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We consider a semiconductor in a nonequilibrium steady state with a dc current. On top of the stationary
carrier motion there are fluctuations. It is shown that the stationary motion of the carriers �i.e., their drift� can
have a profound effect on the electromagnetic field fluctuations in the bulk of the sample as well as outside it,
close to the surface �evanescent waves in the near field�. The effect is particularly pronounced near the plasma
frequency. This is because drift leads to a significant modification of the dispersion relation for the bulk and
surface plasmons.
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I. INTRODUCTION

Random thermal motion of charge carriers in a body pro-
duces a fluctuating electromagnetic field. Properties of such a
fluctuating field have been studied for a very long time and
are discussed in a number of textbooks.1–4 Outside the body
one should distinguish between the near and far field do-
main. In far field, i.e., when the distance � from the surface is
much larger than the wavelength � of the corresponding Fou-
rier component of the field, one observes the well-known
phenomenon of thermal radiation. In the opposite regime,
���, there exists �in addition to radiation� a nonradiative
electromagnetic field that is due to evanescent waves excited
by the jiggling carriers. This random evanescent field, close
to the sample surface, is rotationless and can be described by
a scalar potential. Thermal fluctuating fields manifest them-
selves in a variety of experimentally observable phenomena
�the Casimir-Lifshitz forces, near-field heat transfer, noncon-
tact friction� which motivates the ongoing interest in the sub-
ject �see Refs. 5–8 for recent reviews�. One usually distin-
guishes between the equilibrium situation, when all the
relevant bodies are in equilibrium with each other at some
temperature T, and the out of equilibrium case. In that latter
case it is assumed that each body is in intrinsic �local� equi-
librium and can thus be characterized by a temperature
which, however, differs from one body to another �or even
between different parts of the same body�. The simplest ex-
ample of such nonequilibrium situation is radiation from a
hot body into a “cold” environment or into vacuum.

In the present paper we consider another type of an out of
equilibrium, steady-state situation, namely, when a dc current
is established in a conducting medium. Drift of the carriers
can have a profound effect on the fluctuating electromagnetic
field inside, as well as outside, the medium. Appreciable drift
velocities can be achieved in materials with low carrier con-
centration such as lightly doped semiconductors or gaseous
plasma. There exists a large body of work on current fluc-
tuations in semiconductors in the presence of drift �for some
early references see Refs. 9–13�. There is clearly a connec-
tion between that old work and the subject of this paper, in
which we emphasize some conceptually important points
and, in particular, consider the effect of drift on the fluctuat-
ing evanescent field outside the medium, close to its surface.
It is known that drift of the carriers affects the field outside

the medium and can even lead to the existence of a new type
of weakly decaying surface wave.14,15 The possible effect of
such waves on the electromagnetic field fluctuations close to
the sample surface was pointed out long ago.16 Here we take
a broader view of the problem and consider a more general
model of a conducting medium. This enables us to discuss
the fluctuational field at frequencies higher than the inverse
scattering time of the carriers, when plasmonic excitations
come into play. Drift is expected to have a particularly strong
effect near the plasmon frequency.

The organization of the paper is as follows: in Sec. II we
formulate the model and derive the corresponding permittiv-
ity tensor with respect to the steady state. This permittivity
tensor relates quantities which fluctuate on the background
of the stationary motion of drifting carriers. In Sec. III we
summarize Rytov’s method for treating the electromagnetic
field fluctuations and introduce modifications needed for ap-
plication of the method to our problem. In Sec. IV we study
the effect of carrier drift on the field fluctuations well inside
the sample �the limit of an infinite medium�. The experimen-
tally more relevant case of a field outside the sample, close
to its surface, is considered in Sec. V. It is shown there that
drift of the carriers leads to a pronounced dip in the field
power spectrum in the vicinity of the bulk plasma frequency.

II. PERMITTIVITY TENSOR AND PLASMA WAVES
IN THE PRESENCE OF DRIFT

We consider a conducting medium, e.g., a semiconductor,
subject to a constant electric field E0. This field causes drift
of the carriers, with the charge e, so that there is a steady-
state current density j0=en0v0, where n0 is the equilibrium
density of carriers and v0 is their drift velocity. On top of the
stationary motion there are fluctuations. All fluctuating quan-
tities will be denoted by the corresponding letters without
any subscript or superscript. For instance, E�r , t� and j�r , t�
represent fluctuating parts of the electric field and current
density at point r and time t. Relations between the fluctuat-
ing parts of various quantities are obtained by linearization
near the steady state. Since we shall be dealing with tempo-
rary and spatial dispersion, algebraic relations �rather than
integral ones� exist only for the Fourier components. In par-
ticular,
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j̃���,k� = �����,k�Ẽ���,k� , �1�

where tilde indicates the Fourier-transformed quantities and
����� ,k� is the conductivity tensor with respect to the
steady state �summation over � is implied�. The specific
form of this tensor depends, of course, on the model used for
the carrier motion �see below�.

Let us emphasize that current density j accounts only for
the motion of the mobile carriers but not for the polarization
current of the lattice. The latter is incorporated into the di-
electric constant, �L, of the lattice, so that the electric dis-
placement �its fluctuating part� is

D̃���,k� = �LẼ���,k� + i
4	

�
�����,k�Ẽ���,k�

� �����,k�Ẽ���,k� , �2�

where ����� ,k� defines the steady-state permittivity tensor.
We assume that the frequency � is far from any resonant
frequencies of the lattice and set �L=const, thus neglecting
any possible dispersion effects in the lattice.

We are interested in the effect of the longitudinal plasma
waves on fluctuations. Therefore we consider a rotationless
electric field, E�r , t�=−�
�r , t�, which in the absence of
sources satisfies

�

�x�
��̂��

�
�r,t�
�x�

� = 0, �3�

where the caret emphasizes that, in the presence of disper-
sion, �̂�� is an integral operator relating the electric displace-
ment at point r and time t to the electric field at earlier times
in some vicinity of r. Fourier transforming Eq. �3� yields

k2���,k�
̃��,k� = 0, �4�

where a scalar quantity

���,k� =
k�k�

k2 �����,k� �5�

has been introduced. The equation

���,k� = 0 �6�

defines the dispersion relation for longitudinal waves in the
medium.17

In order to obtain an explicit expression for ����� ,k� we
will use a hydrodynamic equation for the carrier flow V,

�V

�t
+ �V · ��V =

e

m
E − �V −

1

mN
� p , �7�

where m is the effective mass of a carrier, �V describes
relaxation of velocity due to collisions, with frequency �, and
the last term accounts for thermal pressure of carriers. Note
that V, E, and N refer to the total velocity, field, and carrier
concentration, i.e., V=v0+v, E=E0+E, and N=n0+n. The
pressure is related to the concentration as p=NT, where T is
the temperature in units of the Boltzmann constant kB. Ther-
mal pressure does not play a major role in our consider-
ations, which are focused on the effect of drift. It will be

needed in the treatment of the infinite medium �Sec. IV�
because without thermal pressure �or some other mechanism
of spatial dispersion, e.g., diffusion� one would encounter
diverging integrals. Various versions of Eq. �7� are often used
in semiconductor, as well as plasma, physics—see, e.g., Ref.
15 where the magnetic field effects are also included. Equa-
tion �7� should be supplemented by the continuity equation

�N

�t
+ div�NV� = 0. �8�

Linearizing Eqs. �7� and �8�, as well as the total current
density eNV, with respect to the fluctuating quantities
n ,v ,E, and Fourier transforming to � ,k, one obtains

j̃��,k� = i
e2n0

m

1

� + i�
�Ẽ��,k� + �k · Ẽ��,k��

�� 1

�
v0 +

T/m
��� + i�� − Tk2/m

k�� , �9�

where

� = � − k · v0. �10�

The conductivity tensor ����� ,k� is readily read off from
Eq. �10�. We write directly the permittivity tensor, as defined
in Eq. �2�,

�����,k� = ��L� + i�L���� −
�p

2

�� + i������ +
1

�
v0�k�

+
Tk�k�/m

��� + i�� − Tk2/m� , �11�

where �p
2 =4	e2n0 /m and the lattice dielectric constant �L

has been separated into the real ��L�� and imaginary ��L��
parts. It follows from Eqs. �5� and �11� that

���,k�

= �L��1 −
�̃p

2

�� + i�����

�
+

k2RD
2 �̃p

2

��� + i�� − k2RD
2 �̃p

2� + i
�L�

�L�
� ,

�12�

where �̃p=�p /��L� is the plasma frequency, renormalized by
the dielectric constant of the lattice, and RD=�T /m�̃p

2 is the
Debye screening radius.

Neglecting the thermal pressure term one obtains

���,k� = �L��1 −
�̃p

2

�� − k · v0 + i���� − k · v0�
+ i

�L�

�L�
� .

�13�

In equilibrium, i.e., for v0=0 one recovers the standard
Drude model �in the presence of the lattice�,

�eq��� = �L��1 −
�̃p

2

�� + i���
+ i

�L�

�L�
� . �14�

Since plasma waves will play an important role in our
treatment of fluctuations, we pause to discuss briefly propa-
gation of these waves in the presence of drift. To see the
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effect of drift most clearly, let us neglect all dissipative terms
��→0, �L�→0� and compare the dispersion relation in equi-
librium with that for v0�0. Using in Eq. �6� the expression
�12�, with �=�L�=v0=0 �i.e., �=��, we obtain the well-
known dispersion relation for the equilibrium plasma excita-
tions,

k2RD
2 =

�2

�̃p
2 − 1, �15�

which tells us that no wave can propagate for ���̃p. For
���̃p propagation is possible, provided that kRD is a small
number—otherwise the phase velocity of the wave becomes
close to the thermal velocity of the carriers and a strong
collisionless �Landau� damping sets in.18 Thus, the frequency
of a propagating wave should be somewhat larger than the
plasma frequency, �	 �̃p�1+ 1

2k2RD
2 �. For the out of equilib-

rium situation, v0�0, a similar calculation, under the condi-
tions kRD�1, k ·v0�� yields the dispersion relation

� = �̃p + k · v0 +
1

2
�̃pk2RD

2 , �16�

so that, in contrast with the equilibrium case, propagation
with frequencies below �̃p becomes possible, if k ·v0 is nega-
tive and sufficiently large in magnitude for Eq. �16� to be
satisfied. The necessary condition for this is v0

�RD
�2�̃p��̃p−��. Although the effect of drift on plasma

waves is an interesting topic in itself, we shall not pursue it
any further but rather concentrate on the effect of drift on
fluctuations.

III. BASIC EQUATIONS OF THE THEORY

In our treatment of fluctuations we follow Rytov’s
method,2–4 in which random Langevin sources are intro-
duced into the Maxwell equations. These sources describe
the spontaneous �thermal and quantum� fluctuations of polar-
ization and current density, j�s��r , t�. In equilibrium the cor-
relation function of these sources is determined by the
fluctuation-dissipation theorem and it is given in terms of the
imaginary part of the dielectric constant. Since we are deal-
ing with a nonequilibrium situation, there is no general rela-
tion between the correlation function of the sources and ei-
ther ����� ,k� or its equilibrium counterpart. However, it can
happen that, in spite of the drift of the conduction carriers,
the spontaneous sources j�s� remain essentially the same as in
equilibrium. This will occur, for instance, when the sources
j�s� originate primarily in the lattice, rather than in the system
of conduction carriers, i.e., when the third term in Eq. �14�
dominates over the imaginary part of the second term. As-
suming that � is much smaller than the frequency of interest
� and comparing the two terms in Eq. �14�, one arrives at the
requirement ��L� /�L����̃p

2� /�3. Under this condition the cor-
relation function of the spontaneous random sources is deter-
mined solely by the lattice and is given by2,3


j�
�s��r,��j�

�s��

�r�,���� = ��

��2

8	2 �L� coth
��

2T
�r − r���� − ���

� 
j�
�s��r�j�

�s��

�r������ − ��� , �17�

where it was assumed that the lattice, in the presence of the
conduction current, remains close to equilibrium, at some
temperature T. The energy transmitted by the electrons to the
lattice is eventually dissipated into the environment. This
assumption is quite common in the transport theory of metals
and semiconductors. Thus, we arrive at a simple picture
when the spontaneous fluctuations originate in the lattice
while the conduction carriers and their drift only affect the
subsequent dynamics of those fluctuations, leading to modi-
fication of the spectral density of various fluctuating physical
quantities.

In what follows we shall be interested in the rotationless
part of the fluctuating field. It is this part that determines the
evanescent field close to the sample surface, as well as the
short-range correlations in the bulk of the sample. The rota-
tionless electric field, E�r , t�=−�
�r , t�, satisfies Eq. �3�
with added random sources,

�

�x�
��̂��

�
�r,t�
�x�

� = − 4	��s��r,t� . �18�

On the right-hand side of Eq. �18� appears the spontaneous
random charge density, ��s�, which is related to j�s� by the
continuity equation, so that from Eq. �17� one obtains the
expression


��s��r���s��
�r���� =

�

8	2�L� coth
��

2T

�2

�r� � r��
�r − r��

�19�

for the spectral density. In an infinite medium Eq. �18� can be
Fourier transformed to obtain

k2���,k�
̃��,k� = 4	�̃�s���,k� , �20�

where ��� ,k� is given by Eq. �12� and �13�, depending on
whether one keeps or not the thermal pressure term.

Equation �20�, supplemented by the Fourier transformed
Eq. �19�,


�̃�s��k��̃�s��
�k���� =

�k2

8	2 �2	�3�L� coth
��

2T
�k − k��

�21�

enables one a straightforward calculation of correlation func-
tions of various fluctuating quantities in an infinite medium
�see Sec. IV�. For finite bodies analytical treatment, in the
presence of drift, becomes difficult �see Sec. V for a specific
example�.

IV. FLUCTUATIONS IN AN INFINITE MEDIUM

In this section we consider fluctuations in the bulk of the
sample, far from the boundaries. In this case one can assume
an infinite medium and use Eqs. �20� and �21�, from which it
immediately follows that the spectral density for the electric
potential fluctuations is
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̃�k�
̃��k���� =
2�

k2

�L�

����,k��2
�2	�3coth

��

2T
�k − k�� .

�22�

Multiplying this expression by the factor k�k� and returning
to real space one obtains the spectral density of the fluctuat-
ing electric field:


E��r�E�
��r���� = 2��L� coth

��

2T
 d3k

�2	�3

k�k�

k2

eik�r−r��

����,k��2
.

�23�

Let us make a short digression to discuss the equilibrium
case when v0=0 and ��� ,k�=�eq���. Recalling our basic
assumption that spontaneous random sources are due mainly
to the lattice �see discussion prior to Eq. �17� and the corre-
sponding criterion�, one can replace �L� by the imaginary part
of the full dielectric constant, �eq� ���. For the Drude model,
Eq. �14�, one then arrives at the expression


E��r�E�
��r����,equilibrium

= 2�
�eq� ���

��eq����2
coth

��

2T
 d3k

�2	�3

k�k�

k2 eik·�r−r��, �24�

where, again, the double prime denotes the imaginary part of
�eq���. The integral in Eq. �24� exhibits an ultraviolet diver-
gence, indicating a singularity for r�→r. For instance, set-
ting �=� and tracing over � gives


E�r�E��r����,equilibrium = 2�
�eq� ���

��eq����2
coth

��

2T
�r − r�� ,

�25�

which coincides with the second term in Eq. �88.24� of Ref.
2 or in Eq. �20.26� of Ref. 3. To remove the divergence in
Eq. �24� and �25� one must go beyond the Drude model and
introduce spatial dispersion. One source of spatial dispersion
is thermal pressure which resists any steep change in carrier
concentration, thus introducing an ultraviolet cutoff in all
integrals over k. All this is discussed in detail in Ref. 3 �see
also Exercise 3.12.7 in Ref. 4�, where another source of spa-
tial dispersion, due to carrier diffusion, is also mentioned.

We now return to Eq. �23�. Writing ���� ,k��2
= ����� ,k��2+ ����� ,k��2 and assuming that the imaginary
part, ��, is small, one can see that the important contribution
to the integral comes from values of k in the vicinity of kc
which satisfies ���� ,kc�=0 �the pole contribution�. But the
condition ���� ,kc�=0 is just the dispersion relation for the
longitudinal plasma waves in the absence of dissipation. The
relation between plasma waves and fluctuations of the rota-
tionless field becomes particularly clear for the spectral den-
sities in the reciprocal space, such as


E�E�
���k = 2��L� coth

��

T

k�k�

k2

1

����,k��2
, �26�

which is the Fourier transform of Eq. �23�. Let us see how it
works out for ��� ,k� given in Eq. �12�. We take �→0 and
use the conditions kRD�1, k ·v0��. For frequencies �
close to �̃p Eq. �12� simplifies to

���,k� = �L��F��,k� + i�� �27�

with

F��,k� = 2
� − �̃p − k · v0

�̃p

− k2RD
2 , � =

�L�

�L�
. �28�

One can identify in Eq. �23� the combination � / �F2+�2�
which, for small �, can be replaced by 	�F� yielding


E�E�
���k

= 	��̃p coth
��

2T

k�k�

�L�k2 �� − �̃p − k · v0 −
1

2
�̃pk2RD

2 � .

�29�

Comparison with Eq. �16� makes it clear that contribution to
the spectral density comes only from those regions in k
space where plasma waves can propagate. Transforming Eq.
�29� back into real space, one can calculate the correspond-
ing correlation functions.

To elucidate the effect of drift on fluctuations let us con-
sider the correlation function of the x component of the field,
i.e., �=�=x, and fix � somewhat below �̃p. Furthermore,
we chose v0 in the direction of the x axis and consider cor-
relations along x direction, taking y=z=y�=z�=0. Fourier
transform of Eq. �29� then yields


Ex�x�Ex
��x���� = 	��̃p

1

�L�
coth

��

2T
 d3k

�2	�3eikx�x−x�� ·
kx

2

k2

� �� − �̃p − kxv0 −
1

2
�̃pk2RD

2 � , �30�

where only the essential arguments �x ,x�� in Ex have been
retained. In equilibrium this expression is zero, consistent
with the absence of propagating plasma waves for ���̃p.
Writing k2=kx

2+q2, where q is the transverse wave vector
and performing integration over q results in


Ex�x�Ex
��x����

=
�

4	RD
2 �L�
 dkxe

ikx�x−x�� kx
2

kx
2 + RD

−2F��,kx�
��F��,kx�� ,

�31�

where F�� ,kx� is given by Eq. �28�, with ky =kz=0, and the
step function selects the appropriate interval of kx in the in-
tegration region. For the integrand of Eq. �31� to be different
from zero the condition

v0 � RD
�2�̃p��̃p − �� �32�

must be satisfied. This is a necessary condition for propaga-
tion of plasma waves below �̃p. The step function in Eq. �31�
selects an interval of negative kx �i.e., opposite to the direc-
tion v0� such that

� − ��2 − 2 � �kx�RD � � + ��2 − 2 , �33�

where
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� =
v0

�̃pRD

,  = 1 −
�

�̃p

. �34�

Expression �31� takes the form


Ex�x�Ex
��x����

=
�

8	�L�RD
3 

�−��2−2

�+��2−2
du exp�iu

x − x�

RD
� u2

�u − 
.

�35�

This example demonstrates that drift can strongly modify the
fluctuation spectrum in the vicinity of �̃p and, in particular,
can lead to emergence of fluctuations at frequencies where
there were no fluctuations in equilibrium. In addition, due to
the oscillating factor in the integrand of Eq. �35�, there will
be oscillations in the field correlation function. Let us note
that it is desirable to keep v0 smaller than �̃pRD. Indeed,
�̃pRD is on the order of the carrier thermal velocity vT. If v0
exceeds vT, then heating of the carriers becomes appreciable
and the hydrodynamic Eq. �7� would require some modifica-
tion. Thus, we shall assume � to be smaller than unity. In
Fig. 1 we give an example of the spectral density in Eq. �35�,
as a function of x−x�, for �=0.3, =0.01. The real part of
the ratio 8	�L�RD

3 
Ex�x�Ex
��x���� /� coth��

2T � f� x−x�
RD

� is plotted

as a function of x−x�
RD

.

V. FLUCTUATIONS NEAR THE SURFACE

In this section we study fluctuations of the evanescent
electric field which exists close to the surface of a sample,
due to fluctuating charges and carriers inside the sample. We
consider the simplest geometry of a sample occupying half
space �z�0� while the second half �z�0� is vacuum. A dc
current is flowing in the medium and the conduction carriers
are drifting in the x direction with velocity v0 �Fig. 2�.

Let us emphasize that in this section, unlike the previous
one, the entire system �sample+environment� is out of equi-
librium already in the absence of drift �v0=0�. It is assumed
that the sample is in local equilibrium, at temperature T,
whereas the environment is cold �T=0�. In this case, which
is often assumed in the studies of the electromagnetic field
fluctuations,3,5 the sample is the only source of fluctuations
so that no radiation is impinging on the sample from outside.
Moreover, the zero-point fluctuations, which exist also in the

vacuum, cancel out in the process of the electric field mea-
surement. The latter belongs to the class of “absorption mea-
surements” because some amount of energy must be diverted
into the measuring device �the probe�. This implies that in-
stead of the symmetrized correlation function for the random
sources �Eq. �17� or �19��, with its characteristic factor
coth��

2T , one should use the normally ordered correlation
function �see Ref. 5, and references therein�. The latter is
obtained from its symmetrized counterpart by replacing
1
2coth��

2T with the Planck’s function �exp� ��
T �−1�−1

���� ,T�. This replacement amounts to disregarding the
zero-point fluctuations and it will be used throughout this
section.19

Because of the absence of translational symmetry in the z
direction it is not possible anymore to Fourier transform Eq.
�18� in that direction. This complicates the analytic treatment
considerably. One simplification, though, is that unlike the
case of the infinite medium no ultraviolet cutoff will be
needed in the present geometry. Therefore we will discard
thermal pressure altogether and use the permittivity tensor,
Eq. �11�, without the last term. Furthermore, we will keep the
k dependence due to drift only in the component �xx, thus
arriving at a diagonal permittivity tensor,

�xx = �L��1 −
�̃p

2

�� − kxv0 + i���� − kxv0�
+ i

�L�

�L�
� ,

�yy = �zz = �L��1 −
�̃p

2

�� + i���
+ i

�L�

�L�
� � �0��� . �36�

Equation �18�, Fourier transformed in the x ,y plane, assumes
the form

�0����−
�2

�z2 +
�xx��,kx�

�0���
kx

2 + ky
2�
̃�kx,ky ;z�

= 4	�̃�s��kx,ky ;z� , �37�

where tilde indicates the in-plane Fourier transform. The so-
lution of this equation can be written in terms of a Green’s
function satisfying the equation

�0����−
�2

�z2 + q2�g�z,z�;q� = �z − z�� . �38�

Since the right-hand side of Eq. �37� differs from zero only
inside the medium, while the solution of interest is outside

0 5 10 15 20

�0.2

0.0

0.2

0.4

0.6

�x�x'��RD

f

FIG. 1. �Color online� The real part of the normalized spectral
density 
Ex�x�Ex

��x���� as a function of the distance x−x�
RD

.

z

x
0v

FIG. 2. The sample at temperature T, with drifting carriers, is
separated from the vacuum �T=0� by a sharp boundary �the z=0
plane�.
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the medium, we need g�z ,z� ;q� for z��0, z�0. The corre-
sponding expression can be found, for instance, in Ref. 20,

g�z,z�;q� =
1

��0 + 1�q
e−q�z−z�� �39�

and the solution of Eq. �37� is written as


̃�kx,ky ;z� = 4	
−�

0

dz�g�z,z�;q��̃�s��kx,ky ;z� �40�

with

q = � �xx��,kx�
�0���

kx
2 + ky

2�1/2

. �41�

The correlation function for the random sources �̃�s� follows
directly from Eq. �19� with the aforementioned replacement
of 1

2coth��
2T by ��� ,T�,


�̃�s��kx,ky ;z1��̃�s��
�kx�,ky�;z2���

= ��L����,T��kx − kx���ky − ky��

���kx
2 + ky

2��z1 − z2� +
�2

�z1 � z2
�z1 − z2�� . �42�

With the help of Eqs. �40� and �42� and transforming back to
real space, one obtains



�x,y,z�
��x�,y�,z���� = 4��L����,T�  dkxdky

�2	�2 eikx�x−x��+iky�y−y��

�
−�

0

dz1��kx
2 + ky

2�g�z,z1;q�g��z�,z1;q� +
�g�z,z1;q�

�z1

�g��z�,z1;q�
�z1

� . �43�

From this expression one can calculate correlation functions
for various components of the electric field. We limit our-
selves to the x component of the field and consider correla-
tions in the x direction, for fixed y ,z. The resulting function
depends only on x−x� and z, and is given by


Ex�x,y,z�Ex
��x�,y,z��� = 4�

�L�

��0��� + 1�2
���,T�

�  dkxdky

�2	�2 kx
2eikx�x−x��� kx

2 + ky
2

�q�2
+ 1� 1

2q�
e−2q�z,

�44�

where q� is the real part of the quantity defined in Eq. �41�.
In the absence of drift, when �xx=�0���, we have q

=�kx
2+ky

2 and the integral in Eq. �44� can be computed with
the result


Ex�x,y,z�Ex
��x�,y,z���

�0�

=
�

4	

�L�

��0��� + 1�2
���,T�

1

z3

1 −
X2

2z2

�1 +
X2

4z2�5/2 , �45�

where X= �x−x��. Again, recalling the basic assumption about
the dominating role of the lattice in producing the spontane-
ous fluctuations, one can replace �L� by �0���� in Eq. �45�.
Electromagnetic fluctuations close to the surface �near field�,
in the absence of drift, have been studied in Refs. 3 and 4
and in much more details, with an emphasis on their relation
to surface waves, in Refs. 21–23. Our Eq. �45� is in agree-
ment with the corresponding expression in Ref. 23 �our defi-

nition of spectral density differs by a factor 2	 from that in
Ref. 23�. Setting in Eq. �45� X=0, one observes that the
spectral power of field fluctuations, 
E2�z���, increases as z−3

when the surface of the sample is approached3 �the diver-
gence for z→0 will be eventually cutoff by some mechanism
of spatial dispersion�.

It should be also noted that the factor ��0���+1� in Eq.
�45� is due to the surface-plasmon wave which appears at the
frequency satisfying the relation Re �0���=−1. At this fre-
quency, and provided that dissipation is small, a strong peak
appears in the power spectrum.5 On the other hand, the bulk
plasmon frequency, which corresponds to Re �0���=0 �i.e.,
�	 �̃p�, does not play any special role in Eq. �45�. The fre-
quency �̃p does become important, however, in the presence
of drift, as we show next.

Let us first take a closer look at the ratio �xx /�0 which
appears in expression �41� for q. For v0=0 this ratio is unity.
For v0�0, however, it can become large if the frequency �
is close to the bulk plasma frequency �̃p. Indeed, �0��� will
be then close to zero while �xx�� ,kx� can be much larger due
to finite v0. Taking �→0 and assuming

�L�

�L�
� �1 −

�̃p

�
� � 1, �46�

we have, from Eq. �36�,

Re
�xx��,kx�

�0���
= 1 −

2�kx/k0� − �kx/k0�2

2��1 − �kx/k0��2 , �47�

where
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� = 1 −
�̃p

�
, k0 =

�

v0
. �48�

In order to estimate the integral in Eq. �44� one has to find
the relevant values of kx, making the main contribution to the
integral. The factor exp�−2q�z� in the integrand limits the
value of q� to q��1 /z, which in turn results in an efficient
cutoff for kx, if z is not too small. In order to make a quan-
titative estimate we assume that the relevant region of kx
corresponds to �kx��k0 and check the consistency of this
assumption later. For �kx��k0 Eq. �47� simplifies to

Re
�xx

�0
= 1 −

1

�

kx

k0
. �49�

Since ����1, there exists a broad region of kx,

���k0 � �kx� � k0, �50�

such that the second term in Eq. �49� dominates and q �see
Eq. �41�� can be approximated by

q = �ky
2 −

kx
3

�k0
�1/2

. �51�

This expression, together with the aforementioned condition
q��1 /z, implies that the effective cutoff for �ky� is of order
1 /z, whereas the cutoff for �kx� is of order ����k0 /z2�1/3. Sub-
stituting this value into Eq. �50�, and returning to the physi-
cal quantities �, �̃p, and v0, gives the condition on z which is
necessary for the picture to be consistent,

�� − �̃p

v0
�1/2� v0

�̃p
�3/2

� z �
v0

�� − �̃p�
. �52�

Using the cutoffs for kx and ky, one can now estimate the
integral in Eq. �44� with the following result, for x�=x:


E2�x,y,z��� � 2�
�L�

��0��� + 1�2
���,T�

�� − �̃p�
v0z2 . �53�

Comparison between Eq. �53� and the corresponding result
for zero drift, i.e., Eq. �45� for X=0, reveals that under the
conditions specified above drift has a profound effect on the
power spectrum of field fluctuations. The ratio between Eq.
�53� and the corresponding quantity for zero drift is of order
��− �̃p�z /v0, which due to Eq. �52� is much smaller than
unity. Thus, our calculation predicts a dip at the power spec-
trum for frequencies close to the bulk plasmon frequency �̃p.

The above estimate has been made under the condition
given in Eq. �46�, i.e., � in Eq. �53� cannot be too close to
�̃p. In order to approach the immediate vicinity of the bulk
plasmon frequency one should replace the first inequality in
Eq. �46� by the opposite one, ��− �̃p���̃p��L� /�L��. Let us
consider the extreme case �= �̃p. For this case Eq. �36�, with
�→0 and �kx�v0��̃p gives

�xx/�0 = 1 + 2i
�L�

�L�

kxv0

�̃p

. �54�

Note that this time it is essential to keep the imaginary part
of this ratio. Moreover, for the effect of drift to be significant,

the absolute value of the imaginary part must be much larger
than unity, i.e.,

�L�

�L�

�̃p

v0
� �kx� �

�̃p

v0
. �55�

The quantity q, Eq. �41�, is now given by

q = �ky
2 + 2ikx

2�L�

�L�

kxv0

�̃p
�1/2

�56�

and the effective cutoff for kx in the integral, Eq. �44�, is of
order ��L��̃p /�L�v0z2�1/3. Consistency with Eq. �55� requires
z� �v0 / �̃p���L� /�L��1/2. The integral in Eq. �44� can now be
estimated and, for x�=x, we obtain


Ex
2�x,y,z��� � 2�

��L��2

�L�

1

��0��� + 1�2
���,T�

�̃p

v0z2 . �57�

As expected, this value matches expression �53� at frequency
� such that ��− �̃p�� �̃p�L� /�L�. Equation �57� gives the mini-
mum, at �= �̃p, of the dip in the spectral power.

Our consideration has been limited to the case when the
main contribution to the spectral power, i.e., to the integral in
Eq. �44�, comes from kx which satisfy the condition �kx�v0
��. This condition imposes a restriction on z, namely, the
first inequality in Eq. �52� �or its counterpart for frequencies
very close to �̃p�. For z very close to the surface the integral
in Eq. �44� is dominated by large kx so that the condition
�kx�v0�� is violated. Considering values of kx larger than
�̃p /v0 while still neglecting the thermal pressure requires the
condition v0�vT which is better to be avoided.

VI. CONCLUSION

We have demonstrated the effect of carrier drift on ther-
mal fluctuations of the electric field. Only the rotationless
part of the field has been considered. This part dominates the
short-range correlations in the bulk of the sample, as well as
the fluctuations in the near field sufficiently close to the
sample surface. It has been shown that drift can significantly
affect the magnitude and the correlation properties of the
field fluctuations, especially at frequencies close to the bulk
plasma frequency. Our main goal was to discuss the effect of
drift in the simplest possible situation, making a number of
idealizations such as the limit of collisionless semiconductor
plasma ��→0� or keeping �in Sec. V� the k dependence due
to drift only in the component �xx of the permittivity tensor.
The latter simplification allowed us to avoid the intricate
problem of the additional boundary conditions which might
be needed in the more general case �see the book of Agra-
novich and Ginzburg in Ref. 17�.

This work is in some sense complementary to Ref. 16
where a collision dominated transport regime was consid-
ered, i.e., it was assumed that the scattering rate � is much
larger than the frequency �. In this regime the linearized
Ohmic current is simply j=�0E+env0, where �0=e2n0 /m�
is the dc Drude conductivity. Adding to this the diffusion
current −D�n, D being the diffusion coefficient, and elimi-
nating n with the help of the continuity equation, one obtains
instead of Eq. �13�,
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���,k� = �L��1 +
i/�M

� − k · v0 + iDk2 + i
�L�

�L�
� , �58�

where �M =�L� /4	�0 is the Maxwell relaxation time. Neglect-
ing �L�, one recovers from ��� ,k�=0 the well-known space
charge waves with the dispersion relation �=k ·v0− i

�M

− iDk2. These waves can strongly influence current fluctua-
tions in semiconductors12 and their impedance.24 The surface
counterpart of such traveling waves can be excited at the
semiconductor-vacuum boundary14 and can have a signifi-
cant effect on the electromagnetic field fluctuations near the
surface.16 It would be worthwhile to further study the effect
of these waves under more general conditions that those as-
sumed in Ref. 16.

One of the assumptions in the present work was that the
spontaneous random sources of the fluctuations were not af-
fected by the drift of the carriers. This is trivially so in the
limit of collisionless plasma when the lattice remains the
only source of spontaneous fluctuations. The assumption,
though, can break down under more realistic conditions. It
should be possible to relax this assumption. Indeed, for the
current density fluctuations in the bulk, there is a well-
established theory12,13 for the case when the carriers are way
out of equilibrium �hot electrons� and the corresponding
spontaneous random sources undergo a profound change. To
our knowledge, so far there is no extension of the theory to
the case of surface waves and their influence on the field
fluctuations outside the sample.

It is clear that drift, via its effect on the electromagnetic
field fluctuations close to the sample surface, will influence
also the Casimir-Lifshitz forces,25 as well as other related
phenomena �heat transfer, noncontact friction�. Calculation

of the forces involves integration over frequencies so that
significant effect of drift can be expected only if the main
contribution to the integral comes from the interval of fre-
quencies in which the influence of drift on field fluctuations
is strong. The calculation of the Casimir-Lifshitz forces in
the presence of drift is beyond the scope of this paper.

Let us return to the assumption that the contribution of the
conduction carriers to the imaginary part of the dielectric
permittivity is negligible as compared to the contribution of
the lattice. If this condition is violated, as happens, for in-
stance �at sufficiently low frequencies� in a conductor whose
dc conductivity is finite, then even in the equilibrium one
must account for the effect of screening.26 In the experimen-
tal work27 it was argued that the data, in certain carrier con-
centration regime, are inconsistent with the theory of the
Casimir-Lifhitz forces1,2 and that agreement with experiment
is obtained only if the contribution of the conduction carriers
to the permittivity is discarded. The issue still remains con-
troversial �see Ref. 28�.

Finally, let us emphasize that the effects considered in this
work are expected to occur only in materials with relatively
low carrier density �semiconductors, ionic conductors, or
other types of “bad conductors”�, where significant drift ve-
locities can be achieved without destroying the sample.
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