way
it may serve as a probe of such phenomena. Before attacking
the treatment of these effects, however, we feel it is impor-
tant to place the treatment at the independent-particle level
on a firm and modern footing so that the consequences of
including more complicated effects can accurately be identi-
fied.

II. THEORETICAL FRAMEWORK

In this section we sketch out the theory. The strategy is a
usual one; we move into an interaction picture to make the
calculation of the absorption of light, where the Hamiltonian
in the interaction picture is only nonzero when the optical
field is present. The details are slightly more complicated
than usual because we must treat the optical field in the pres-
ence of a dc field and all its effects, including the coupling
between different bands. Hence we delegate some of the de-
tails to the appendices.

A. Hamiltonian and basis states

In the independent particle approximation, with the usual
assumption of an interaction of the charges with a classically
described electromagnetic field in the long-wavelength limit,
the dynamics of the system of charges is described by the
Hamiltonian

H�t� =� �†�x�H�t���x�dx , �1�

where

H�t� =
1

2m
��

i
� −

e

c
A�t��2

+ V�x� �2�

and where ��x� is the electron field operator �in the
Schrödinger picture�, satisfying the anticommutation rela-
tions

���x�,�†�x��� = ��x − x�� . �3�

The term V�x� describes the interaction of the charges with
the periodically arranged ions in the crystal and any part of
the electron-electron interaction that can be included in an
effective time-independent single particle potential.

The vector potential A�t�=Adc�t�+Aopt�t� describes both
the optical field

Eopt�t� = −
1

c

�Aopt�t�
�t

, �4�

which we assume to be an optical pulse centered at t=0 with
zero amplitude after some time tend�0 and a nominal dc
field

Edc�t� = −
1

c

�Adc�t�
�t

�5�

that we assume is turned on and then held constant after
some initial time tinitial�0. Putting

K�t� = −
e

�c
Adc�t� �6�

and neglecting a term proportional to Aopt
2 , whose effects can

be absorbed in a phase factor of the total wave function, Eq.
�2� can be written as

H�t� = Hdc�t� −
e

mc
��

i
� + �K�t�� · Aopt�t� , �7�

where

Hdc�t� =
1

2m
��

i
� + �K�t��2

+ V�x� .

The usual Bloch functions �n�k ;x�, labeled by band in-
dex n and crystal wavevector k, satisfy

H0�n�k;x� = �	n�k��n�k;x� , �8�

where

H0 =
1

2m
��

i
�	2

+ V�x� .

They can be written as �n�k ;x�=
−1/2un�k ;x�eik·x, with
un�k ;x+R�=un�k ;x�, where R is a lattice vector; 
 is the
normalization volume. We deal here only with simple band
topologies where points and lines of degeneracy in reciprocal
space exist, but no planes of degeneracy. Then the �n�k ;x�
can be well-defined in reciprocal space at all k, except where
there is degeneracy, by requiring periodicity in the lattice
vectors, i.e., �n�k+G ;x�=�n�k ;x� and 	n�k+G�=	n�k�,
where G is a reciprocal lattice vector, and taking18

i
�un�k;x�

�k
= 


m

um�k;x��mn�k�

for points k where the band n is nondegenerate. The �mn�k�
satisfy �mn

� �k�=�nm�k�, and for m and n nondegenerate at k
are given by

�mn�k� =
vmn�k�
i	mn�k�

,

where

vmn�k� �
1

m
� �m

� �k;x���

i
�	�n�k;x�dx

and 	mn�k�=	m�k�−	n�k�. The phases of the �mn�k�
�m�n� and the functions �mm�k� are chosen so that the pe-
riodicity conditions are satisfied.

Rather than using the set of states ��n�k ;x�� as an expan-
sion basis for the field operator ��x�, it is more convenient to
use a basis of instantaneous eigenstates of Hdc�t�

Hdc�t��̄n�k;x� = �	n�k + K��̄n�k;x� �9�

leaving implicit the time dependence of K and �̄n�k ;x�. A
state �̄n�k ;x� satisfying Eq. �9� is easily shown to be char-
acterized by crystal momentum k+K. One way of construct-
ing such a set ��̄n�k ;x��, which forms a complete set of
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states as n ranges over all band indices and k ranges over one
Brillouin zone, was discussed earlier by Sipe and
Ghahramani,19 to which we refer for details. It is the ap-
proach we adopt here with a slight modification of the initial
conditions. Before the dc field is turned on, from Eqs. �5�
and �6� it is clear that K�t� must be a constant vector, which
we write as Ko

K�t � tinitial� = Ko.

We see from Eqs. �8� and �9� that we can take �̄n�k ;x� to be
�n�k+Ko ;x�, and therefore time independent. When the dc
field is turned on, a prescription can be written down for
constructing �̄n�k ;x� at t+dt given that the set ��̄n�k ;x�� is
known at t. That prescription involves first choosing to iden-
tify the degenerate states at k at time t so that they satisfy
Edc�t� ·Vmn�k ; t�=0 for states m�n, where

Vmn�k;t� �
1

m
� �̄m

� �k;x���

i
� + �K	�̄n�k;x�dx �10�

and then determining the states at t+dt in terms of those at t
by using

i�
d�̄n�k;x�

dt
= 


m

�̄m�k;x��mn�k;t� · Edc�t� , �11�

where the sum excludes any states m degenerate with n and

�mn�k;t� �
eVmn�k;t�

i	mn�k + K�
. �12�

With proper caution for the labeling of band indices as
k+K moves through degeneracy points or lines, the resulting
states �̄n�k ;x� are found to be �̄n�k ;x�=
−1/2ūn�k ;x�eik·x,
where ūn�k ;x�=e−i�n�k;t�un�k+K� with

�n�k;t� = − �
k

k+K�t�

�nn���� · d�� �13�

and where the line integral is along a path determined by the
evolution of K�t�, taking

�� = k + K�t�� . �14�

Using these expressions we find

Vmn�k;t� = vmn�k + K�t�ei�mn�k;t�, �15�

where

�mn�k;t� = �m�k;t� − �n�k;t� . �16�

Thus from Eq. �12� we have

�mn�k;t� = ermn�k + K�t�ei�mn�k;t�, �17�

where we have put

rmn�k� � �mn�k� if 	m�k� � 	n�k� ,

�0 if 	m�k� = 	n�k�

so that the sum in Eq. �11� can be formally taken to be
unrestricted.

It is clear that a wave function �̄n�k ;x� describes the adia-
batic energy eigenstate of an electron in the presence of a dc
field, including the effect of a Berry’s phase described by the
�nn�k�. Thus the set of states ��̄n�k ;x�� form a natural basis
in which to discuss the absorption in the presence of a dc
field. From this point of view, it is because both the elec-
tron’s initial and final states must be thought of as moving
through the Brillouin zone during the time in which the elec-
tron is interacting with the optical field that the absorption
spectrum in the presence of the dc field is different than in its
absence.

However, the dc field can also induce transitions between
the bands as the electrons move through them and this will
affect the absorption of the optical field. To deal with this
effect we work with time dependent states �̄m�k ;x� that are
in fact linear combinations of the ��̄n�k ;x�� at each k and t.
We do this by introducing evolution matrices L�k ; t�, with
elements Lpm�k ; t�, and write

�̄m�k;x� = 

p

Lpm�k;t��̄p�k;x� . �18�

The matrices will be chosen to be unitary so from LL†=I we
have

�̄n�k;x� = 

m

Lnm
� �k;t��̄m�k;x� . �19�

Just as the ��̄n�k ;x�� form a complete and orthonormal set of
�time dependent� states so do the ��̄m�k ;x��. For times
t� tinitial, when we have �̄n�k ;x� independent of time and
proportional to �n�k+Ko ;x� �see the discussion after Eq.
�9�, it will be convenient to take

Lmp�k;t� = �mpe−i	m�k+Ko�t for t � tinitial �20�

capturing the usual evolution of the Bloch states.

B. Heisenberg picture

At times t� tinitial we now specialize to a constant field
and set

K�t� =
e

�
Edct . �21�

To make K�t� continuous as the field is turned on, we take

Ko =
e

�
Edctinitial. �22�

We move into the Heisenberg picture, which is only slightly
more complicated than usual because the Hamiltonian has an
explicit time dependence. We begin by introducing an evo-

lution operator Û�t� satisfying

i�
dÛ�t�

dt
= H�t�Û�t� �23�

and, for definitiveness, the condition Û�t= tinitial�=1. The
Schrödinger picture ket evolves, then, according to �S�t��
= Û�t��H�, where we have put �H���S�t= tinitial��, and the
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expectation value of any Schrödinger operator O at time t is
given by �S�t��O�S�t��= �H�OH�t��H�, where the corre-

sponding Heisenberg operator OH�t�= Û†�t�OÛ�t�. Using Eq.
�23� it is easy to demonstrate that

i�
dOH�t�

dt
= �OH�t�,HH�t� , �24�

where

HH�t� = Û†�t�H�t�Û�t� =� ��H�x,t�†H�t��H�x,t�dx ,

�25�

where we have used Eq. �1�, and H�t�, which contains no
operators, is unchanged.

We use the time-dependent basis functions ��̄m�k ;x�� to
expand �H�x , t�

�H�x,t� = 

nk

bnk�t��̄n�k;x� , �26�

where

bnk�t� =� �̄n
��k;x��H�x,t�dx . �27�

Since the basis is complete we find �bnk�t� ,bmk�
† �t��

=�nm�kk�, which follows using the anticommutation relations
given in Eq. �3� and the fact that equal time versions of these
are preserved in the Heisenberg picture.

There is no superscript H over bnk�t� because it is not a
“pure” Heisenberg operator in the sense of satisfying Eq.
�24�. While �H�x , t� is such an operator, the fact that �̄n

��k ;x�
contains an explicit time dependence means that there is an
extra term in the dynamics for bnk�t�, which is discussed in
detail in Appendix A. Even before that is done, we are in a
position to identify the time-independent Heisenberg ket
�H�, which corresponds to the Schrödinger ket at t= tinitial.
We see from Eq. �26� that we have

�H�x,t� = 

nk

bnk�t��̄n�k;x�e−i	n�k+Ko�t

for t� tinitial, where we have used Eq. �20�. From Eq. �9� and
the equality of �̄n�k ;x� and �n�k+Ko ;x� for t� tinitial we see
that all the time dependence required of �H�x , t� by the
Hamiltonian at these early times resides in the time-
dependent phase factors. Hence at such times bnk�t� is in fact
time-independent; we write it as bnk, so for t� tinitial, bnk�t�
=bnk, and

�H�x,t � tinitial� = 

nk

bnk�̄n�k;x�e−i	n�k+Ko�t. �28�

Clearly bnk is the destruction operator associated with an
electron with band index n and crystal momentum k+Ko.
Now our ket �H� should describe the “semiconductor
vacuum,” in which the valence bands are completely filled
and the conduction bands completely empty. So it must be
possible to divide the bands into a set of conduction bands
�c� and a set of valence bands �v� for which

bck�H� = 0, �29�

bvk
† �H� = 0 �30�

for all k in the first Brillouin zone.

C. Interaction picture

We now move into an interaction picture, where the time
independent ket �H� is replaced by a time dependent ket
��t�� that evolves according to the interaction Hamiltonian
Heff�t�

i�
d��t��

dt
= Heff�t���t�� , �31�

where Heff�t� describes the effect of the optical field in the
presence of the dc field. In Appendix A we show that it is
given by

Heff�t� = −
1

c
Aopt�t� · J̃�t� , �32�

where

J̃�t� = e 

n1,n2,k

bn2k
† bn1kṼn2n1

�k;t� �33�

with

Ṽnq�k;t� = 

m,p

Lmn
� �k;t�Vmp�k;t�Lpq�k;t� . �34�

The evolution matrix L�k ; t� is chosen so that it satisfies

i�
dL�k;t�

dt
= �T�k;t� + S�k;t�L�k;t� , �35�

where

Tpm�k;t� = �pm�	m�k + K�t� ,

Spm�k;t� = − �pm�k;t� · Edc�t� . �36�

Since Heff�t� vanishes for t� tinitial, before the optical field is
applied, we can take the initial condition of this differential
equation to be ��−���= �H�. The matrix elements
Vmp�k ; t� describe the coupling between bands by the optical
field, in the presence of the dc field; the matrix elements

Ṽnq�k ; t� appearing in Heff�t� are effective matrix elements
that take into account the fact that the dc field can induce
transitions between these bands itself.

D. Perturbation calculation

With the interaction picture in hand we can now calculate
the effect of optical transitions on the populations of the
different bands. The usual iterative solution of the
Schrödinger equation �Eq. �31� is

��t�� = �H� + ��1��t�� + ¯ , �37�

where to first order we find
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��1�� =
1

i�
�

−�

�

Heff�t���H�dt� �38�

taking ��1�� to denote the value of ��1��t�� at times after the
optical pulse has passed. We are interested in calculating the
number of electrons in the conduction bands. The conduction
band number operator is

Nc � 

ck

bck
† bck �39�

and the expectation value is Nc�t�= ��t��Nc��t��. We de-
note by �� the value of ��t�� at times after the optical
pulse has passed; it is clear from Eqs. �31� and �32� that at
these times the ket is no longer changing in time. At such
times we have, as shown in Appendix A

Nc�t� = 

c,n,m,k

Lnc
� �k;t�Lmc�k;t���bnk

† bmk�� . �40�

E. Simplifications

In our calculations we choose the ẑ direction as that in
which the dc field points, putting Edc=Edcẑ in Eq. �21�, and
defining a normalized electric field amplitude

� �
eEdc

�
. �41�

With the special role the ẑ direction plays, it is useful to
decompose each k according to k=k�+k�ẑ, where k� lies in
the �kx ,ky� plane. We exhibit the k� and k� components ex-
plicitly by writing Vmp�k ; t� as Vmp�k� ,k� ; t�, and similarly
for all quantities dependent on k.

To specify any such quantity one might think that a sepa-
rate function of time would be required for each k in the
Brillouin zone but once the dc field has been on for a long
enough time that is not true. Because the evolution of K�t�
drives the instantaneous wave vector of the Bloch state
through the Brillouin zone �see Eq. �9� and the discussion
leading to Eq. �13�, the time dependence of functions like
Vmp�k� ,k� ; t� is mirrored by their dependence on k�. In Ap-
pendix B we show that

Vmn�k�,k�;t� = e−i�mn�k�,k��Vmn�k�,0;t +
k�

�
	 , �42�

where

�mn�k�,k�� � − ��
−k�/�

0

��mm
z �k� + k�ẑ + �t�ẑ�

− �nn
z �k� + k�ẑ + �t�ẑ�dt� �43�

is independent of time although it does depend on the dc
electric field strength. Corresponding results hold for
Spm�k� ,k� ; t� and Tpm�k� ,k� ; t�. From these results it follows,
as we show in Appendix B, that

L̂pn�k�,k�;t� = 

q

mpq�k�;t +
k�

�
	Bqn�k�,k�� , �44�

where we have put

L̂pn�k�,k�;t� � Lpn�k�,k�;t�ei�pn�k�,k�� �45�

and the matrix mpn�k� ; t� satisfies

i�
dmpn�k�;t�

dt
= 


q

�Tpq�k�,0;t� + Spq�k�,0;t�mqn�k�;t�

�46�

together with the initial condition

mpn�k�;0� = �pn. �47�

The matrix elements Bqn�k� ,k�� encode the initial conditions
of the Lpn�k� ,k� ; t�; in the dynamics of the Lpn�k� ,k� ; t� we
see from Eq. �44� that, like the dynamics of Vmn�k� ,k� ; t�,
there is a mirroring of the dependence on t with that on k�.
This mirroring will greatly simplify the calculations below.
But before we turn to them, we must address a crucial ap-
proximation.

F. Block diagonal approximation

When the dc field turns on at tinitial, long before the optical
pulse arrives, there will be an onset of Zener tunneling be-
tween the valence and conduction bands that will build up as
time goes on. In an actual experiment, of course, a steady
state will be set up determined by various relaxation mecha-
nisms. These are not included in our formalism. Hence, it
would be unrealistic to try to imagine allowing the dc field to
be on for an infinite amount of time before the optical pulse
arrives. As well, it would be unphysical to miscount the Ze-
ner tunneling that would continue after the pulse has passed
as being associated with absorption. In the kind of indepen-
dent particle approximation we are employing here, the best
we can do is to use as an input to our description the fact that
we expect the Zener tunneling across the band gap to be
small, and neglect it.

The neglect of valence band to conduction band Zener
tunneling corresponds to the neglect of the matrix elements
Sqn�k� ,k� ; t� in Eq. �35� that involve one of �q ,n� being a
conduction band and the other a valence band. With this
approximation Eq. �35� for L�k� ,k� ; t� splits into two matrix
equations, one for the conduction bands and one for the va-
lence bands. Similarly, of course, Eq. �46� for m�k� ; t� splits
into two blocks as well.

Equation �44� then can be written in terms of the two
sub-blocks

L̂cc��k�,k�;t� = 

c�

mcc��k�;t +
k�

�
	Bc�c��k�,k�� ,

L̂vv��k�,k�;t� = 

v�

mvv��k�;t +
k�

�
	Bv�v��k�,k�� , �48�

where �c ,v� �and �c� ,v��, etc. refer to conduction and va-
lence bands. Note that Bc�c��k� ,k�� and Bv�v��k� ,k�� are el-
ements of unitary matrices, since by Eq. �47� they specify the

values of L̂cc��k� ,k� ;−k� /�� and L̂vv��k� ,k� ;−k� /��; by con-
struction the L�k� ,k� ; t� are unitary matrices, and it is easy to
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confirm that the L̂�k� ,k� ; t� �Eq. �45� are as well. The actual
values of Bc�c��k� ,k�� and Bv�v��k� ,k�� will turn out to be
unimportant.

The “block approximation” �Eq. �48� will be employed
hereafter. Whenever we denote general indices �such as n
and q� for matrix components, as we do below, we under-
stand that they are either both conduction band indices or
both valence band indices. The approximation has important
consequences for calculating the total number of electrons
Nc�t� promoted to the conduction bands after the pulse has
passed. In Appendix B, it is shown that, when this approxi-
mation is made, Eq. �40� reduces to

Nc�t� = 

c�,k�,k�

��bc�k�k�

† bc�k�k�
�� �49�

for t� tend. The fact that Nc is a constant after the optical
pulse has passed reflects the fact that we have neglected Ze-
ner tunneling between valence and conduction bands.

G. Linear absorption in the presence of a dc field

Equations �42� and �48� allow us to write a simplified

expression for Ṽnq�k ; t� in Eq. �34�, which when used in the
expression for Heff�t� �Eqs. �32� and �33� allows us to cal-
culate ��1�� according to Eq. �38�

��1�� = 

k�,k�



v,c
� d	�cvk�

i �	�Ei�	�ei	k�/��cv�k�k��� ,

�50�

where

�cvk�

i �	� =
e

2��

Fcv
i �k�;− 	�

	
�51�

and

Fcv�k�;− 	� � �
−�

�

Fcv�k�;t�e−i	tdt �52�

with

Fcv�k�;t� = 

c�,v�

mc�c
� �k�;t�Vc�v��k�,0;t�mv�v�k�;t�

�53�

and where E�	� is the Fourier transform of our optical field

Eopt�t� =� d	

2�
E�	�e−i	t. �54�

The details are given in Appendix C. The state �cv�k�k���
corresponds to one electron removed from the valence bands
and one deposited in the conduction bands, as described in
that appendix; these states satisfy

�c�v��k�� k����cv�k�k��� = �c�c�v�v�k
�� k�

�k��k�
�55�

and ��1��, consisting of a superposition of these states, is an
eigenstate of the number operator for electrons in the con-

duction bands, with eigenvalue unity. Thus to lowest order
the expectation value of the number of electrons in the con-
duction bands �Eq. �49� is simply given by

Nc = ��1���1�� �56�

or

Nc = 

k�,k�



v,c
� � d	d	��cvk�

i �	���cvk�

j �	���

� ei�	−	��k�/�Ei�	��Ej�	���. �57�

Converting the sum over k� and k� to integrals, we have

n =� � d	d	�

��

v,c
� � dk�

4�2

dk�

2�
�cvk�

i �	���cvk�

j �	���ei�	−	��k�/��
�Ei�	��Ej�	���,

where n=Nc /
, where 
 is the integration volume. Now we
take

� dk�

2�
ei�	−	��k�/� = ��	 − 	�

�
	 = �����	 − 	�� �58�

for a small enough electric field and we then have

n = �
0

�

d	����

v,c
� � dk�

4�2 �cvk�

i �	���cvk�

j �	���
�Ei�	��Ej�	��.

We have restricted the integral over 	 to positive frequen-
cies. In the absence of a dc field, there would only be ab-
sorption for 	�	cv�k�. Here it will acquire some strength
even below the gap but for sufficiently small fields there is
no problem in limiting the integral to positive frequencies.

Equation �58� is appropriate for a pulse; to go to the con-
tinuous wave limit, we take the limit to a long pulse in the
usual way. Writing

Eopt�t� = Eoe−i	ot + Eo
�ei	ot

for −T /2� t�T /2 and vanishing otherwise, taking the Fou-
rier transform �Eq. �54� we find

Ei�	��Ej�	�� → Eo
i �Eo

j ��� sin
1

2
�	 − 	o�T

1

2
�	 − 	o�T �

2

for 	�0 and 	oT�1. Assuming then that 1 /T is smaller
than the range over which the term multiplying
Ei�	��Ej�	�� in the integrand of Eq. �58� varies signifi-
cantly, we can take

Ei�	��Ej�	�� → 2�TEo
i �Eo

j ����	 − 	o�

in Eq. �58� and, identifying n /T with dn /dt, we have the
Fermi’s golden rule limit
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dn

dt
= 2�����


v,c
� � dk�

4�2 �cvk�

i �	o���cvk�

j �	o���Eo
i �Eo

j ��.

�59�

In Appendix D, the analogous expression is found for no dc
field. It is

dn

dt
= 2��� dk

8�3

cv

�cvk
i ��cvk

j ����	o − 	cv�k��Eo
i �Eo

j ��,

�60�

where

�cvk
i =

e

�

vcv
i �k�

	cv�k�
. �61�

Equations �59� and �60� are of the form

dn

dt
= �ij�	o�Eo

i �Eo
j ��, �62�

where �ij�	� is a tensor that describes the polarization-
dependent optical carrier injection rate. To relate this to the
absorption spectrum ��	�, we identify Im��ij�	�
=2���ij�	�, where the �ij�	� are the elements of the dielec-
tric tensor. Assuming that the dc field points along one of the
principal axes of the dielectric tensor, we can use the
expression20

��	� =
Im��ii�	�	

n�	�c
=

2��	�ii�	�
n�	�c

, �63�

�no summation implied� where i is the direction of polariza-
tion of the optical field, assumed to be linearly polarized
along one of the principal axes, and n�	� is the refractive
index associated with the propagation of light with this po-
larization. In principle n�	� is modified by the presence of a
dc field since through Kramers-Kronig relations n�	� can be
written in terms of an integral involving �ii�	� at all frequen-
cies. But in GaAs, the material we consider in presenting our
sample calculations, even near the band gap the relative
change in n�	� due to the presence of a dc field is much less
than the relative change of �ii�	� so in Eq. �63� we always
take n�	� as the appropriate refractive index in the absence
of a dc field. The dielectric tensor is proportional to the unit
tensor in the absence of an electric field for GaAs and thus
any direction of an applied dc field can be taken to identify
one of the principal axes.

In Appendix E, it is shown that for two parabolic bands
and constant matrix elements Vcv, our theory reproduces the
well-known Airy function expression3

��	� =
2�e2�cv�

�2	
cvn�	�c
�Vcv�2

��−
	g − 	


cv
Ai2�	g − 	


cv
	 + �Ai��	g − 	


cv
	�2� ,

�64�

where �	g is the band gap energy and 
cv����2 /2�cv�1/3 is
the electro-optic frequency, where �cv is the reduced mass.

Overall, our general expression Eq. �59� for the absorp-
tion in an electric field contains one less integral than those
derived by Enderlein, Renner, and Scheele12 and by Aspnes,
Handler, and Blossey.21 Hader, Linder, and Döhler found a
similar simplification in their theory.8 It is the linear relation-
ship between t and k� for a dc field that enables the removal
of one of the integrals. The integral over k� is converted into
a Fourier transform and we integrate over k� rather than the
entire Brillouin zone �BZ�. As discussed in more detail in the
next section, we interpret this as a sum over all possible
trajectories carriers can take through reciprocal space. The
absorption spectrum for each trajectory, for a given pair of
bands and i-polarized light, is proportional to ��cvk�

i �	��2.

III. CALCULATIONS

For an example calculation, we use a k ·p model18 for the
band structure, in which known band energies and matrix
elements at the � point are used to calculate the band disper-
sion and the variation in the matrix elements with k. For a
Hamiltonian H0, a k ·p Hamiltonian

Hk = e−ik·rH0eik·r = H0 +
�2k2

2m
+ �k · v �65�

can be defined for the u functions, so that Hkun�k ;x�
=�	n�k�un�k ;x�, recalling �n�k ;x�=
−1/2un�k ;x�eik·x.
Since ��n�k=0 ;x�� form a complete set of states with the
periodicity of the lattice, one could, in principle, calculate
the full band structure by moving from the center of the
Brillouin zone to any other point with successive applica-
tions of Eq. �65�, as long as the energies �	n and matrix
elements vmn at the center of the Brillouin zone are known.
In practical models, the set of bands is truncated to a man-
ageable number. Important effects from bands outside the set
can be taken into account using k-dependent remote band
parameters in an extra term HR�k� so that

�Hk�mn = �H0�mn +
�2k2

2m
�mn + �k · vmn + �HR�k�mn,

�66�

where H0 contains the band energies at k=0 and off-diagonal
terms due to spin-orbit coupling.22

Calculations of the FKE have been done previously using
empirical models for the band structure. Enderlein et al.12

used a Kohn-Luttinger model for the valence bands. Hader et
al.8 used a Kane model that includes the valence bands and
the lowest energy conduction bands. Here we use a model
that directly includes 14 bands and includes effects from
bands outside that set to order k2.23 Fourteen-band models24

�also known as five-level models� have been previously ap-
plied to calculations of band structure23,25–28 and linear opti-
cal properties29,30 of semiconductors. To examine the effects
of band structure on the FKE, we also calculate using four
submodels derived from the 14-band model.

A. Band structure models

The 14-band model used23 directly includes three groups
of bands: six p-like valence bands, the two lowest in energy
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s-like conduction bands, and the six next higher in energy
p-like conduction bands. For the model parameters, we use
the notation of Bhat and Sipe,31 denoting the fundamental
band gap Eg, the valence band spin-orbit energy �0, the va-
lence band to upper conduction band energy E0�, and the
upper conduction band spin-orbit energy �0�. The valence to
conduction band spin-orbit coupling,22 which contributes to
off-diagonal terms in H0, is denoted �−. The model contains
three coupling parameters: P0 between the valence and con-
duction bands, Q between the valence and upper conduction
bands, and P0� between the lowest conduction band and upper
conduction bands. The bands considered in the model are
shown in Fig. 1.

The model also includes the effects of remote bands
through Löwdin perturbation theory.32 The remote band pa-
rameters include modified Luttinger parameters �1, �2, and
�3 and a parameter F that fixes the curvature of the lowest
conduction band to the experimentally determined effective
mass. The modified Luttinger parameters are related to the
usual Luttinger parameters �1L, �2L, and �3L by

�1 = �1L −
EP

3Eg
−

EQ

3E0�
−

EQ

3�E0� + �0��
,

�2 = �2L −
EP

6Eg
+

EQ

6E0�
,

�3 = �3L −
EP

6Eg
−

EQ

6E0�
, �67�

where EP=2mP0
2 /�2 and EQ=2mQ2 /�2. The model also in-

cludes a remote band parameter Ck that adds a small k-linear
term to the valence bands.33 We refer the reader to the work
of Pfeffer and Zawadzki,23 and Bhat and Sipe31 for details of
the model, including the basis states and the 14�14 Hk ma-
trix.

We calculate spectra here for GaAs, using �1L=7.797,
�2L=2.458, and �3L=3.299. We performed the calculations
using the full 14-band model, denoted H14, and four other
models derived from it. To examine the effects of the k-linear
remote band terms and the interband spin-orbit coupling in
the calculation, we define a “no spin” model H14NS in which
we have set �−=0 and Ck=0. We use a bare 14-band model
to examine the effects of remote band parameters. In that
model, denoted H14NR, we set all remote band parameters
and �− equal to zero. Thus, effective masses calculated from
H14NR do not match experimentally observed values but criti-
cal point energies and the symmetry of the matrix elements
are maintained. For direct comparison with the previous
work of Hader et al.,8 we have implemented an eight-band
model, denoted H8, by setting P0�=Q=0 in the 14-band
model and renormalizing the modified Luttinger parameters
according to Eq. �67�. Finally, to examine the effects of band
warping, we use a spherical eight-band model, denoted H8S,
in which both �2L and �3L are set equal to �2�2L+3�3L� /5
=2.963.34 The parameters for each model are given in Table
I.

B. Matrix elements

Time-dependent velocity matrix elements Vmn�k� ; t� en-
ter the calculation through Eqs. �53� and �36� �in the latter
equation through �mn�k� ; t�, defined in Eq. �12�. In a typi-
cal k ·p calculation of optical absorption,29 matrix elements
are found by diagonalizing Hk at each k and using the re-
sulting eigenvectors to project the velocity matrix elements
at k=0 into the new basis. The FKE, however, depends on
the magnitude and the relative phase of the matrix elements
along a trajectory in the BZ, so diagonalization, which intro-
duces random phases, does not work.

TABLE I. Model parameters for GaAs. The coupling parameters P0� and Q are given in units of eV Å, the
spin splitting �− is given in eV, and the k-linear term Ck is given in meV Å. The �-point energy splittings and
the coupling between the valence bands and lower conduction bands are the same for all models: Eg

=1.519 eV, �0=0.341 eV, E0�=4.488 eV, �0�=0.171 eV, and P0=10.3 eV Å.

Model �1 �2 �3 F P0� Q �− Ck

H14 −0.581 −0.019 −0.333 1.055 3.0 7.7 −0.061 −3.4

H14NS −0.581 −0.019 −0.333 1.055 3.0 7.7 0 0

H14NR −1 0 0 0 3.0 7.7 0 0

H8 1.687 −0.597 0.244 1.055 0 0 0 0

H8S 1.687 −0.092 −0.092 1.055 0 0 0 0

�0.2 �0.1 0.0 0.1 0.2

�4

�2

0

2

4
h̄
ω

(e
V

)

〈111〉 k (Å
−1

) 〈100〉

∆0

∆′
0

Eg

E′
0

FIG. 1. Bands calculated using from the H14 model along two
directions in the BZ. The energy splittings at k=0 defined in the
model are labeled. Spin splitting is not shown.
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We decompose the time-dependent ū functions �see dis-
cussion after Eq. �12� into linear combinations of the time-
independent u functions at k=0

ūn�k�;x� = 

m

Cmn�k�;t�um�0;x� . �68�

Multiplying by um�
� �0 ;x�, integrating over the unit cell, and

using

1

V
� um�

� �0;x�um�0;x�dx = �m�m, �69�

where V is the unit cell volume, we have

Cmn�k�;t� =
1

V
� um

� �0;x�ūn�k�;x�dx . �70�

The time dependence of Cmn�k� ; t� arises from the implicit
time dependence of ūn�k� ;x�. From Eqs. �11� and �12�, us-
ing our assumed dc field, we have

dūn�k�;x�
dt

= − �

q�n

ūq�k�;x�
Vqn

z �k�;t�
	qn�k� + �tẑ�

, �71�

where we have used the assumption that � is independent of
time. Using Eq. �70�, this leads to

dCmn�k�;t�
dt

= − � 

q�n

Cmq�k�;t�
Vqn

z �k�;t�
	qn�k� + �tẑ�

. �72�

At t=0, ūn�k ;x�=un�k ;x� so the initial condition Cmn�k� ;0�
can be found by diagonalizing Hk at k=k�. What is needed
to solve Eq. �72� is to evaluate Vqn

z �k� ; t� at each step.
From Eq. �10�, with our assumed field, we have

Vmn�k�;t� =
1

m
� �̄m

� �k�;x���

i
� + ��tẑ	�̄n�k�;x�dx .

�73�

Expressing this in terms of the ū functions and using Eq.
�68�, it can be shown that the matrix elements are given in
terms of Cmn�k� ; t� by

Vmn�k�;t� = 

p,q

Cqm
� �k�;t�vqp�0�Cpn�k�;t�

+
�

m
�k� + �tẑ��mn. �74�

Putting k� =�t and defining Dmn�k� ;k���Cmn�k� ; t� and
Wmn�k� ;k���Vmn�k� ; t�, we can rewrite Eq. �72� as

dDmn�k�;k��
dk�

= − 

q�n

Dmq�k�;k��
Wqn

z �k�;k��
	qn�k� + k�ẑ�

�75�

and Eq. �74� as

Wmn�k�;k�� = 

p,q

Dqm
� �k�;k��vqp�0�Dpn�k�;k��

+
�

m
�k� + k�ẑ��mn. �76�

Thus the matrix elements, being independent of the dc field,

can be found once and then reused to calculate spectra as a
function of the electric field.

The H8, H8S, H14NS, and H14 models have remote band
parameters, and the presence of the extra k dependence in the
Hamiltonian from HR�k� results in inconsistency if it is not
included in the matrix elements. In a crystal, the diagonal
elements of the velocity matrix should be proportional to the
slopes of the bands, i.e., vnn�k�=�k	n�k�. In fact, this ex-
tends to the off-diagonal matrix elements so that
vnm�k�=�−1�k�nk�H�mk�. When a finite band model in-
cludes remote band effects, these identities are no longer
satisfied so we restore them by using vnm�k�=�−1�kHk.31,35

Thus, when the model contains remote band effects, we use

Wmn�k�;k�� =
1

�


p,q

Dqm
� �k�;k����kHk�qpDpn�k�;k�� ,

�77�

where �kHk is evaluated at k=k�+k�ẑ. For the H14NR
model, this reduces to Eq. �76�, but in the other models,
��kHk�mn=�vmn+ ��2 /m�k�mn+ ��kHR�mn. While the contri-
bution of the remote band effects to the matrix elements is
small for the spectral region considered here, we have in-
cluded it in the calculations for consistency.

In summary, we use Eq. �76� for H14NR, and Eq. �77� for
the H8, H8S, H14NS, and H14 models, in Eq. �75� to find the
velocity matrix elements. The equations are solved
numerically using an adaptive Runge-Kutta-Fehlberg solver.
The magnitude of the matrix elements at each k calculated
from the differential equation was found to agree within
numerical error with the magnitude found by diagonalizing
Hk. Matrix elements for x-polarized light are shown in Fig. 2
for a particular line through the BZ defined by
k= �0.0047 Å−1�x̂+ �0.005 Å−1�ŷ+k�ẑ. This particular value
of k� was chosen as an example because k passes near the �
point at k� =0, where the upper valence bands become degen-
erate, and it also passes near a line of spin degeneracy at
k� = �0.005 Å−1.

The bands mix where they are nearly degenerate, and this
leads to changes in the matrix element amplitudes and phases
through the k ·p interaction. As shown in Fig. 2�a�, near de-
generacy occurs for the light and heavy hole valence bands
near � �the region near k� =0�. The mixing leads to strongly
varying matrix elements for the heavy and light hole to con-
duction band transitions, shown in Figs. 2�c� and 2�e� as
calculated from H8. That the matrix element variation occurs
due to near degeneracy can be seen by comparing those plots
to Fig. 2�g�, which shows the matrix elements calculated
from H8 for the split-off valence to conduction band transi-
tion. In contrast with the transitions involving the degenerate
valence bands, the split-off valence band to conduction band
matrix elements are well behaved and nearly constant near
k� =0. The coupling between nearly degenerate light hole and
heavy hole bands, shown in Fig. 2�i�, enters the calculation
of the FKE through the matrix S and the evolution matrix L.
The dc field causes transitions between the nearly degenerate
bands due to the nonzero matrix element between them.

In the 14-band models, the bands are spin split by the
coupling P0� of the lower conduction bands to the upper con-
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duction bands and by Ck and �−. Spin degeneracy occurs
along high symmetry directions in the BZ. The spin splittings
are plotted in Fig. 2�b� for the valence bands and lower con-
duction bands, calculated using the H14NS model. When k
nears lines of degeneracy, strong mixing between spin split
bands occurs. This can be seen in Figs. 2�d�, 2�f�, and 2�h�,
near k� = �0.005 Å−1, where k passes near the �111� direc-
tion. Along �111� and �100�, spin-split bands become degen-
erate in the H14NS model �the degeneracy along �111� is lifted
for some pairs of bands in H14 because �−�0 but the degen-
eracy along �001� remains33�. For the heavy and light hole
bands, as in the eight-band models, there are additional ef-
fects due to the degeneracy at the � point. The mixing at
k� = �0.005 Å−1 is also evidenced in the strong matrix ele-
ment between the light hole and heavy hole bands at those
wavevectors, as shown in Fig. 2�j�. This coupling appears for
all pairs of bands in the 14-band models and must be ac-
counted for in the calculation of the FKE.

C. Calculation of band coupling

To find the matrix m, we solve Eq. �46� with initial con-
dition Eq. �47�, using the matrix elements calculated from

Eq. �77� in S and the band energies in T. The matrix m
oscillates at the frequency differences between bands 	mn.
For numerical convenience, we go into an interaction pic-
ture, at each k� defining

m̃�k�;t� = eiI�t�/�m�k�;t� , �78�

where

Imn�t� = �mn��
0

t

	m�k� + �t�ẑ�dt�. �79�

Recalling Tmn�k� ; t�=�mn�	m�k�+�tẑ� and using Eq. �46�,
we find

i�
dm̃�k�;t�

dt
= �eiI�t�/�S�k�;t�e−iI�t�/�m̃�k�;t� . �80�

We solve this equation instead of Eq. �46�. One can easily
show using Eq. �47� that the initial condition remains

m̃pn�k�;0� = �pn.

We then use m�k� ; t�=e−iI�t�/�m̃�k� ; t�.
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FIG. 2. �Color online� Matrix elements for k= �0.0047 Å−1�x̂+ �0.005 Å−1�ŷ+k�ẑ. The left �right� side shows the matrix elements for H8

�H14NS�. �a� Valence band dispersion for H8 near the � point. �b� Difference in energy between spin split bands in the H14NS model. Plotted
are the splittings for conduction bands �solid�, split-off valence bands �dashed�, light hole bands �dotted�, and heavy hole bands �dash-dot�.
��c�–�h� Magnitude �black, left axis� and phase �red or gray, right axis� of Vcv

x = �Vcv
x �ei�. The matrix elements for two out of the four possible

pairs of bands are plotted. �c� Heavy hole valence to conduction band from H8. �d� Heavy hole to conduction band from H14NS. �e� Light hole
to conduction band from H8. �f� Light hole to conduction band from H14NS. �g� Split off to conduction band from H8. �h� Split off to
conduction band from H14NS. ��i� and �j� Matrix element �Vvv�

z �ei� between light and heavy-hole bands. The matrix element for one out of
the four possible band pairs is plotted. �i� Light-hole to heavy-hole band from H8. �j� Light-hole to heavy-hole band from H14NS.
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D. Absorption spectrum results

The integral over k in Eq. �60�, the expression for the
absorption without a dc field, is nominally over the entire
BZ. In practice, summing over �k��0.1 Å−1 is sufficient to
calculate the absorption in GaAs for photon energies be-
tween the fundamental band gap 1.519 eV and the split-off
gap 1.86 eV. We similarly limit the region of integration for
the calculation with an electric field. We solve the equations
for the matrix elements over �k���0.5 Å−1, then use those to
calculate m�k� ; t� for �t��0.5 Å−1 /�, and finally perform
the integration in Eq. �59� over �k���0.1 Å−1. We sum over
the six valence bands and two lowest energy conduction
bands, as we are interested here only in the absorption near
the fundamental band edge. This is a computationally inten-
sive calculation. As an example, on an AMD Athlon™
64 3800+ processor, calculation of the integrand in Eq. �59�,
for one value of k� and for Edc=66.7 kV /cm, takes 3.3 s for
the eight-band models and 19.4 s for the 14-band models.
The calculation takes longer the smaller the electric field
because of the finer step size required to solve Eq. �80�. We
sum over �2�105 values of k�, splitting the work among
many computers.

Calculated absorption spectra are shown in Fig. 3. The dc
electric field, with strength 66 kV/cm, is assumed to be along
the �001 crystal direction. Absorption spectra using the four
models with the optical field Eopt pointing along �001 are
shown in Fig. 3�a�. Figure 3�b� shows the absorption spec-
trum for an optical field along �100. For Eopt�Edc, the
Franz-Keldysh oscillations show beats due to the different
reduced masses of heavy and light holes, seen in electrore-
flectance and photoreflectance experiments on GaAs �Refs.
36 and 37� and other semiconductors10 for critical points of
the same symmetry. For Eopt�Edc, only the light hole bands
contribute to the oscillations. Our results on the polarization

dependence are qualitatively consistent with a previous
calculation8 and electroabsorption data on GaAs.38

There is very little visible difference among the spectra
calculated using H8S, H8, H14NS, and H14. The H14NR model,
with different effective masses, shows a slightly different
Franz-Keldysh oscillation period but the spectral shape is not
qualitatively different from the other models. The shape of
the zero-field spectrum is somewhat different for the H14NS
and H14 models because of the different band dispersion for
large k. We have performed calculations of the FKE spec-
trum for fields from 16.5 kV/cm to 66 kV/cm using the
eight-band models, and from 33 kV/cm to 66 kV/cm for the
14-band models. In Sec. IV, we discuss the results in detail.

E. Effects of the interband coupling

The proper way to treat degenerate bands in the presence
of an electric field has been the subject of many studies, both
within the Franz-Keldysh effect literature10,13,39 and
beyond.40–43 The main question has been how the electric
field lifts the valence band degeneracy at the � point in crys-
tals with zincblende or diamond structure. In the formalism
used here, the electric field couples carriers in nearby bands
together as they are accelerated with the coupling arising
from the dipole moment between bands in the zero-field
Hamiltonian. In spirit, our approach is similar to semiclassi-
cal treatments of transport which consider coherent wave-
packets and how they interact with electromagnetic fields44,45

with the dipole moment ��k ; t� between nearly degenerate
bands playing the role of a non-Abelian Berry connection.
However, while we treat the electromagnetic field classically,
we stress that here we treat the electron dynamics fully quan-
tum mechanically.

The absorption spectrum is the result of a sum of the
contributions from each possible trajectory an electron’s or
hole’s wavevector can take through the BZ, indexed by k�

�recall Eq. �59�. Within each trajectory, the amplitude and
relative phase of the matrix elements, along with the effects
from coupling to nearby bands, have an effect on the absorp-
tion spectrum. Keldysh, Konstantinov, and Perel’ �henceforth
referred to as KKP� argued that the light hole contribution to
the FKE for photon energy below the band gap in GaAs can
be calculated to a good approximation assuming that the
heavy and light hole bands are decoupled.11 That is, the spec-
trum is consistent with a calculation using the value of the
matrix elements near � for k �Edc and neglecting the inter-
band coupling. Aspnes later argued that the same approxima-
tion works for both light and heavy holes for energies far
above the band gap.10 For Eopt�Edc, the KKP approximation
correctly predicts that only light holes contribute, while for
Eopt�Edc, it predicts a 1:3 ratio for the relative contribution
from light and heavy holes, respectively.

To illustrate the effects of interband coupling, we here
examine the “one-trajectory” absorption for light polarized
along �100 and the dc field along �001, which is propor-
tional to



cv

��cvk�

x �	��2.

This is shown in Fig. 4 using the H8 and H14NS models, for
the same value k�= �0.0047 Å−1�x̂+ �0.005 Å−1�ŷ as was
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FIG. 3. Calculated absorption spectra for a 66 kV/cm dc field
�solid lines� pointing along �001, using the five models for GaAs.
The spectra are offset vertically for clarity. �a� Light polarized along
�100. �b� Light polarized along �001. The dashed line shows the
zero-field absorption spectrum for H8S.
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used for Fig. 2. The bottom trace labeled “no field” shows,
for reference, the absorption along that trajectory with no
electric field. That is calculated in Appendix D; the spectrum
shown is ��cvk

i �2��	−	cv�k� integrated over k�, where �cvk
i

is given by Eq. �61�. The next trace from the bottom, labeled
“KKP+PBA,” is the parabolic band approximation expres-
sion �derived in Appendix E�, proportional to



cv

�Vcv
x �2Ai2�−

	 − 	g


cv
	 ,

where 
cv= ���2 /2�cv�1/3 is the electro-optic frequency with
�cv the reduced mass between valence band v and conduc-
tion band c. We assume the KKP spectral weighting of 1/4
light holes, 3/4 heavy holes for the matrix elements. The
trace third from the bottom, labeled “KKP,” is the absorption
calculated using the band dispersion from the k ·p model and
the KKP matrix elements. The trace second from the top,
labeled “no coupling,” is the absorption calculated using the
matrix elements shown in Fig. 2 but neglecting interband

coupling between bands, found by setting S�k ; t�=0 in Eq.
�46�. The top trace, labeled “full” is the one-trajectory ab-
sorption spectrum from the full calculation. We find that the
full calculation, including coupling between bands, is indeed
remarkably similar to the KKP result.

Comparing the “KKP” curves to the “KKP+PBA” curves
in Fig. 4 shows the effects of nonparabolicity to be relatively
minor, primarily affecting the lineshape of the beat in the
spectrum near 1.68 eV. Comparing those to the full calcula-
tion, the primary effects are �a� the position of the beat be-
tween light and heavy holes shifts upward in energy, and �b�
the amplitude of the oscillations is somewhat smaller in the
full calculation than in the KKP approximation. The strong
distortion of the spectrum seen when the coupling between
bands is neglected arises mainly from the strong variation
of the matrix elements. In the case of the H8 model, shown in
Fig. 4�a�, the split-off valence bands do not interact
with other bands, and as a result, the spectrum near
Eg+�0=1.86 eV is not noticeably affected by the neglect of
interband coupling. In the case of the H14NS model, shown in
Fig. 4�b�, there is additional coupling between spin up and
spin down bands. There the interband coupling must be in-
cluded even for the split-off valence and conduction bands.
While the valence band coupling has been noted previously,
we believe the importance of the spin coupling in the FKE
has not previously been discussed. In each case, the effect of
the interband coupling leads to spectra that are qualitatively
consistent with uncoupled bands, using constant matrix
elements.

IV. RESULTS

In this section, we examine in detail the Franz-Keldysh
absorption spectra calculated from the models. Previous the-
oretical efforts have been focused on the FKE spectrum be-
low the band gap8,11 and the effect of band nonparabolicity
on the Franz-Keldysh oscillation period.8,9 Here we use our
models to calculate the dependence of the FKE spectrum on
the direction of the dc field. We concentrate on two effects,
one related to the warping of the valence bands and the other
to the k-dependent spin splitting of the bands in the 14-band
models due to broken inversion symmetry. To show clearly
the effect of the electric field on the absorption, we concen-
trate in the following on the electroabsorption spectrum, the
difference ���	� between the absorption with and without a
dc field. Differential quantities such as ���	� are what is
typically measured in electromodulation experiments. In Fig.
5, we compare the electroabsorption in the PBA and using
the k ·p models.

The period of the Franz-Keldysh oscillations is
related to the field strength and the reduced effective mass.
For the case of parabolic bands and no broadening,3

���	��F��Eg−�	� /�
, where the electro-optic function

F�x� =
1

�
��Ai��x�2 − x Ai2�x�� − �− x�1/2H�− x� , �81�

where Ai�x� is the Airy function and H�x� is the Heaviside
function. Because the theory does not include scattering and
thus has no source of dephasing, sharp features appear at Eg
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FIG. 4. One-trajectory absorption spectrum for
k�= �0.0047 Å−1�x̂+ �0.005 Å−1�ŷ, with light polarized along
�100, assuming a 66 kV/cm dc field in the �001 direction. �a� H8

model. �b� H14NS model. Plotted, from bottom to top, are the
calculated spectrum without a dc field; with a dc field in the PBA
using known effective masses and KKP matrix elements �Refs. 10
and 11�; with full band dispersion and KKP matrix elements; with
band dispersion and matrix elements but neglecting interband cou-
pling; and the full calculation. Spectra have been offset vertically
for clarity.
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and Eg+�0. Dephasing would tend to smooth these features
and also damp out the Franz-Keldysh oscillations at higher
energies. The effects of dephasing on the FKE is an impor-
tant topic which has been noted17 but has only been included
in most theoretical treatments as a phenomenological broad-
ening parameter.4 The Coulomb interaction, also neglected
here, changes the shape of the band-edge features as
well.15,16,46

For �	�Eg, the asymptotic limit of F�x� for x�0 yields

���	� �
K

�	 − Eg
cos�4

3
��	 − Eg

�
cv
	3/2

+ �� , �82�

where K and � are constants. Thus, to the extent that the
Airy function theory applies, the energies of the oscillation
extrema when plotted as a function of s= ��	−Eg�3/2 should
fit to a line, the slope of which is related to the effective
mass. This sort of analysis has been used previously for nu-
merical calculations8 and experiments.47,48 When there are
two Franz-Keldysh oscillation periods present, as in GaAs
for Edc�Eopt, a plot of the extrema versus s yields informa-
tion about the stronger of the two signals �from the heavy
holes�, but not the weaker. To extract more information, one
could do nonlinear fits of the spectrum to two Airy functions,
one for each type of hole.10 We instead use a simpler, more
versatile approach based on the fact that the Fourier trans-
form of the stretched electroabsorption spectrum ���s� has
peaks at 4 / �3��
cv�3/2.49 Thus, the Fourier transform shows
separate peaks corresponding to the heavy and light hole
oscillations, allowing examination of both electro-optic fre-
quencies and the relative strengths of the peaks. It is also less

sensitive to the precise lineshape than fitting. We only use the
magnitude of the Fourier spectrum here; information about
the phase of the oscillations can also be extracted using the
complex Fourier spectrum.50,51

In GaAs the electroreflectance spectrum is caused mainly
by changes in the real part of the dielectric constant. We do
not calculate that here but it could be found from the imagi-
nary part through the Kramers-Kronig relations.4 It must also
be kept in mind that in many experiments, particularly those
using photoreflectance, the modulation is not between zero
electric field �flat band� to nonzero electric field but rather
between two finite field values.7,50 Still, the same basic
trends found here for the Franz-Keldysh oscillation period
and the relative light hole-heavy hole spectral weight in the
absorption spectrum should hold for the reflectance spectrum
as well.

A. Band warping

It has been found previously that the Franz-Keldysh os-
cillation period calculated using an eight-band k ·p model is
consistent with the Airy function theory, using the effective
mass in the direction of the dc field to calculate the electro-
optic frequency.8 The spectrum depends on the motion of the
particle throughout its trajectory so the overall shape of the
band matters more than the local curvature.8,9 The primary
effect of nonparabolicity is on the damping rate of the oscil-
lations as the photon energy is increased. For this reason the
Franz-Keldysh effect is well suited for measuring the depen-
dence of the effective mass on direction, often called “band
warping.” Intuitively, the Franz-Keldysh oscillations for the
field oriented along a particular direction should give the
effective mass along that direction and this has in fact been
used to interpret experimental data10 but there has been no
theoretical study of the effect.

In GaAs and other materials with zincblende or diamond
symmetry, warping is particularly strong for holes. In Fig. 6,
we show the calculated electroabsorption spectra and Fourier
transform using H8 for Edc �field strength 16.5 kV/cm� ori-
ented along various directions. The oscillation period de-
pends on the DC field direction for both bands, with the
difference for the light hole band, which dominates the spec-
trum for Edc�Eopt �shown in Figs. 6�a� and 6�b�, harder to
observe than the more strongly warped heavy hole bands,
which appear for Edc�Eopt �shown in Figs. 6�c� and 6�d�.
The position of the heavy hole-light hole beat in the spec-
trum for Edc�Eopt, shown in Fig. 6�c�, depends on the di-
rection of the dc field due to the warping. A change in the
position of this beat is probably more easily observable in
experiments than changes in the Franz-Keldysh oscillation
amplitude. The dependence on field direction is more obvi-
ous in the Fourier transform of the above-gap spectra, shown
in Figs. 6�b� and 6�d�.

To study the dependence of the spectrum on the field di-
rection more quantitatively, we extract the effective mass
from the position of the peak in the Fourier transform shown
in Figs. 6�b� and 6�d�. We use a Gaussian window to remove
artifacts from the Fourier transform due to the cutoff at
�	=Eg+�0, and we zero out the region of the electroabsorp-
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tion spectrum near the band gap, where the asymptotic limit
that led to Eq. �82� is not valid. Because nonparabolicity
results in a gradual change in the oscillation period as
�	−Eg increases,8,9 the peaks display some asymmetry. We
have not attempted to account for this in our analysis, as we
are more interested in the rough trends. The results are sum-
marized in Table II. The effective masses for the light holes
�lh� and heavy holes �hh� calculated using the Luttinger pa-
rameters in the H8S model are, along any direction,
mlh=0.073me and mhh=0.534me. Those calculated using the
H8 model are, along �001�, mlh=0.079me, mhh=0.347me;
along �011�, mlh=0.071me, mhh=0.634me; and along �111�,
mlh=0.069me, mhh=0.834me.

20 Similar trends can be seen in
the effective masses extracted from the peaks in the Fourier
transform of the calculated spectra. Disagreement in the
numbers between the masses expected from the model and
those extracted from the FKE spectra is probably caused by
the chirping of the oscillation period due to nonparabolicity,
though effects of the interband coupling near the � point
could also contribute.

We also analyzed the relative strength of the heavy and
light hole oscillations. We integrated the peaks in the Fourier
transform, normalizing by the strength of the light hole peak
for Edc�Eopt� �001� to yield the spectral weight. For
Edc�Eopt, the KKP approximation predicts a 3:1 ratio for the
spectral weight of the heavy holes to that of the light holes.
Using the spherical H8S model, we extract a ratio of 3.44
from the calculated spectrum. The ratio depends on the di-
rection of the dc field using H8, presumably due to band
warping effects. For the dc field along �001 and the optical
field along �100, we find a ratio of 4.2, close to the value of

4.1 reported in a photoreflectance experiment on GaAs.51

Obviously, caution should be used in comparing the cal-
culations here to experiments because we have neglected the
Coulomb interaction and scattering. The latter effect tends to
damp out the oscillations, and coupled with the chirp in the
Franz-Keldysh oscillations due to nonparabolicity, could
change the peak in the Fourier transform, affecting the ex-
tracted effective mass. Still, given that experiments at low

TABLE II. Effective masses extracted from the electro-optic
frequencies 
cv derived from the peak of the Fourier transform and
spectral weights �relative to the weight of the light hole peak for
Edc�Eopt� �001� of the heavy and light hole oscillations as a func-
tion of the direction of the dc field �of magnitude 16.5 kV/cm� and
the optical field.

Model

Direction

mlh /me mhh /me

Spectral weight

Edc Eopt lh hh

H8S �001 �001 0.071 1.02

�100 0.076 0.459 0.38 1.31

H8 �001 �001 0.076 1.0

�100 0.078 0.28 0.30 1.25

�011 �011 0.071 1.04

�100 0.073 0.57 0.51 1.16

�01̄1 0.073 0.57 0.35 1.54

�111 �111 0.071 1.05

�1̄01 0.073 0.75 0.48 1.35
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temperature show many oscillations,46,48 we believe the di-
rectional dependence of the oscillation period and the light
hole-heavy hole relative spectral weight should be observ-
able. Experiments that show many Franz-Keldysh oscilla-
tions involve the use of specially grown heterostructures
with built-in fields along �001�.7 Samples with that orienta-
tion are what is typically grown by molecular beam epitaxy
so another technique may need to be found in order to study
these orientation effects. We note that a new technique for
transverse electroreflectance,52 which overcomes the field
nonuniformity commonly found in experiments using that
geometry and does not rely on doped samples, may be a
more versatile technique for these sorts of experiments.

B. Odd FKE

In the 14-band model for GaAs, the coupling between the
s-like lower and p-like upper conduction bands results in
k-linear terms in the Hamiltonian.33 These produce a
k-dependent spin splitting �present only in the absence of
inversion symmetry�, which results in a change in the ab-
sorption spectrum that depends on the sign of the dc
field.53,54 From the standpoint of nonlinear optics, the lowest
order term, linear in Edc, arises from ��2�, and consequently
this is sometimes referred to as the Pockels effect. But our
concern here is the change in the absorption coefficient, not
in the refractive index. For zincblende symmetry the only
nonzero tensor element is xyz and so, for example, an elec-
tric field along the ẑ direction produces a difference in ab-
sorption for x̂ and ŷ polarized light.47 This is indeed what we
find, shown in Fig. 7. Like the even Franz-Keldysh spectra
for Eopt�Edc, the odd FKE spectrum displays heavy hole-

light hole beats. We found that the three 14-band models did
not produce wildly different odd FKE spectra, as shown in
Fig. 7�a�. This suggests that the odd FKE arises primarily
from the previously mentioned coupling P0� between the
lower and upper conduction bands rather than from coupling
to faraway bands, taken into account here through the remote
parameter Ck.

The shape of the odd FKE spectrum is oscillatory, but the
spectrum oscillates about a nonzero value �proportional to
Edc� that should be measurable at room temperature in the
presence of broadening. The odd FKE has been observed in
GaAs in reflectance measurements for photon energies
around the E1 gap near 3 eV.55,56 In experimental techniques
such as photoreflectance that use built-in electric fields, the
electric field is modulated about a large, finite value, making
it difficult to isolate the odd from the even effects. This is
also a problem in transverse experiments because of space
charge effects. The most thorough study of the effect near the
fundamental edge we have found was done by Belogurov
and Shaldin,57 who tried to carefully separate effects due to
field nonuniformity, which depended on the position of the
light on the sample, from the odd FKE. They do not provide
a quantitative measurement of the differential absorption,
however. Finally, we note that experiments are complicated
by surface and other effects that also break inversion sym-
metry and cause changes in the reflectance which are odd in
the electric field.58–61

V. CONCLUSION

In summary, we have developed an independent-particle
theory of the Franz-Keldysh effect using basis states that
take into account both intraband motion due to the dc field
and interband coupling between nearly degenerate states.
The theoretical framework is designed in such a way that the
differential absorption spectrum may easily be calculated.
The interband coupling between bands is an extremely im-
portant part of the Franz-Keldysh effect in GaAs, both for
the valence bands near the � point and between spin split
bands. Without proper inclusion of the coupling, the varia-
tion of the phase of the matrix elements within the Brillouin
zone causes distortion and washing out of the Franz-Keldysh
oscillations. While the coupling near the valence band de-
generacy has been previously discussed, its implications are
not widely recognized, and we believe the additional cou-
pling between spin degenerate bands has not been previously
discussed.

We calculated the electroabsorption spectrum using a
14-band k ·p model and four submodels derived from it by
neglecting various parameters. Our calculations predict a de-
pendence of the spectrum on the orientation of the dc field
with respect to the crystal axes due to valence band warping.
For the dc field along the �001 direction and the optical field
along �100, a geometry typical of photoreflectance experi-
ments, our theory correctly predicts the ratio of the oscilla-
tion amplitudes due to light and heavy holes observed in
experiments.51 We predict that ratio to depend strongly on
the direction of the dc field; this has not yet been explored
experimentally. The 14-band Hamiltonian has additional
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terms arising from bulk inversion asymmetry that lead to the
odd �in the dc field� Franz-Keldysh effect, which to our
knowledge has not been calculated before in any detail. The
linear change in the absorption spectrum with electric field is
closely related to the Pockels effect, technologically impor-
tant in electro-optic modulators and terahertz detectors.

While we presented results from a k ·p model for the band
structure, the framework could be used to calculate using
other types of models as well. It can also be generalized to
calculate nonlinear optical effects such as multiphoton ab-
sorption and interferences between one- and two-photon
absorption.62 It could also easily be adapted to numerical
calculations of the Franz-Keldysh effect in nanostructures.63

The fact that even an independent-particle theory displays so
much rich physics suggests that there is much lurking be-
neath the surface and we hope that interest in the Franz-
Keldysh effect will be rekindled as better theories are devel-
oped. Finally, we note that the Franz-Keldysh effect is really
an ultrafast phenomenon, relying on the acceleration of car-
riers on a subpicosecond time scale. While ultrafast experi-
ments have taken advantage of the FKE to measure electric
field dynamics,64,65 there is potentially much more to be done
in this area.
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APPENDIX A: DERIVING THE EFFECTIVE
INTERACTION HAMILTONIAN

In this appendix, details of the derivation that leads to
Eqs. �32� and �40� are given. We first determine the dynam-
ics of the operators bnk�t� for t� tinitial �see Eq. �27�. There
will be contributions from the time dependence of �̄n

��k ;x�
and from that of �H�x , t�; the latter is a Heisenberg operator
so we can use Eq. �24� and rewrite the results in terms of a
commutator of bnk�t� with HH�t�. In all we find

i�
dbnk�t�

dt
= i�� d�̄n

��k;x�
dt

�H�x,t�dx + �bnk�t�,HH�t� .

�A1�

For the time derivative of �̄n
��k ;x� use the complex

conjugate of Eq. �18� and the complex conjugate of Eq. �11�
for the time derivative of �̄n

��k ;x�, together with
�mn

� �k ; t�=�nm�k ; t� from Eqs. �10� and �12�. Using the com-
plex conjugate of Eq. �19� to eliminate the �̄n

��k ;x� in terms
of the �̄n

��k ;x�, and the definition �Eq. �27� to identify ex-
pressions for bnk�t�, the result is

i�
dbnk�t�

dt
= �bnk�t�,HH�t� + i�


p,q

dLpn
� �k;t�
dt

Lpq�k;t�bqk�t�

− 

p,m,q

Lmn
� �k;t�Lpq�k;t�bqk�t��mp�k;t� · Edc�t� .

Note now that if we introduce an effective Heisenberg
Hamiltonian

Heff
H �t� = HH�t� + i� 


n,p,q,k

dLpn
� �k;t�
dt

Lpq�k;t�bnk
† �t�bqk�t�

− 

n,p,m,q,k

Lmn
� �k;t�Lpq�k;t�bnk

† �t�bqk�t�

� �mp�k;t� · Edc�t� �A2�

the dynamics �Eq. �A1� for bnk�t� are given by the
Heisenberg-like equations

i�
dbnk�t�

dt
= �bnk�t�,Heff

H �t� . �A3�

We can write HH�t�, and thus Heff
H �t�, in terms of the bmk�t�

and bnk
† �t�. To do this, use Eq. �26� in Eq. �25�, use Eq. �18�

to write the results in terms of the matrix elements of the
��̄p�k ;x��, and recall that matrix elements of H�t� only con-
nect states of the same k. Using Eqs. �9�, �10�, and �25�
HH�t� then reduces to

HH�t� = 

n,q,m,p,k

bnk
† �t�bqk�t�Lmn

� �k;t��	m�k + K��mpLpq�k;t�

−
e

c
Aopt�t� · 


n,q,m,p,k
bnk

† �t�bqk�t�

� Lmn
� �k;t�Vmp�k;t�Lpq�k;t� . �A4�

Choosing the evolution matrix L�k ; t� so that it satisfies
Eq. �35�, the full Heff

H �t� then reduces to

Heff
H �t� = −

e

c
Aopt�t� · 


n,q,k
bnk

† �t�bqk�t�Ṽnq�k;t� , �A5�

where Ṽnq�k ; t� is given by Eq. �34�.
Thus the dynamics for bnk�t� are given by Eqs. �A3� and

�A5�, together with the condition that bnk�t�=bnk for
t� tinitial, where the bnk satisfy Eqs. �29� and �30� for our ket
�H�. Finally, note that for t� tinitial Eq. �35� reduces to

i�
dLpn�k;t�

dt
= �	p�k + Ko�Lpn�k;t�

a solution of which is indeed Eq. �20�. So as Edc�t� is turned
on at t= tinitial the Lpn�k ; t� will evolve in a smooth way.

We now go into an interaction picture by introducing an

evolution operator Ûeff�t� that satisfies the initial condition

Ûeff�tinitial�=1 and

i�
dÛeff�t�

dt
= Ûeff�t�Heff

H �t� . �A6�

Given that bnk�t� satisfies Eq. �A3� it is easy to see that
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bnk = Ûeff�t�bnk�t�Ûeff
† �t� . �A7�

Defining an effective interaction operator Heff�t� according to

Heff�t� = Ûeff�t�Heff
H �t�Ûeff

† �t� �A8�

we see that Eq. �A6� can be written in the more usual form

i�
dÛeff�t�

dt
= Heff�t�Ûeff�t� . �A9�

From Eq. �A5�, using the definition in Eq. �A8� and recalling
Eq. �A7�, we arrive at Eq. �32�.

In calculating the absorption, we will want to consider the
number of electrons that are promoted to the conduction
band. Combining Eqs. �26� and �18� we have

�H�x,t� = 

n,p,k

bnk�t�Lnp�k;t��̄p�k;x� = 

p,k

apk�t��̄p�k;x� ,

where

apk�t� = 

n

bnk�t�Lnp�k;t� �A10�

is a destruction operator associated with the �time-
dependent� state �̄p�k ;x� that describes motion only within
band p. Because the matrix L�k ; t� is unitary it is easy
to confirm that the operators apk�t� satisfy the standard
anticommutation relations, �apk�t� ,ap�k��t��=0 and
�apk�t� ,ap�k�

† �t��=�pp��kk�, and since our interest is only in
the expectation value of the total number of electrons in the
conduction bands, we can find that by taking the expectation
value of the sum of the number operators ack

† �t�ack�t�, where
we sum only over the conduction bands �denoted by c�

Nc�t� = 

c,k

�H�ack
† �t�ack�t��H�

= 

c,n,m,k

Lnc
� �k;t�Lmc�k;t��H�bnk

† �t�bmk�t��H�

= 

c,n,m,k

Lnc
� �k;t�Lmc�k;t���t��bnk

† bmk��t��

�A11�

leading to Eq. �40� for t� tend.

APPENDIX B: PROPERTIES OF Vmn(k; t) AND L(k; t)

The vector Vmn�k ; t� is given by Eq. �10� with time de-
pendence residing in K�t� and also implicitly in the wave
functions �̄n�k ;x�. From Eq. �15� we can write

Vmn�k�,k�;t� = vmn�k� + ẑ�k� + �t�ei�mn�k�,k�;t�. �B1�

To write the expression for �mn�k� ,k� ; t� from Eq. �13�, note
that from Eq. �14� we have ��=k�+k�ẑ+�t�ẑ and so
d��=�ẑdt�. Since when ��=k=k�+k�ẑ we have t�=0, and
when ��=k+K�t�=k�+k�ẑ+�tẑ we have t�= t, we can write
Eq. �13� as

�n�k�,k�;t� = − ��
0

t

�nn
z �k� + k�ẑ + �t�ẑ�dt� �B2�

and so �see Eq. �16�, we have

�mn�k�,k�;t�

= − ��
0

t

��mm
z �k� + k�ẑ + �t�ẑ� − �nn

z �k� + k�ẑ + �t�ẑ�dt�.

�B3�

From this equation we can write

�mn�k�,0;t +
k�

�
	

= − ��
0

t+k�/�

��mm
z �k� + �t�ẑ� − �nn

z �k� + �t�ẑ�dt�.

�B4�

Introducing a new variable t� according to t�= t�+k� /�, when
t�=0 we have t�=−k� /� and when t�= t+k� /� we have t�= t,
so

�mn�k�,0;t +
k�

�
	

= − ��
−k�/�

0

��mm
z �k� + k�ẑ + �t�ẑ�

− �nn
z �k� + k�ẑ + �t�ẑ�dt�

− ��
0

t

��mm
z �k� + k�ẑ + �t�ẑ� − �nn

z �k� + k�ẑ + �t�ẑ�dt�

= �mn�k�,k�� + �mn�k�,k�;t� ,

where �mn�k� ,k�� is given by Eq. �43�. Note

�mn�k�,0� = 0,

�mm�k�,k�� = 0. �B5�

From Eqs. �B1� and �B5� we can then write

Vmn�k�,k�;t� = vmn�k� + ẑ�k� + �t�ei�mn�k�,0;t+k�/��e−i�mn�k�,k��

�B6�

while clearly

Vmn�k�,0;t +
k�

�
	 = vmn�k� + ẑ��t +

k�

�
	�ei�mn�k�,0;t+k�/��

�B7�

so we find Eq. �42�, identifying the link between Vmn�k ; t�
for different k and different t.

Similar relations hold for the components of L�k ; t�. We
begin with Eq. �17�, explicitly indicating k� and k�,
�mn�k� ,k� ; t�=ermn�k�+ ẑ�k� +�t�ei�mn�k�,k�;t�. Now from
this and the second of Eq. �36� we have
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Spm�k�,k�;t� = − ezpm�k� + ẑ�k� + �t�Edce
i�pm�k�,k�;t�

�B8�

and so using Eq. �B5� we find

Spm�k�,k�;t� = e−i�pm�k�,k��Spm�k�,0;t +
k�

�
	 �B9�

and from the first of Eq. �36� we find

Tpm�k�,k�;t� = e−i�pm�k�,k��Tpm�k�,0;t +
k�

�
	 , �B10�

where we have used the second of the identities �B5� and the
fact that Tpm�k� ,k� ; t� is diagonal.

These properties will allow us to establish a link between
Lpn�k� ,k� ; t� and Lpn�k� ,0 ; t+k� /��. Note that choosing
k� =0 we can write Eq. �35� as

i�
dLpn�k�,0;t�

dt

= 

m

�Tpm�k�,0;t� + Spm�k�,0;t�Lmn�k�,0;t�

�B11�

so of course

i�

dLpn�k�,0;t +
k�

�
	

dt

= 

m
�Tpm�k�,0;t +

k�

�
	 + Spm�k�,0;t +

k�

�
	�

�Lmn�k�,0;t +
k�

�
	

and so

i�

d�Lpn�k�,0;t +
k�

�
	e−i�pn�k�,k���

dt

= 

m

�Tpm�k�,k�;t� + Spm�k�,k�;t�

��Lmn�k�,0;t +
k�

�
	e−i�mn�k�,k��� ,

where we have used Eqs. �B9� and �B10�, the fact that

�pn�k�,k�� = �pm�k�,k�� + �mn�k�,k�� �B12�

�see Eq. �43� and the fact that the �pn�k� ,k�� are indepen-
dent of time. But from Eq. �35� we have as well

i�
dLpn�k�,k�;t�

dt

= 

m

�Tpm�k�,k�;t� + Spm�k�,k�;t�Lmn�k�,k�;t�

�B13�

so we see that Lpn�k� ,k� ; t� and

Lpn�k� ,0 ; t+k� /��e−i�pn�k�,k�� satisfy the same differential
equation.

Defining L̂pn�k� ,k� ; t� according to Eq. �45�, and recalling
that �pn�k� ,k�� is independent of time and satisfies the first

of Eq. �B5�, we see that L̂pn�k� ,k� ; t� and

L̂pn�k� ,0 ; t+k� /�� satisfy the same differential equation. Of
course they need not be equal, because they can have differ-
ent initial conditions; we turn to these in a moment. First,
however, we consider a function mpn�k� ; t� that satisfies Eq.
�46� with initial condition given by Eq. �47�. Then noting

that L̂pn�k� ,0 ; t� satisfies Eq. �B11�, we can write

L̂pn�k�,0;t� = 

q

mpq�k�;t�Aqn�k�� , �B14�

where the Amn are the components of a constant matrix that

identifies the initial condition of L̂pn�k� ,0 ; t�; indeed, using
Eq. �47� we see immediately that

Amn�k�� = L̂mn�k�,0;0� . �B15�

Then since L̂pn�k� ,k� ; t� and L̂pn�k� ,0 ; t+k� /�� satisfy the
same differential equation we can write Eq. �44�, where the
Bqn�k� ,k�� are the components of a constant matrix that, in a
slightly more complicated way, encode the initial condition

on L̂pn�k� ,k� ; t�.
Within the block approximation �see Sec. II F�, Eq. �40�

reduces to

Nc�t� = 

c,c�,c�,k�,k�

Lc�c
� �k�,k�;t�Lc�c�k�,k�;t�

� ��bc�k�k�

† bc�k�k�
�� , �B16�

where we have explicitly written the sum as one over both
k� and k�, and used the block approximation. Using the fact
that in the block approximation Lc�c�k� ,k� ; t� �with the sub-
scripts varying only over conduction band labels� is a unitary
matrix, we recover Eq. �49�.

To recover the form of our matrix L�k� ,k� ; t�, we write
Eq. �48� as

Lpn�k�,k�;t� = e−i�pn�k�,k��

q

mpq�k�;t +
k�

�
	Bqn�k�,k��

= 

q

m̄pq�k�;t +
k�

�
	B̄qn�k�,k�� , �B17�

where we have used Eq. �45� and where in the second line
we used expressions of the form Eq. �B12�, and have put

m̄pq�k�;t +
k�

�
	 = e−i�pq�k�,k��mpq�k�;t +

k�

�
	 ,

B̄qn�k�,k�� = e−i�qn�k�,k��Bqn�k�,k�� . �B18�

It is easy to confirm that the B̄qn�k� ,k�� are the elements of a
unitary matrix.
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APPENDIX C: CALCULATION OF ��(1)
‹ IN THE

PRESENCE OF A dc FIELD

We now turn to the evaluation of the interaction Hamil-
tonian and the identification of the necessary matrix ele-
ments. From Eq. �33� we have

J̃�t� = e 

k�,k�



n1,n2



a,b

bn2k�k�

† bn1k�k�
Lan2

� �k�,k�;t�

�Vab�k�,k�;t�Lbn1
�k�,k�;t� ,

where we have used Eq. �34� for Ṽn2n1
�k ; t�, and we explic-

itly indicate the dependence on k� and k�. When we use this
in perturbation theory we will only be interested in the terms
in the summations that do not destroy the state �H� and
which produce an excited state. Thus we demand that n1 is a
valence state and n2 a conduction state. Recalling the block
diagonal form �Eq. �48� assumed for L�k ; t�, we can write

J̃�t� = e 

k�,k�



v,c



c�,v�

bck�k�

† bvk�k�
Lc�c

� �k�,k�;t�

�Vc�v��k�,k�;t�Lv�v�k�,k�;t� .

Using Eq. �B17� this becomes

J̃�t� = e 

k�,k�



v�,c�



c�,v�

m̄c�c�
� �k�;t +

k�

�
	

�Vc�v��k�,k�;t�m̄v�v��k�;t +
k�

�
	

� �

c

B̄c�c
� �k�,k��bck�k�

† ��

v

B̄v�v�k�,k��bvk�k�� .

Defining

Bv�k�k�
= 


v
B̄v�v�k�,k��bvk�k�

,

Bc�k�,k�
= 


c

B̄c�c�k�,k��bck�k�
�C1�

we have

J̃�t� = e 

k�,k�



v�,c�



c�,v�

m̄c�c�
� �k�;t +

k�

�
	

�Vc�v��k�,k�;t�m̄v�v��k�;t +
k�

�
	Bc�k�k�

† Bv�k�k�

= e 

k�,k�



v�,c�

e−i�c�v��k�,k��Fc�v��k�;t +
k�

�
	Bc�k�k�

† Bv�k�k�
,

where

Fc�v��k�;t +
k�

�
	 = 


c�,v�

mc�c�
� �k�;t +

k�

�
	

�Vc�v��k�,0;t +
k�

�
	mv�v��k�;t +

k�

�
	

�C2�

and we have used the first of Eqs. �42� and �B18�.
We now study the properties of the operators Bvk�k�

and
Bck�k�

. From the fact that the operators bnk�k�
and their ad-

joints satisfy the fundamental anticommutation relations, it is
clear that

�Bnk�k�
,Bmk

�� k��
� = �Bnk�k�

,Bmk
�� k��

† � = 0 �C3�

if k�+k�ẑ�k�� +k��ẑ. To investigate the case where
k�+k�ẑ=k�� +k��ẑ we can then drop the k� and k� subscripts.
Also it is clear that Bc anticommutes with Bv and Bv

†, and that
Bv anticommutes with Bc

† as well. So we need only investi-
gate the anticommutation relations of Bn and Bm

† , where n
and m are either both conduction labels or both valence la-

bels. Since the B̄v�v�k� ,k�� and the B̄c�c�k� ,k�� are respec-
tively elements of unitary matrices, we have

�Bm,Bn
†� = 


p,q
B̄mpB̄nq

� �bp,bq
†� = 


p,q
B̄mpB̄nq

� �pq = �mn.

So then we see that our full set of operators are fermion
operators. Restoring the full notation, we have

�Bnk�k�
,Bmk

�� k��
� = �Bnk�k�

† ,Bmk
�� k��

† � = 0,

�Bnk�k�
,Bmk

�� k��
† � = �nm�k�k

��
�k�k��

. �C4�

Further, from Eqs. �29� and �30� and the definitions in Eq.
�C1� we see that we have

Bck�k�
�H� = 0,

Bvk�k�

† �H� = 0

and we can understand our initial state as filled with fermi-
ons identified by the operators labeled vk�k�, and empty of
the fermions identified by the operators labeled ck�k�. These
“new fermion states” are just linear combinations of our old
fermion states, where the new conduction band states involve
only old conduction band states, and the new valence band
states involve only old valence band states.

Thus we can identify

�c�v��k�k��� = e−i�c�v��k�,k��Bc�k�k�

† Bv�k�k�
�H� �C5�

as a state where there is one electron removed from the va-
lence bands and one deposited in the conduction bands; it is
convenient to include the phase factor in the definition of the
state. From the fundamental anticommutation relations �Eq.
�C4� we have Eq. �55�. Finally, note that the effect of our

operator J̃�t� �Eq. �33� on our Heisenberg ket can be written
as
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J̃�t��H� = e 

k�,k�



v,c

Fcv�k�;t +
k�

�
	�cv�k�k��� �C6�

and so we have

��1�� = −
e

i�c



k�,k�



v,c
�

−�

�

Fcv�k�;t +
k�

�
	

· Aopt�t��cv�k�k���dt . �C7�

Fourier expanding the optical pulse

Aopt�t� =� d	

2�
A�	�e−i	t �C8�

and using

E�	� =
i	A�	�

c
�C9�

we have

��1�� =
e

2��



k�,k�



v,c
� d	

Eopt�	�
	

· �
−�

�

Fcv�k�;t +
k�

�
	e−i	t�cv�k�k���dt

=
e

2��



k�,k�



v,c
� d	

Eopt�	�
	

ei	k�/�

· �
−�

�

Fcv�k�;t +
k�

�
	e−i	�t+k�/���cv�k�k���dt

=
e

2��



k�,k�



v,c
� d	

Fcv�k�;− 	�
	

· Eopt�	�ei	k�/��cv�k�k��� ,

where Fcv�k� ;−	� is given by Eq. �52�. This leads to Eq.
�50�.

To now calculate the expectation value of the number of
carriers injected into the conduction bands, we can use Eq.
�49�. Since the second of Eq. �C1� identifies a unitary trans-
formation between the Bck�k�

and the bck�k�
, we can just as

well write

Nc = 

c,k�,k�

Bck�k�

† Bck�k�
. �C10�

Using this it is clear that ��1�� �see Eq. �50� is an eigenket
of Nc with eigenvalue unity �Nc��1��= ��1���.

APPENDIX D: ABSORPTION IN THE ABSENCE OF A dc
FIELD

For reference and to have a result in the same notation as
our main calculation, we sketch here the usual derivation of
absorption in the absence of a dc field. Here we can take
Adc�t�=0 for all times, and hence Ko �see Eq, �22� can be
taken to vanish. The evolution in Eq. �20� then holds for all
times and we can take

Lmp�k;t� = �mpe−i	m�k�t. �D1�

Using this in Eq. �40� we have

Nc = 

c,k

��bck
† bck�� for t � tend �D2�

with �� given by Eq. �37� at times after the pulse has

passed. To evaluate it we use Ṽnq�k ; t�=vnq�k�ei	nq�k�t, which
follows from Eqs. �15� and �34� in the absence of a dc field,
and Eq. �D1�, in the expressions �32� and �33� for Heff�t� to
yield

Heff�t� = −
e

c



n,q,k
bnk

† bqkvnq�k� · Aopt�t�ei	nq�k�t.

When this acts on �H� we will get, other than a term pro-
portional to �H� itself which will not contribute to carrier
injection to lowest order, a contribution only if q is a valence
band and n is a conduction band. So from Eq. �38� we find

��1�� = −
e

i�c



c,v,k
�

−�

�

dtvcv�k� · Aopt�t�ei	cv�k�t�cv�k�� ,

where the state

�cv�k�� = bck
† bvk�H� . �D3�

Fourier expanding the optical pulse according to Eq. �C8�,
and writing the result in terms of E�	� according to Eq. �C9�,
we find

��1�� = 

c,v,k

� d	�cvk
i Ei�	���	 − 	cv�k��cv�k�� ,

where �cvk
i is given by Eq. �61�. Here ��1�� is easily con-

firmed to be an eigenstate of the conduction band number
operator

Nc = 

c,k

bck
† bck

with eigenvalue unity, Nc��1��= ��1��, and so as in the cal-
culation with the dc field present we have Eq. �56�, and using
the property �c�v��k�� �cv�k��=�c�c�v�v�k�k of the states Eq.
�D3� we find

Nc = 

c,v,k

�
0

�

d	�cvk
i ��cvk

j ��Ei�	��Ej�	����	 − 	cv�k� ,

�D4�

where we need only integrate over positive frequencies be-
cause 	cv�k��0. Converting the sum over k to an integral,
putting n=Nc /
, and then moving to the Fermi’s golden
rule limit, we find Eq. �60�.

APPENDIX E: FKE FOR PARABOLIC, UNCOUPLED
BANDS

In this appendix we verify that our calculation reduces to
the analytical Airy function theory for the case of two para-
bolic bands and constant matrix elements. We consider band
energies of the form
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�	c�k� = �	g +
�2k2

2mc
and �	v�k� = −

�2k2

2mv
, �E1�

where mc is the electron mass, mv is the hole mass, and �	g
is the band-gap energy. We assume that the interband veloc-
ity matrix element is a constant Vcv throughout the Brillouin
zone.

Since there is only one valence band and one conduction
band, and we neglect Zener tunneling between the two, Eq.
�46� simplifies considerably. Since S=0 and T is diagonal,
one can write down the solution

mpn�k�;t� = �pnexp�i�
0

t

	p�k�;t��dt�� . �E2�

Putting Eq. �E1� into Eq. �E2� and then using that and k�

=�t in Eqs. �52� and �53�, we have

Fcv�k�;− 	� = Vcv�
−�

� dt

2�
ei�−	t+	gt+�k�

2 t/2�cv+��2t3/6�cv�,

where �cv�1 / �mc
−1+mv

−1� is the reduced mass. Now let
s3=��2t3 / �2�cv�, define the electro-optic frequency

cv����2 /2�cv�1/3, and using the integral definition of the
Airy function Ai�x�, we find

Fcv�k�;− 	� =
Vcv


cv
Ai�−

	 − 	g − �k�
2 /2�cv


cv
	 . �E3�

Using the above in Eqs. �51� and �59� and integrating over
k�, using a few Airy function identities, and specializing to
i= j, we find Eq. �64�, the familiar expression for the electro-
absorption with parabolic bands at an M0 critical point in the
limit of no broadening.3
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