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Quantum phase transitions of metals in two spatial dimensions. 1. Ising-nematic order
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We present a renormalization-group theory for the onset of Ising-nematic order in a Fermi liquid in two
spatial dimensions. This is a quantum phase transition, driven by electron interactions, which spontaneously

reduces the point-group symmetry from square to rectangular. The critical point is described by an infinite set
of 2+ 1-dimensional local field theories, labeled by points on the Fermi surface. Each field theory contains a
real scalar field representing the Ising order parameter and fermionic fields representing a time-reversed pair of
patches on the Fermi surface. We demonstrate that the field theories obey compatibility constraints required by
our redundant representation of the underlying degrees of freedom. Scaling forms for the response functions
are proposed and supported by computations up to three loops. Extensions of our results to other transitions of
two-dimensional Fermi liquids with broken point-group and/or time-reversal symmetry are noted. Our results
extend also to the problem of a Fermi surface coupled to a U(1) gauge field.
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I. INTRODUCTION

A number of recent experiments'~* have noted the pres-
ence of Ising-nematic order in the enigmatic normal state of
the cuprate superconductors. This order is associated with
electronic correlations which spontaneously break the square
lattice symmetry to that of a rectangular lattice, i.e., the sym-
metry of 90° rotations is lost, and the x and y directions
become inequivalent. This broken symmetry is associated
with an Ising order parameter, which we will represent below
by a real scalar field ¢.

Of particular interest are recent experiments on the aniso-
tropy of the Nernst signal* in YBa,Cu;0,, which indicate
that the Ising-nematic order has its onset at the temperature
T=T", which also marks the boundary between the
“pseudogap” region and the “strange metal.” These results
call for the theory of the quantum phase transition involving
Ising-nematic ordering in a Fermi-liquid metal. Such a quan-
tum critical point would play an important role in the theory
of the strange metal. The metallic Ising-nematic critical point
is also of importance in experiments® on Sr;Ru,0,, where
the observations of resistance anisotropies have demon-
strated spontaneous Ising-nematic ordering. Finally, there are
clear indications of Ising-nematic order driven by electron
correlations in the pnictides.®

One approach to the Ising-nematic ordering is to take a
liquid-crystalline perspective'® and view it among a class of
phases with broken square lattice symmetry.!'~!# Ising-
nematic phases are also a generic feature of frustrated and
doped antiferromagnets because the Ising-nematic order sur-
vives after antiferromagnetism [at wave vectors # (7, )]
has been disrupted by thermal'>'® or quantum!'”'® fluctua-
tions.

A complementary point of view is to start from the
Fermi liquid with perfect square lattice symmetry and look
for the Pomeranchuk instability of Landau’s Fermi-liquid
theory in the angular momentum €=2 channel. Almost all of
these works rely on the perspective of Hertz,3% in which the
electrons are integrated out to yield a Landau-damped effec-
tive action for the scalar order parameter ¢; the low-energy
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particle-hole excitations near the Fermi surface lead to long-
range interactions in the action for ¢. However, this proce-
dure of successive integration of fermionic and then bosonic
degrees of freedom is clearly dangerous. A systematic
renormalization-group (RG) analysis requires that all excita-
tions at a given energy scale be treated together. Conse-
quently, a complete scaling analysis of the Ising-nematic
critical point is lacking: such an analysis should be based on
a local field theory and provide a scheme for computing the
scaling dimensions of all perturbations of the critical point.

We can also consider the onset of Ising-nematic order in a
superconductor rather than in a Fermi liquid. In a s-wave
superconductor, the fermionic excitations are fully gapped,
and so the theory for ¢ has no long-range interactions: con-
sequently the transition is in the universality class of the 2
+ 1-dimensional pure Ising model. A d-wave superconductor
does have gapless fermionic excitations at special “nodal
points” in the Brillouin zone, and these nodal fermions do
modify the universality of the transition away from pure
Ising.3*3* A fairly complete understanding of the Ising-
nematic transition in d-wave superconductors has been
reached in recent work®>3 using a large-N expansion, where
N is the number of fermion components.

This paper provides a scaling theory of the Ising-nematic
quantum critical point in two-dimensional metals, satisfying
the requirements stated above. Our theory builds upon the
work in the d-wave superconductor,®3¢ and also on ad-
vances by Polchinski,>” Altshuler, Ioffe, and Millis,®® and
Sung-Sik Lee3**° on a closely related problem: the dynamics
of a Fermi surface with the fermions coupled minimally to a
U(1) gauge field.

We focus on a pair of time-reversed patches on the Fermi
surface and describe their vicinity by a local
2+ 1-dimensional field theory. In principle, there are separate
critical theories for each pair of time-reversed points on the
Fermi surface, as is also the case in the Fermi-surface
“bosonization” methods.?”?841-43 However, a key difference
from the latter methods is that each Fermi-surface point is
associated with a 2+ 1-dimensional theory and not a 1+1
dimensional theory. This means that there is a redundancy in
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our description and sowing the theories together is not
trivial: we show in Sec. IV A how this is done in a consistent
manner.

Apart from their application to the Ising-nematic transi-
tion of interest, simple extensions of our results apply also to
the U(1) gauge field case, and to other symmetry breaking
transitions in Fermi liquids involving order parameters which
carry momentum 0=0. We will describe these cases in Sec.
IT below and briefly indicate the needed extensions in the
body of the paper.

Transitions with order parameters which carry momentum
é # 0 lead to different field theories, which will be described
in a subsequent paper.*® After a discussion of the one loop
results in Sec. III, we present our main scaling analysis in
Sec. IV. This includes a discussion of Ward identities which
strongly constrain the structure of renormalization-group
flow. Finally, explicit three loop computations appear in Sec.
V and Appendix B.

II. MODEL

We consider quantum phase transitions in metals of elec-
trons ¢,(o=1,|) involving an onset of a real order param-
eter ¢(x) at wave vector é=0. The order parameter is taken
to have the same transformation properties under lattice sym-
metries and time reversal as

1 -
0(%) = ‘—/Z 2 diCi g v 2.1)
4 ko
For definiteness, we consider a system on a square lattice.
Then, ¢ can describe the following patterns of symmetry
breaking:

(1) Breaking of the point-group symmetry with dj;=dj,
and di,=d_g,. In these cases di has either d2_2, d,,, or
g-wave symmetry. The Ising-nematic transition of most in-
terest to us here corresponds to the d,2_,2 or d,, cases. These
cases all belong to one-dimensional representations of the
square lattice point group and we will argue that these tran-
sitions are all in the same universality class.

(2) Breaking of time-reversal and point-group symmetry
with dgy=dy| and di,=—d_g,. In this case dj transforms un-
der the two-dimensional p-wave representation and so re-
quires a two component order parameter J):(d)x,d)y). We
will not consider the two-component case explicitly but our
results have an immediate generalization to this transition.
This case corresponds to the “circulating current” order pa-
rameters proposed by Simon and Varma,*’ as was argued in
Refs. 33 and 48.

(3) Breaking of spin-inversion symmetry with dg=~dj;.
In this case, dj can have either s-wave symmetry (Ising fer-
romagnet), d-wave symmetry (Ising spin-nematic) or g-wave
symmetry. Unlike transitions 1 and 2, which respect the full
SU(2) spin-rotation symmetry, in the present case we assume
this symmetry is explicitly broken to a U(1) “easy axis” sub-
group.

Notice that in all cases, there is a Z, symmetry (either 7/2
rotation, reflection, or time reversal) under which ¢— —a.
Apart from the above symmetry breaking cases, we will also
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consider the problem of a Fermi surface minimally coupled
to a U(1) gauge field.*7-4%49-38 This case is similar to case 2
above, as we describe below Eq. (2.4). Such models arise in
theories’’® of certain U(1) spin-liquid phases in which ¢,
describe the fermionic spinons. We will therefore refer to this
model as the “spin-liquid” case below. The same theory also
describes ¢! “algebraic charge liquids™ in which case the c,,
are spinless, charge —e fermions, and o represents the charge
of the fermion under the emergent U(1) gauge field; we will
not refer to this case explicitly below.

Given the order parameter in Eq. (2.1), we may write
down an effective space-time Lagrangian describing the in-
teractions of the order parameter ¢ with the fermions as

L=, + e i9))e, — 0@ + (Ve + 25
(2.2)

Here, we have added by hand a gradient term and a mass for
the bosonic mode ¢. Such terms will be generated automati-
cally after integrating out the high-energy fermions. The ab-
sence of higher-order terms in ¢ and gradients of ¢ will be
justified below.

The Lagrangian L in Eq. (2.2) is not yet in a form suitable
for our analysis of quantum criticality. The main point is that
the fermion spectrum e(k) has zeros along the entire Fermi
surface of large momenta k: so, as is well known, we are not
in a position to make a low momentum expansion needed for
a field theory. One strategy is to use the Hertz approach? of
integrating out all the ¢ fermions to obtain a nonlocal effec-
tive action for the order parameter ¢. The latter is singular
only at small momenta ¢ and w, and so it is then at least
permissible to make a low momentum and frequency expan-
sion. However, the terms in the effective for ¢ turn out to be
highly singular as ¢—0 (see Ref. 26 and Appendix A).
Moreover, in d=2, the strength of the singularity increases
with increasing powers of ¢ in the effective action. The situ-
ation now seems hopeless but progress becomes possible af-
ter a key observation: the leading singularities in the ¢ ef-
fective action appear only when all the ¢ fields have their
momenta nearly collinear to each other, as is explained in
Appendix A, and as will become clear from the structure of
our analysis below (by nearly collinear we mean that the
angle 6 between the momenta is of order 6~ |g|/k). In other
words, if we are interested only in leading critical behavior,
¢ fields with noncollinear momenta effectively decouple
from each other. The couplings between ¢ fields with non-
collinear momenta are then irrelevant corrections to the criti-
cal theory. The argument supporting this statement is pre-
sented in Appendix A. More generally, consider an n-point
function

(d(G)(G2) D(G3) -+~ B(G,))-

If, as claimed by Hertz,? the field ¢ is described by a Gauss-
ian theory, such a correlator would decouple into products
over pairs of momenta which sum to zero. However, such a
decoupling is too drastic: rather, the decoupling is only over
sets of momenta which are collinear with each other, so that
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FIG. 1. The shaded region represents the occupied states inside
a Fermi surface. Fluctuations of the order parameter ¢ at wave
vectors parallel to ¢ couple most strongly to fermions near the
Fermi-surface points iEO. These fermions are denoted .

the leading critical singularity of the above correlator takes
the form

H <¢(‘7a1)¢(q-)u2) : >

Here all the momenta g,; in a group Q,, are collinear to each
other while being noncollinear to momenta in groups Q,
with b # a. We can therefore limit ourselves to ¢ fields with
momenta along a fixed direction g. We will now argue that
for each such direction ¢, there is a sensible and powerful
continuum limit of Eq. (2.2).

It is now clear that we may restrict our search for a field
theory to that describing the singularities in the ¢ correla-
tions for a single group of collinear momenta Q,. So let us
pick a direction g for ¢. It is believed that a bosonic mode
with momentum ¢ interacts most strongly with the patches of
the Fermi surface to which it is tangent.3”~** Assuming that
only a single Fermi surface is present, for each ¢ there will
be two such points with opposite Fermi-momenta k, and —kq,
see Fig. 1. We will denote fermions at these momenta as ¢,
and ¥,

l//+a'(lz) = Chytk,om lﬂ—a(’é = Cigtk,o (2.3)

We choose coordinate vectors X and y to be, respectively,
perpendicular and parallel to g. Then, expanding the fermion
energy near k, and —k, the needed low energy, continuum
Lagrangian becomes

t . 1
Lk0 =Y\ 07— iUFdy — Eai Vo

my

+ (,//LT((%— +ivpd, — 2La2) [ d+a—¢¢j—o’lf/l+0'

Ul et 0+ 2 (.4

Here vy is the Fermi velocity and mvy the Fermi surface
curvature radius at ky, while d. ,=d~ koo and we have added
a subscript k, to L to emphasize that this is the Lagrangian
for the patch near *k,.
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We should stress here that all the fields in Eq. (2.4) are
2+ 1-dimensional quantum fields with full dependence upon
x, v, and 7, i.e., the fields are ¢(x,y,7) and - (x,y,7). In
principle, we should also add a term (d,¢)> to Eq. (2.4);
however, we omit it at the outset because it will later be seen
to be irrelevant near criticality. Further, because of this full
dependence on x and y, the fermion fields ¢, describe an
extended patch of the Fermi surface near the points iEo, and
not just the two points tEO. We place some finite cutoff A on
the size of this patch and will be interested in the scaling
behavior at momenta much smaller than this cutoff.

We now discuss the structure of the couplings d-, in Eq.
(2.4). For the transitions in s, d, and g channels in case 1
above d,,=d_, by inversion symmetry and d., is o inde-
pendent. For case 2, we have d,,=-d_, and also o indepen-
dent, although the fermions now couple to a projection of the
two component order parameter <Z>-cf, while the bosonic gra-
dient term generally involves both components of the order
parameter. The spin-liquid case also has d,,=-d_, and o
independent, and ¢ is associated with the transverse compo-
nent of the spatial gauge field in the Coulomb gauge;*’40
moreover the spin liquid has =0 by gauge invariance. Fi-
nally, the Ising ferromagnet case 3 has d,,=d_, and d-;=
—d.|.

V\L/e note that for transitions in nonzero angular momen-
tum channels, the coupling d vanishes along certain axes in
the Brillouin zone. The intersections of these axes with the
Fermi surface are known as cold spots, as the fermion cou-
pling to the order parameter at these points involves addi-
tional derivatives and is much weaker. The scaling theory
that follows only describes the Fermi surface away from cold
Spots.

It is convenient to rescale coordinates and fields in Eq.
(2.4), x=2mvp)"'%, y=v5"* ), ¢=5,7 6. We drop the tildes
in what follows. Then,

L= (190, = id, = B hyo+ WL (10, + 10, — )i,

1 r
- )\+g—¢(/lj_o-¢+o— - )\_U(ﬁ(ﬂigw_a + g(&y(ﬁ)z + 5¢2
(2.5)

with e?=2md*/vy, r=ry/(2md*), n=2m, and \,,=d,,/|d|,
and we will henceforth drop the subscript k, on L. We note
that as usual, the relation between the parameters of the ef-
fective theory and the original model should not be taken
literally. Rather, in the critical regime, we have ry—rg,
=Z.r-r,), where r, and r(. denote the critical points of the
effective theory and the microscopic theory, respectively.
Moreover, the original fields and the fields defined in each
patch of the Fermi surface are related by

d)(q)’ w) -~ Zlb/zK()bpatch(KLIx’ qy’ w) ’

lp(q-)’ w) -~ Zzlﬂ/zKlﬁpatch(KQm qy’w) . (26)

Note that the “metric factors” K, Z,, e, Zy, Zy are generally
dependent on the direction of the boson momentum ¢ and the
cutoff of the low-energy theory A.
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FIG. 2. One-loop contributions to (a) boson and (b) fermion
self-energies.

For brevity, we will only present explicit calculations for
the case that does not involve spin (Ising-nematic transition
and spin liquid); the extension of the results to the Ising
ferromagnet case will be noted. Moreover, we extend the
number of spin components (flavors) to N from the physical
value N=2 with the view towards performing a large-N ex-
pansion. For this purpose, it is convenient to rescale e and r,
yielding our Lagrangian in its final form

L=2 Yl (yd,~is

s==*

9= R by — 2 N bWy,

s==*

N N
+ 50,07+ ?rgbz. (2.7)

Here and below we suppress the flavor index. To reiterate,
IN{/=1, and the Ising-nematic case has A,=\_ and the spin-
liquid case [i.e., Fermi surface coupled to a U(1) gauge field]
has A, =—N\_.

III. ONE-LOOP PROPAGATORS

To gain some insight into the low-energy properties of the
theory, Eq. (2.7), it is useful to compute the one-loop boson
and fermion self-energies.

The one-loop boson polarization in Fig. 2(a) is given by

7d2

H()(Q) =N (2 )3

GG (1 +q). (3.1)

We first evaluate this diagram with a bare fermion propaga-
tor,

1

. 3.2
—ink,+ sk, +k; (3.2)

GY(k) =

The resulting polarization function takes on a characteristic
Landau-damped form,
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dldl, i[el,) - 61.+q,)] . R
Ho(q)=Nf > — s5+(G@——-9)
(2m) —ing.+2q,l,+q,+ q,

f &) G—-3)
5+(G— -
T om) 2m- ing.+2q,l,+q.+ % K !
1
PICE R (3.3)
| y| dar

Note that # has dropped out of the final result. We are inter-
ested above only in the singular contribution to IT, and this is
insensitive to orders of integration: so unlike the conven-
tional order, we have integrated over /, before /,. We include
the random-phase approximation (RPA) polarization bubble,
Eq. (3.3), into the bosonic propagator D(g) to obtain

2 -1
la gl+> . (3.4)

"la]

Note that the qi term is not renormalized by the polarization
contribution at this order and the bare coefficient represents
the phenomenological contribution of higher-energy modes.

The one-loop correction to the fermion propagator is
given by Fig. 2(b). For simplicity, we work at the critical
point and set r=0. Then, the fermion self-energy assumes a
non-Fermi-liquid form

D(g)= - (

_ (andi o
3(k)=- f (277)3D(Z)Gs(k—l)

didl,( ] P\
@%( —+j§ X sgn(k,—1,)

c
I

©r 23 2 ( e’ )2/3
=— k)\k |7, =—F . 3.5
ngn( k] cr 54 (3.5

Note, again, that 7 has dropped out of the result. Incorporat-
ing this correction into the fermion propagator,

. -1
Gs(k)=[—%sgn(k7)|kr|2’3+skx+k§] ) (3.6)

Here we have dropped the bare fermion time derivative term
proportional to 7, which is irrelevant at low energies com-
pared to the dynamically induced self-energy, Eq. (3.5).

As is well known,* the one-loop expressions (3.3) and
(3.5) actually satisfy the Eliashberg-type equations, in which
the lines of Fig. 2 become self-consistent propagators. In
what follows, we will use these self-consistent propagators,
Egs. (3.4) and (3.6), in our calculations and drop self-energy
corrections like those in Fig. 2.

IV. SCALING AND RENORMALIZATION

As has been argued by a number of authors,’*° a useful

starting point for the renormalization-group analysis of the
theory, Eq. (2.7), is obtained by using the scaling,
w— s3w,

k,— szkx, ky — sky,

075127-4
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d(x,y, 1) — s2P(s>x,5y,57).
4.1)

P(x,y, 1) — s2P(sx,59,5°7),

This scaling is suggested by the one-loop calculation of fer-
mion and boson propagators in Egs. (3.4) and (3.6). The bare
fermion time derivative term 74,4 is irrelevant under this
scaling and so we will take the limit »— 0*. Note that nei-
ther of the one-loop corrections, Egs. (3.3) and (3.5), depend
upon 7.

Alternatively, note that the scaling of time in Eq. (4.1)
could also have been derived by demanding that the
“Yukawa coupling” A be invariant. This avoids the some-
what unnatural appeal to the one-loop self-energy to set bare
scaling dimensions and yields all the scaling dimensions in
Eq. (4.1) by a simple rescaling of the bare Lagrangian L in
Eq. (2.7). Of course, once we have set \, to be invariant,
then the coupling 7 becomes irrelevant. These features of the
scaling analysis are shared by the theory of the nematic tran-
sition in d-wave superconductors in Ref. 36.

Note also the different scaling of spatial momenta k, and
k, in Eq. (4.1). The main physical consequence of scaling of
the momentum k, is the effective decompactification of the
Fermi surface, which allows one to focus on a theory with
two Fermi patches. Also observe that under, Eq. (4.1), the
(9,¢)? part of the boson tree level action is irrelevant, which
justifies omitting this term in Eqgs. (2.4) and (2.7).

Apart from the fermion time derivative term and the rel-
evant mass perturbation (r— s~2r), all the terms in Lagrang-
ian (2.7) are marginal. Higher-order perturbations to Eg.
(2.7), consistent with the Z, symmetry of the order param-
eter, such as a ¢4 term, are irrelevant.

We would like to note that for the case of the Ising-
nematic (or g-wave) transition the low-energy action, Eq.
(2.7), does not possess a ¢p— —¢ symmetry. This is due to
the fact that the direction of bosonic momentum ¢ is trans-
formed under 77/2 rotations (reflections) and hence the phys-
ics is controlled by a different pair of patches of the Fermi
surface. Hence, in principle, it is possible that in the kine-
matic regime of interest a ¢’ term is generated by the
renormalization-group process. Such a term would be mar-
ginal under the scaling in Eq. (4.1). A linear term in ¢ can
also be generated by the effective theory. However, the one-
point function has momentum ¢g=0 and, hence, does not be-
long to any particular kinematic regime. In practice, we can
demand that the expectation value of ¢ is zero in the disor-
dered phase by tuning the coefficient of the ¢-linear term. In
any case, as we will show below, there exists a Ward identity,
which guarantees that if these terms are initially zero, they
are not generated by the RG of the low-energy theory, Eq.
(2.7). Note that for the case of the spin-liquid or Ising ferro-
magnet transitions, the low-energy theory, Eq. (2.7), respects
the time-reversal symmetry which maps Fermi patches at k
and —k into each other and, hence, terms odd in ¢ are pro-
hibited.

An important observation is that the theory, Eq. (2.7),
lacks an expansion parameter. To see this, note that due to
the rescaling performed in Sec. II, the engineering dimen-
sions, [k,]=[k,]?, but the dimension of w is kept indepen-
dent. Then, the coupling constant e*> has the dimensions
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[k,]*/[@]. Therefore, ¢* is a dimensionful quantity and can-
not be used as an expansion parameter. Moreover, e’ is ac-
tually the only parameter in the theory relating frequencies
and momenta. Hence, its flow under RG is equivalent to an
appearance of a nontrivial dynamical critical exponent.

Note that up to this point we have dropped an allowed
relevant fermion chemical potential term,

AL=— 8y, (4.2)

This term can be absorbed into the definition of the momen-
tum k, about which the theory is expanded and, thus, is re-
dundant (note, the scaling dimension [ §]=[k,]=2). Neverthe-
less, it is convenient to leave this term in the Lagrangian for
renormalization-group purposes. We assume that when the
theory is tuned to the criticality r=r, and the coefficient & is
set to 0=0,, the Fermi surface passes through the points
ko, —ko-

We now discuss the renormalization of our theory. The
Lagrangian contains four marginal operators, which each re-
quires a renormalization constant. However, as we will argue
below, emergent low-energy symmetries of the theory imply
certain relations between these constants. Moreover, the two
relevant operators, have the same bare dimension, [r]=[4]
=2. Thus, we need to consider possible mixing between
these operators.

A. Rotational symmetry

Observe that the initial shape of the Fermi surface does
not enter the low-energy theory, Eq. (2.7). In fact, we could
have started with a circular Fermi surface with kp=muv. This
is reflected by the fact that Eq. (2.7) has an emergent con-
tinuous “rotational symmetry,”

d(x,y) — Plx,y + 0x),

Gi(x,y) — e—is[(0/2)5'+(02/4)x]lrll?(x’y +6).

(4.3)
Equivalently in momentum space,
¢(Qx’qy) - d)(CIx - aqy’ q)')’
s 0
lzbs(Qx’CIy) - lzbs qx— 061) — 85774,y +s57 .
4 2
(4.4)

Note that the rotation angle 6 becomes noncompact and the
rotation group becomes R instead of U(1). This is a conse-
quence of the effective decompactification of the Fermi sur-
face. Moreover, due to the anisotropic scaling 6 is now di-
mensionful [ #]=[k,]. In fact, the situation is analogous to the
transformation of the Lorentz symmetry to Galilean invari-
ance in the nonrelativistic limit w << c|g|. Here the role of w is
played by ¢, and the role of || by g,.

The symmetry in Eq. (4.4) implies the following form of
the bosonic and fermionic Green’s functions (we suppress
the frequency dependence),

D(Qx’ Qy) = D(qy) > (45)
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FIG. 3. The momentum of the fermion at point P can be mea-
sured with respect to either the coordinate system at EO or that at lgl.

G((qnq,) = Glsq, +q)). (4.6)

In particular, the form of the fermionic Green’s function im-
plies that the terms ! (—isd,)i, and z,bs(—&i)l,lfs in the La-
grangian (2.7) must renormalize in the same way. Physically,
this means that the curvature radius of the Fermi surface K
does not flow under RG (i.e., K has a limit as the cutoff A
—0).

The identities (4.5) and (4.6) ensure that the Green’s func-
tion at a given physical momentum remain invariant under
small changes in the choice of the points tl% on the Fermi
surface about which the field theory is defined. Let us dem-
onstrate this explicitly using Fig. 3. We set the coordinate
system so that /20=(0,0) and measure the momentum of a
fermion at the point P to be (g,q,). Now let us shift to the
field theory defined at the Fermi-surface point E1=(KX,Ky).
As this point has to be on the Fermi surface, we have «,
+ K%ZO. We denote the coordinates of the point P in the new
coordinate system by (q)'c,qy'). These are obtained from the
old coordinates by a shift in origin followed by a rotation by
an angle 6, where tan 6=2«,; this yields

!

4y =qx— Kyt Q’Ky(qy - Ky) B

4.7)

I—
a4y =4y = Ky,

where we only keep terms to the needed accuracy of
O(x,y?). It can now be verified that q;+q;2:qx+q)2,, and so
by Eq. (4.6) the fermion Green’s function remains invariant
under the change in the Fermi-surface reference point. Also,
by choosing x,=g, we can set q;,:O and then qx+q§ is iden-
tified as the invariant measuring the distance between P and
the closest point on the Fermi surface. For the boson Green’s
function, there is no shift in origin of the coordinates, and the
corresponding transformation is ¢;=¢,+2x,q,, ¢,=4,, lead-
ing to Eq. (4.5).

These invariances are essential in ensuring the consis-
tency of our description of each pair of time-reversed Fermi-
surface points by a separate 2+ 1-dimensional field theory.
Note that such a consistency requirement would not have
arisen if we had used a 1+1 dimensional field theory at each
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Fermi-surface point?”-2$41-% because then every fermion mo-
mentum would appear only in the theory defined at the clos-
est point on the Fermi surface. In our case, we are free to use
the 2+ 1-dimensional theory at this closest point or at any of
the neighboring points. Before concluding this section, we
would like to point out that in the case of the Ising-nematic
transition, the “rotational symmetry,” Eq. (4.4), is not related
in any way to “large” rotations by /2, which are actually
not implemented in the low-energy theory.

B. Ward identities

We now examine the consequences of Ward identities as-
sociated with the global symmetries of Eq. (2.7). Similar
consequences were implicit in the analysis of the supercon-
ducting case in Ref. 36. Here we will present a more formal
analysis, which also shows that Eq. (3.20) in Ref. 36 holds to
all orders in 1/N.

The low-energy theory, Eq. (2.7), has two continuous glo-
bal U(1) symmetries. The first of these is related to the con-
servation of particle number,

U i, — e, . — ey (4.8)

The conserved current associated with this symmetry is,
Uimdedo)r = im(, + L) Wl — 9l
= i(d, + YL,y

For the spin-liquid problem, the gauge field ¢ couples pre-
cisely to the x component of j.

The second U(1) symmetry is lattice translation. Indeed,
¢, and . come from opposite points in the Brillouin zone
and, hence, transform under general lattice translations as

U7 g — €Y, e — 7Y, (4.10)

The conserved current associated with this symmetry is
Gimdandy) =L = W) Wy + 9
= i(d, = w7,y0)].

Observe that the Ising-nematic order parameter ¢ couples to
the x component of j;. Note that despite the similarity of the
spin-liquid and Ising-nematic problems, there is an important
difference. In the spin-liquid case, the gauge field couples to
the fermion current on all energy scales. In the case of the
Ising-nematic transition, the order parameter couples to a
conserved current only at low energies.

We note in passing that for an Ising ferromagnet transi-
tion, the current to which the order parameter couples is
related to the symmetry,

Uy — ey,

(4.9)

(4.11)

(ﬁ—T - e_ia¢—7

Yoy — ey, Y Y (4.12)

In fact, this is not a symmetry of the underlying theory but
only of the low-energy Lagrangian (2.4). The symmetry is
broken by four-Fermi interactions, which are however irrel-
evant under the scaling in Eq. (4.1).

Current conservation implies that the insertion of 4.,
+d,j,+3d,j, into any correlation function is zero, up to con-
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tact terms (we have dropped the current subscript; the cur-
rent, which couples to the order parameter is implicitly as-
sumed). We note that the temporal component of the
currents, Egs. (4.9) and (4.11), has a coefficient 7 in front
and, therefore, can be set to zero in the kinematic regime of
interest. We, thus, have d,j,+d,j,~0. Defining the one-
particle irreducible polarization function,

Hij(f])=fdszxeiqﬁ_iq'fgi(x)jj(o)>1P1, (4.13)

we have

CIxHxx(Q) + C])H»x(f]) =0. (4 14)

We note that I1,,(¢)=1I1,,(q,.q,) is precisely the irreducible
boson self-energy. Hence,

q
ny(QTI G qv) == _anx(q'n qy) .
qy
Power counting indicates that II,, has the following UV
structure:
uv

I,.(¢-q,) = K, +K2r+K3q)2,, (4.15)

where K, ~A?, K,, K3~1log A, and A is the UV cutoff with
dimensions of g,. For I1;,(¢.,4,,q,) to have an analytic UV
behavior (as again expected from power counting), we must
have

K] =K2=0.

Thus, the coefficient of the mass operator ¢’ requires no
renormalization (i.e., the metric factor Z, has a limit as A
—0).

An interesting question is whether the polarization func-
tion II,, actually vanishes for ¢,—0 as suggested by Eq.
(4.14). However, for finite ¢, we already know from one-
loop calculations that such a limit does not exist within the
scaling regime as

|42 4. la4
Hxx(Q'n qy)lloop = Cb_T7 ny(Qﬂ G qy)lloop == Cb_x_T
lg a,la,|

y
However, one  might hope that the limits
lim, _o lim, _, 11,.(q-.9,).11,,(q+.9.,q,) do exist. In this
case, we would conclude

lim 1im T,(q.q,) =0, (4.16)

qy—»O q.—
which would be a stronger statement than the nonrenormal-
ization of the mass term. Otherwise, if the limit above exists
only for II,, by not II,, then,

lim lim I1,.(q,q,) =c.r (4.17)

4y—0 ¢,—0
with c¢,—some universal constant. We have explicitly
checked that to three-loop order c¢,=0 and the strong form of
the nonrenormalization identity, Eq. (4.16), holds.

One can generalize the discussion above to higher-order
correlation functions of the order parameter. Ward identities
imply that the effective potential for the ¢ field is not renor-
malized from its tree-level form,
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Vig)= 8. (4.18)
This property is also shared by the theory of the nematic
transition in a d-wave superconductor.>>3® In particular, no
¢’ term is induced in the Lagrangian by the renormalization-
group process if this term is originally zero. (Note that if a
¢* term is initially present, correlation functions of currents
no longer coincide with the correlation functions of the order
parameter, and the Ward identities do not constrain the renor-
malization properties of the theory). The effective potential,
Eq. (4.18), becomes unstable for r<<0. Thus, we expect that
in the ordered phase the theory is controlled by dangerously
irrelevant operators, such as ¢*.

Finally, one can derive a Ward identity for the fermion
boson vertex,

aX(q.p.p+q) +a,L\(q.p.p+9) =G (p+q) -G '(p)
(4.19)

with
Tdg.p.p+q) = f dx dxdy dye 7T T )iy

X G Py (0)) 1 p1, (4.20)

G(p) = f drd’xe T ((x) i (0)). (4.21)
I', is precisely the irreducible fermion-boson vertex. Power
counting gives UV structure of I', and G~!

I'(g.p.p+4q)=Cy, (4.22)

G™'(p) = Cy+ C3(p, +p)). (4.23)

Thus, for the UV behavior of T', to be analytic in external
momenta, C|=Cj3. Therefore, the vertex and the fermion self-
energy renormalize in the same way. Hence, the boson field
requires no field-strength renormalization (i.e., the metric
factor Z, has a limit as A —0).

Before concluding this section, we would like to note that
perturbation theory based on self-consistent propagators,
Egs. (3.4) and (3.6), actually does not respect the Ward iden-
tities. This is due to the fact that these one-loop propagators
include the fermion self-energy correction but not the vertex
correction. However, since the fermion self-energy is only
frequency dependent, Ward identities involving currents at
zero external frequency are still respected.

C. RG equations

From the discussion above, we conclude that at criticality,
our theory needs only two renormalizations: a rescaling of
the field strength of the fermion field ¢ and a renormalization
of €2,

W=Z ., =20 (4.24)

Here the subscript r denotes renormalized quantities and we
define renormalized irreducible correlation functions of n,
boson and n, fermion fields as
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Lo = 72Ty, (4.25)

Both Z,, and Z, are functions of A/u, where u is a renor-
malization scale (which we choose to have dimensions of
qy), and of the number of fermion flavors N. As e? is dimen-
sionful, Z, and Z, cannot depend on it. We introduce the
anomalous dimensions,

P
b=A—Ilog Z,, 4.26
oA 08 Ze (4.26)

J
7]¢= - A—log Zw

Py (4.27)

The constants 7, and b are expected to be pure universal
numbers, independent of A/ u.

Away from criticality, we recall that by the Ward identity,
the coupling r does not renormalize. On the other hand, the
coupling & can pick up a renormalization linear in r,

8= 6.+ 6,+ Z,5°r (4.28)

with Z, s again a function of A/u only. In what follows, we
denote 6— 4, as ¢ for brevity. Note that there is no renormal-
ization constant in front of &, since a finite change in J only
shifts the value of &, in correlation functions,

I"o"i({p}, 6+ a) = I"0"({p - sa}, o),

where s= * 1 for momenta of fermions ¢, and s=0 for bo-
son momenta. We let

(4.29)

=Z, A—Z 4.30
a IA ré: ( )
Now, differentiating Eq. (4.25) we obtain the
renormalization-group equations,
1% Jd n
A— + be®— + ae*r— — L )
( oA " 92 T T gsT 2
xI""({p b Ap. s i) r, 8,62 A)=0.  (4.31)

It is convenient to get rid of the derivative with respect to &
in Eq. (4.31). To do so, let the location of the Fermi surface
of fermlon ¢, at finite § and r be given by k, +k2
=Ak(r,8,e*,A). Then, Ak is clearly a physical quantity and
must satisfy

J J J

-z 2 % 2. % 2 A

(A&A + be Py + ae ra5>Ak(r,5,e ,A)=0. (4.32)

We will solve this equation shortly. However, first note that
dAk
— = (4.33)

a6

Now, it is convenient to expand momenta around the physi-
cal Fermi surface, defining

[ n({p},r, 8,2, A) = T""1({p + sAk(r, 8,2, A)5},r, 8,2, A).
(4.34)

The resulting T is independent of & and by Egs. (4.29) and
(4.31)—(4.33) satisfies,
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77¢) f"h’"f({py},{px},{w},r,ez,A) =0.
(4.35)

J J n
Aoabe— =T
( gA Tve 2

By dimensional analysis,

n.n —2n~2n ng2-1m;.n p Px A2
el (3} 1))

(4.36)

and solving the RG equation, we obtain

o (s{p ) sHp s @) s*70P)
- s6—b+(b— 7],/,—4)l’lf/2—2nbfﬂb,nf({ﬁ5y},{ﬁx},{&v)}’»f) . (437)
Hence, the critical theory is invariant under

Py =Py DPy— 5Py 00— S0 (4.38)

with

z=3-b, (4.39)

where z is the dynamic critical exponent. Note that we have
defined z with reference to length scales associated with the
direction tangent to the Fermi surface (y); as indicated in Eq.
(4.38), length scales orthogonal to the Fermi-surface scale as
the square of length scales tangent to the Fermi surface.
Moreover, if we define ¢ as the correlation length along the y
direction then upon approaching the critical point, £é~r7",

with
(4.40)

Note that by combining Egs. (4.24), (4.26), and (4.39) we
can write down the RG equation for the coupling e,

de?
A_

— -3 2.
A 2 (c=3)e

(4.41)

This shows that the renormalization of the coupling e is di-
rectly related to the dynamic critical exponent, as we had
claimed earlier.

Now, let us consider a few explicit examples of correla-
tion functions. For the bosonic two-point function we have

D_l(qy, w) = rg[qy(rezAZ_3)_1/(Z"1), w(rze2Az—3)—1/(z—1)].
(4.42)

Note that,

lim lim D™'(g,,w) =rg(0,0), (4.43)

}HO w—0

i.e., the Ising-nematic susceptibility satisfies y ~r~" with the
exponent

v=1 (4.44)
We may also write more succinctly,
D™ (gy, ) « £ “Vg(g & 0 ATE). (4.45)
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So far, we have been concentrating on a fixed direction of
bosonic momentum ¢. Now let us study the dependence of
the result on 4. Using Eq. (2.6),

D™'(G,w)
=Z(;1K‘IZ;1rQ
Xg[|cj|(Z;Iez_/\z_3r())_l/(z_]),w(Z;ZeZAZ_3r8)_1/(Z_1>],

(4.46)

where for brevity r is taken to denote the deviation from the
critical point. We concentrate on the static limit w=0. In a
Fermi liquid, the susceptibility must have a continuous limit
as ¢— 0. Therefore, we conclude that the combination Z ,KZ,
must be independent of the direction ¢. This is quite plau-
sible as neither of the constants run under RG.

Now let us look at the behavior of susceptibility at the
critical point,

-1 242-3
_ q; we A
1 -
D™ (gy,0) = 62&4 ( " ) (4.47)
In particular, the static susceptibility satisfies
D™'(3.0) ~ a(@)lgl". (4.48)

In the context of the spin-liquid problem, many
studies®*>% examined the structure of the higher-loop cor-
rections to the susceptibility. In particular, Kim et al>® ex-
amined two-loop corrections to Im D7!(7,w) for real fre-
quencies |w|<|g|, and found no corrections to the leading
answer ~w/|q,| in Eq. (3.4); Fermi-liquid arguments were
made’052-545 that this functional form held at higher orders.
However, this result by itself does not fix the value of z;
indeed, Im D7Y(§, w) ~ w/|q,| is consistent with the scaling
form, Eq. (4.47), for any z. These studies also implicitly
assumed a Fermi-liquid picture with D™'(§,w=0)~§> and
this does imply z=3. We will examine D~'(§,w=0) up to
three loops in Sec. V A and find no correction to z=3.

Proceeding to the fermion Green’s function,

L o2\ 2-7p)/(z=1)
G;\(kw) = A2<F
X L(k(re2A1_3)_2/(z"l), w(rzezAz_3)_1/(Z_1))

(4.49)

with k=skx+k3—the distance to the Fermi surface. More
compactly

G \(k,w) o« ETMWL(kE, we A3 E). (4.50)

A crucial property of the theory that is manifested by the
above expression is that the “fermionic correlation length”
scales as the square of the “bosonic correlation length.”

For o< &7, k<&? we expect the fermion Green’s func-
tion to assume a Fermi-liquid form,

z

Gkw)=——.
—iw+uvgk

(4.51)

By matching to the scaling form,
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Vp~ 6—(1—2)’ 7~ é:—(Z”l,/,—Z)_

Notice that both the Fermi velocity vy and the residue Z tend
to zero as we approach the critical point, albeit with different
power laws. Finally, at the quantum critical point,

we? A3
kz/z ’

(4.52)

Gl (k,w) = A”wkl"’WP< (4.53)
where we reiterate that k=sk + k; is the distance to the Fermi

surface. In particular, the self-energy on the Fermi surface
scales as

G7(0,0) ~ oMW" (4.54)
and the static self-energy,
G \(k,0) ~ k'~ (4.55)

Moreover, from Eq. (4.53) we can obtain the tunneling den-
sity of states,

N( )—f A% Ak, ) (4.56)
w) = 2’ ,0), .
where
R 1 o
A(k,w) =——Im G(k,iw — o + i0%). (4.57)
T

The k integral in Eq. (4.56) factorizes into integrals over
components along and perpendicular to the Fermi surface.
The former gives a factor proportional to the perimeter of the
Fermi surface while the later yields the frequency depen-
dence,

N(w) ~ 0™, (4.58)
We remind the reader that the expression in Eq. (4.58) cor-
responds to the physically observable electron tunneling den-
sity of states only in the case of a nematic transition, as for
the spin/charge-liquid problem, the physical electron opera-
tor is a product of ¢ and a boson operator.

Related scaling forms for the fermion Green’s function
were discussed on a phenomenological basis by Senthil.’
However his definition of z differs from ours. We define it
using the fermion momentum parallel to the Fermi surface
because this is the natural momentum scale appearing also in
the boson correlations. He defines it by the fermion momen-
tum orthogonal to the Fermi surface, which scales as the
square of the parallel momentum.

Finally, let us discuss the shift of the Fermi surface Ak.
Using Eq. (4.33) in the RG Eq. (4.32), we obtain,

Ak =

a3 re* + Ci(re’A73)2 + 6.
z—

(4.59)

Thus, the shift of the Fermi surface upon deviation from the
critical point receives two contributions: one analytic in r
and the other nonanalytic. Reexpressing the second contribu-
tion in terms of the correlation length,
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7Y

I

_ 4 +l B4
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FIG. 4. Two-loop corrections to the boson self-energy.

ptq

Ak = “3 r + CE2+ 6, (4.60)

where the coefficient Ek is expected to be universal. We

would like to point out that the case z=3 has to be treated
separately. In this situation one obtains

arez r€2

l —_
2 B2

Ak = =—C,&2log(A +6  (4.61)

with ék again universal.

The value of the Fermi surface shift Ak can be used to
compute the compressibility, 371’ where u is the physical
chemical potential. Indeed, by Luttinger’s theorem the
change in density can be obtained as

N
(2m)?

where the integral is over the circumference of the Fermi
surface. The main question is how does the chemical poten-
tial enter our low-energy theory. If w only couples to the
operator ', renormalizing the value of &, then from Egs.
(4.59) and (4.61) we would conclude that the compressibility
tends to a constant and has no interesting corrections near the
quantum critical point. On the other hand, if the coupling r
has a nontrivial p dependence, then we would conclude

on=

f dsAk(6), (4.62)

dn 3
—=kot+ K E, z#3, (4.63)
I

an R

— =kp+ K log A¢, z=3. (4.64)

I

Note that for z=3 the above forms imply that the compress-
ibility diverges as we approach the critical point.

V. ANOMALOUS EXPONENTS TO THREE LOOPS

In this section, we evaluate the exponents z and 7, to
three loop order. We find that the exponent 7, is nonzero at
this order. The value of 7, is not suppressed in the large-N
limit. On the other hand, the dynamical critical exponent z
remains unrenormalized from its RPA value z=3 to this or-
der. Moreover, in the large-N limit, the boson self-energy
acquires a finite correction of order N*2, which is larger than
the bare value (order N). Finally, we find that the constant «
in Eq. (4.30) associated with the shift of the Fermi surface
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I A = "<k -
/ \
\/P /
[
p p
_ s /5 _ \ /
q q e < &
p+yq
|
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|
[ ]
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—
p1
3 P1 + Py P2
by o .-
q q q
: P1tp3tq +
P2 +p3s+q b2

p2+4q

FIG. 5. Three-loop corrections to the boson self-energy with one
fermion loop.

away from criticality is nonzero at three loop order. We note
that the N¥? correction to the boson self-energy and the non-
zero 7, are only present for the Ising-nematic and spin-liquid
universality classes, and are absent for the Ising ferromagnet
transition.

A. Dynamical critical exponent

Let us first address the question of renormalization of 2.
At two loops the only correction to the static boson-self-
energy I1(¢,=0,4), which is not already taken into account
by the solution to self-consistent Eliashberg equations is
given in Fig. 4. However, this diagram vanishes when the
external frequency is equal to zero. Indeed, as pointed out in
Ref. 40, any diagram with fermions from a single patch, in
which the fermion propagators involve a sum of two or less
internal momenta, vanishes in the static limit (one picks the
internal frequency with the largest absolute value and inte-
grates over the corresponding x component of the momen-
tum. All poles will be in the same half plane). Actually, a
calculation presented in Appendix B shows that the diagram
in Fig. 4 vanishes for any external frequency and momen-
tum.

The three loop corrections to I1(g) are shown in Figs. 5
and 6. By the argument described above, all of these dia-
grams vanish when the external frequency is zero if all the
fermions are from the same patch. Hence, the only nonzero
corrections to I1(¢,=0,) come from the Aslamazov-Larkin-
type diagrams, Fig. 6,
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l
39

P1—q 2+ 4

- > AD1+ 1 AP2—1 > -

D1 l D2

pP1—¢q

q
- > Ap1+1 ypo +1 > -

P1 l P2

(b)

FIG. 6. Aslamazov-Larkin-type three-loop contributions to the
boson self-energy.

>

1( dl.d?l
S =~ | L 30 1- 1+ 9)]

2) @)}
XI3(=q,- 1,1+ q)D(1)D(1 + q).

(5.1)

Here I3 is the fermion-induced cubic boson vertex, which
receives contribution from the two fermion patches,

P=1+17, (5.2)
F:’:UIJZ’ 13) = NA?US(II’ZZ’ZEX) +fs(12’ 11’13)] > (53)
dp.d*p
Fillyl L) = J (’;d L GG -1)G,(p +1).
)
(5.4)

The diagrams where the fermions in the two loops come
from the same patch give a vanishing contribution to (g,
=0,4). Thus, to three loops,

1 [ did*
SM(g.=0,§)=-— | —=T3[q.1,- (I

XFE(— q,— LI+ q)D()D(1+q) + (g — —q)
dl.d*l
R j : 2’:)3{f+[q,l,— U+ @Tf (- gLl

+q) +f-(=q.l+q.=-DID)D(+q)} + (g — - q).
(5.5)

The two terms in brackets in the equation above originate,
respectively, from diagrams in Figs. 6(a) and 6(b). Convert-
ing these diagrams into the double line representation of Ref.
40, we obtain Figs. 7(a) and 7(b). [We remark that the genus
expansion of Ref. 40 was developed for a theory with only a
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FIG. 7. Double line representation of Ref. 40 applied to the
Aslamazov-Larkin diagrams in Fig. 6. The fermions in the two
loops are assumed to come from opposite patches. We have re-
versed the directions of the fermion propagators from the second
patch and the dotted arrows indicate the true directions of the fer-
mion momenta.

single Fermi-surface patch. The extension to the present case
of a pair of time reversed patches is simple: a reversal of the
direction of loops with fermions from the second patch re-
duces the problem to that with one patch only. The diagrams
in Fig. 7 have their lines reversed precisely in this way. The
additional dotted arrow besides each propagator indicates the
true direction of fermion momentum.] In this representation,
the graph (a) contains a loop while the graph (b) does not. As
a result, in the genus expansion of Ref. 40, the diagram in
Fig. 6(a) is enhanced to O(N) while the diagram in Fig. 6(b)
is of O(1). However, we will see that the diagrams are actu-
ally individually ultraviolet divergent, as a result the count-
ing of Ref. 40 is inapplicable here. It turns out that the sum
of the diagrams is UV finite and of O(N*?).

We give details of the evaluation of Eq. (5.5) in Appendix
B, where we find

2
ST(g,=0.9) = AL (5.6)
e
In the large-N limit, the coefficient C is given by
C=~-0.09601N*?, N — (5.7)
while for the physical value N=2,
C=-0.04455, N=2. (5.8)

The N*? behavior in Eq. (5.7) indicates a breakdown of the
genus expansion of Ref. 40. Moreover, since this correction
is parametrically larger than the tree level value, the exis-
tence of the large-N limit of the theory is cast into doubt. In
particular, it is not clear if there are higher loop graphs with
even stronger divergences in the large-N limit. Moreover, we
expect contributions to the bosonic self-energy analytic in g,
to be generated from kinematic regimes involving the whole
Fermi surface and not just the two Fermi patches. Such ana-
lytic contributions might also exhibit anomalous scaling with
N.
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FIG. 8. Fermion self-energy at two loops.

Note that there is no logarithmic dependence on A/u in
Eq. (5.6) and so we have z=3 at this order. For the physical
value of N=2, the finite three-loop correction turns out to be
rather small numerically.

B. Fermion anomalous dimension

The Feynman diagrams for the fermion self-energy up to
three loop order are shown in Figs. 8—10. By reasons ex-
plained in the previous section, the diagrams in Figs. 8 and 9
vanish when the external frequency is zero and, hence, do
not contribute to the fermion anomalous dimension.

Thus, the only fermion self-energy diagrams that can give
UV divergences are shown in Fig. 10. Actually, the diagram
in Fig. 10(a) is zero since the polarization correction in Fig.
4 vanishes. Thus, we only need to consider the two diagrams
in Figs. 10(b) and 10(c). For these graphs to be UV diver-
gent, the fermions running in the loop and the external fer-
mions must come from different patches. The diagram in Fig.
10(b) contains two loops in the double line representation
[Fig. 11(a)] and is expected to be of order 1/N while the one
in Fig. 10(c) has no loops in the double line representation
[Fig. 11(b)] and, hence, is expected to scale as 1/N>.

A calculation presented in Appendix B gives the UV di-
vergent contribution,

A:,
&2 (w=0,p) =N N _Jy(p, + P§)10g< 2 1/2) ’
J N

(5.9)
—
ll/ — ~ -
/ =l I3 AN
—_—
/ Ve VAR AN \
iyl
/N Y A N W
p I 1 th—lsp+l P - < <
p+l pt+l p+h—lsp+h P N
/£ \
- —
~ ~,
, ! VAN N \
/ | [ \ \ ]
l /—-4_‘ ~
ty N
/ =12 \
> = s
A < ™2
| [ phlyls | \
P pt+lh ptls pthi—lp—ls P A Iy
—_>— _ —>— ~ ——
2N TN
[ [ \POR N \

P p-lhp-li—lo p-l—lgp-1I3 P

Iy
-~ —*—/\*/\—*— ~
7/ / Va AN AN
Y A A
I I Pyl ) |

P op—lp-l—1l p—lap+l—1Is P

I Iy =1y

FIG. 9. Three-loop fermion self-energy diagrams with no fer-
mion loops.
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FIG. 10. Three-loop fermion self-energy diagrams with one fer-
mion loop.

&%, (0=0,p)
=5, (w=0,5=0)+N\_J,
X(px+p§)log<|nc—j\;§|m>. (5.10)
The constant J, is independent of N and given numerically
by
J, = 0.1062. (5.11)

On the other hand, the constant J,. is N dependent. For N
=2 we obtain,

J.~-0.03795, N=2 (5.12)

while in the large-N limit,

J. log® N, N— . (5.13)

4N
Notice that there is no 1/N suppression in Eq. (5.9). A way to
interpret this, is that the diagram is really of order 1/N (as
the genus expansion predicts), however, it is a function of
N(px+p§). Indeed, recall that the genus expansion assumes

N(p,+ pi) ~ 1. However, the UV divergent piece of the dia-
gram cannot depend on the magnitude of p + pi and is valid

FIG. 11. Double line representation of fermion self-energy dia-
grams in Figs. 10(b) and 10(c), as in Fig. 7. The external fermions
and the fermions inside the loop are assumed to come from opposite
patches.
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for any external momentum or frequency. On the other hand,
the infrared scale under the log is expected to become w'’?
once w>N3/2|pX+p§|3/2. Also observe that up to a logarith-
mic enhancement, the nonplanar diagram in Fig. 10(c) [Fig.
11(b)] is of order 1/N?, as expected from the genus expan-
sion.

Note that the UV divergence in Egs. (5.9) and (5.10) is
logarithmic, as expected from power counting, and comes
from a region where both internal momenta and frequencies
diverge in accordance with the scaling, Eq. (4.1). This is
unlike the anomalous linear divergences of the Aslamazov-
Larkin diagrams that occur when the internal momenta ¢, are
of order of external momenta while internal ¢,, g, diverge.

Thus, to three-loop order,

83 (w=0,5)= 82, (w=0,5=0)

A,
+AAJ(p, + p§)10g<—ﬁ> , (5.14)
lp+ 1)

0.06824 N=2
J=Jy+J, ~ (5.15)

0.10619 N=oo.

Although the self-energy correction, Eq. (5.14), is not para-
metrically suppressed compared to the bare value even when
N=, it appears to be suppressed numerically. Thus, we may
estimate,

Zy=1-N\_Jlog A/u,

My=NAJ =+ 0.06824, (5.16)

where the upper sign refers to the Ising-nematic transition
and the lower sign to the spin liquid and we have used the
value of J at N=2.

C. Fermi-surface shift

We now evaluate the coefficient «, Eq. (4.30), associated
with the renormalization of chemical potential é away from
criticality. This coefficient can be obtained from the insertion
of the ¢?* operator into the two-point fermion Green’s func-
tion at criticality. By setting all external frequencies to zero,
we find that at three-loop order the only UV divergent con-
tribution can originate from the diagrams in Figs. 10(b) and
10(c) with the ¢* operator inserted into the boson propaga-
tors. The details of the calculation are presented in Appendix
B. We find

gz
S—=1Je log A, (5.17)
or
with
J,=0.00208, N=2,
1
J,~0 ) N — . (5.18)
Absorbing this divergence into the chemical potential,
Z,5=J,log A,/ (5.19)

and
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(5.20)

a=J,.

Thus, the ¢’ operator mixes with the ¢ operator. If the
dynamical critical exponent z=3, this leads to a logarithmic
divergence of the compressibility, Eq. (4.64). Note that the
magnitude of the mixing « is suppressed in the large-N limit
and is also numerically small for N=2.

VI. CONCLUSIONS

This paper has presented the scaling properties of the field
theory in Eq. (2.7) which describes a number of problems
involving the breakdown of Landau Fermi-liquid theory at
all points on a two-dimensional Fermi surface. The main
motivation was provided by the quantum phase transition
caused by the onset of Ising-nematic order, which reduces
the point-group symmetry from square to rectangular. How-
ever our theory also directly applies or can be generalized to
breaking of other point-group and/or time-reversal symme-
tries, and these were described in Sec. II. One of these cases
is the “circulating current” order parameter of Simon and
Varma. 34748 Apart from applications to quantum critical
points, our theory also described non-Fermi-liquid phases as-
sociated with spin liquids’>® or algebraic charge
liquids,>*®' which have Fermi surfaces coupled to U(1)
gauge fields.

Our critical theory was formulated in terms of a time-
reversed pair of patches on the Fermi surface, centered at the
wave vectors iEO (see Fig. 1). The value of lgo was deter-
mined by requiring that the tangent to the Fermi surface at EO
be parallel to the wave vector g carried by the order param-
eter insertion in the correlation function being computed.
However, in general, there is nothing special about the point
120, and neighboring points on the Fermi surface should be-
have in a similar manner. This key feature was implemented
in our theory by the rotational symmetry discussed in Sec.
IV A, and the identities (4.5) and (4.6), which show that the
Green’s function remains invariant as we move along the
Fermi surface.

We emphasize that although we have critical theories as-
sociated with every pair of points on the Fermi surface, the
Lagrangian (2.7) and all the fields are 2+ 1 dimensional, i.e.,
¢ and ¢, are integrated over arbitrary functions of x, y, and
7. Thus, as we noted earlier, our approach and results differ
from studies using a “tomographic” representations of the
Fermi surface, in which every point on the Fermi surface is
described by a 1+1-dimensional field theory.?”-?$41-% Qur
2+ 1-dimensional representation leads to a redundancy in our
description of the degrees of freedom and the identities of
Sec. IV A ensure the consistency of this redundant descrip-
tion.

Our main results include the scaling relations for the order
parameter susceptibility in Eq. (4.45) and for the fermion
Green’s function in Eq. (4.50). These are associated with
only two independent exponents, the dynamic scaling expo-
nent z, and the fermion anomalous dimension 7,. The corre-
lation length exponent v was given by exact scaling relation
in Eq. (4.40) while the susceptibility exponent y=1. For the
spin-liquid  case, Fermi-liquid arguments were
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made*?032-5436 guggesting that z=3; we found z=3 to three-

loop order in Sec. V, although we did not prove this to all
orders, and our scaling theory is compatible with a general
value of z. Our three-loop computation also gave a nonzero
value of 7, with opposite signs for the Ising-nematic and
spin-liquid cases. In the case of the nematic transition, a
nonzero positive 7,, implies the suppression of the electron
tunneling density of states, Eq. (4.58). Another striking effect
that we find for the case of a nematic transition is the power-
law divergence of the compressibility for z>3, which turns
into a logarithmic divergence if z=3.

Our scaling results were expressed in terms of correlators
of the fermionic field ¢, carrying momentum § as measured
from the point EO from the Fermi surface, implying from Eq.
(2.3) that the electron ¢, has momentum ko+4 (and similarly
for ¢_,). However, note that (after appropriate rescaling of
momenta, and for a circular Fermi surface) |I€|—kpqu+q§.
Thus the identity (4.6) implies that the scaling function, Eq.
(4.50), for the two-point fermion Green’s function depends
only on |k|—kg. This is similar to the dependence found in
other treatments, e.g., in the recent critical theories®?-%> ob-
tained by applying the AdS/CFT duality to fermions propa-
gating near a Reissner-Nordstrom black hole. The latter theo-
ries, in their current classical gravity formulation, find* 7,
=0.

It is also interesting to compare the structure of the critical
theory in the AdS/CFT framework to that found here. We
have an infinite set of 2+ 1-dimensional field theories labeled
by pairs of momenta on a one-dimensional Fermi surface,
i.e., a S'/7Z, set of 2+1-dimensional field theories. In the
low-energy limit, the AdS/CFT approach yields®* a AdS,
X R? geometry: this can be interpreted as an infinite set of
chiral 1+ 1-dimensional theories labeled by a R? set of two-
dimensional momenta k. It is notable, and perhaps signifi-
cant, that both approaches have an emergent dimension not
found in the underlying degrees of freedom. We began with a
2+ 1-dimensional Hamiltonian and ended up with a S'/Z, set
of 2+ 1-dimensional field theories. In AdS/CFT, there is the
emergent radial direction representing energy scale. These
emergent dimensions imply redundant descriptions and re-
quire associated consistency conditions: we explored such
consistency conditions in Sec. IV A while in AdS/CFT the
consistency conditions are Einstein’s equations representing
the renormalization-group flow under changes in energy
scale. It would be interesting to see if fluctuations about the
classical gravity theory yield corrections to the AdS,X R?
geometry which clarify the connection to our theory.

In the analysis of the spin-liquid problem, Ref. 40 consid-
ered a single patch of the Fermi surface, and argued that the
1/N expansion should be organized by the genus of the
Feynman graph (after the propagators are written in a suit-
able double line representation and the graph is interpreted as
lying on a two-dimensional surface). In our two-patch theory
here, we have shown that this genus counting is violated.
This is the implication of the N*?> dependence of the boson
self-energy in Eq. (5.6). In fact, at present, it is not clear how
to take the large-N limit of the theory. On the other hand, for
the physical value N=2, we found that the higher-loop con-
tributions are numerically small, which suggests that the

PHYSICAL REVIEW B 82, 075127 (2010)

critical exponents are close to the Hertz mean-field values.
However, because the loopwise expansion does not possess
even a formal expansion parameter, it is not clear if there is
a systematic way to extract corrections to the mean-field ex-
ponents. Thus, our value of the fermion anomalous dimen-
sion 7,, Eq. (5.16), should be regarded as an estimate only.
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APPENDIX A: DECOUPLING OF NONCOLLINEAR
MOMENTA

In this section we will argue that the fluctuations of the
order parameter at noncollinear momenta effectively de-
couple. We focus for simplicity on the case of an Ising-
nematic transition. We follow the standard Hertz approach,
integrating out the fermions to obtain an effective action for

¢,

o1
S[d’] = 2 _' dD'xl e denFn(xlax2$ ’xn)
n=2 1

X lx1) lxy) -+ lx,). (A1)
The n-point effective vertex I'” is given by
N
Fn(qI’QZ’ s ’Qn) = ;Jm(QI’qZ? ’qn)
+ permutations of ¢,q», ...,q,
(A2)
with
qu,dzkn_]
.]m(QI’QZ’ e aQn) :f 3 H [G(k + ll)d12+(f+i )/2]9
(277) 0 i+l

(A3)

where l,»=2§=1q ;- For now we work with “undressed” propa-
gators,

1

Glwk)=——
(b= %

(A4)
with k—the distance to the Fermi surface and vp(6)—the
local Fermi velocity. As is well known, for w<<v|§| and
|G| <k the two-point vertex has a Landau-damped form,

i NS
Fz(w,q)=N{7(q)m+%+r , (AS)

where the coefficient of the nonanalytic term y(g)
=Kd*/(2mv}) with the Fermi-surface curvature radius K,
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Fermi-velocity v, and form-factor d evaluated at the point
on the Fermi surface to which g is tangent. On the other
hand, the coefficients of the analytic terms r and 1/€* come
from the entire Fermi surface.

If we truncate the series, Eq. (A1), at the quadratic order,

N ([ dod’q 7
=2 (;"W)ﬁ{y(a>%+§+r}|¢@w>|2 (A6)

then at the critical point r=0 the action, Eq. (A6), is invariant
under the scale transformation,

O(F,7) — s P(sx,5°7). (A7)

Note that here, in contrast to Eq. (4.1), all components of ¢
are scaled in the same way as we are not studying the effects
of fluctuations with collinear wave vectors. We can regard
the terms in Eq. (A1) with n>2 as perturbations to the Hertz
action, Eq. (A6). Hertz noted that if the effective vertices I
possess a regular expansion in frequencies and momenta,
such that the corresponding operators can be represented as
polynomials in the order parameter ¢ and its derivatives,
then the perturbations with n>2 are irrelevant due to the
large  effective  dimensionality, D.p=d+z=5  with
d=2—spatial dimension and z=3—the dynamical critical
exponent. Indeed, the perturbation [d*¥d7¢"(x) scales as
§3"2=3 under Eq. (A7) (in the special case n=3, the operator
¢* is actually prohibited by the 90° lattice rotation symme-
try. The lowest dimension local operators with three powers
of ¢ that are allowed by symmetry are ¢[(d,¢))*~(d,¢)*] in
;I;Z )dxz_yz case and ¢d, pd,¢ in the d,, case, which scale as

However, due to the presence of low-energy excitations
on the Fermi surface there is no reason to expect that the
effective vertices I would possess a regular expansion in
momenta. Indeed, we have already seen that the two-point
vertex has the nonanalytic Landau-damped form, Eq. (A5).
As we now show, similar nonanalyticities occur in the
higher-order vertices.

Let us estimate the vertices, Eq. (A2), when the external
frequencies and momenta obey the Hertz scaling, Eq. (A7),

0~1G]*, G—0. In this regime,
dk,dkd | dkp
Y —Llacer
1(q1:92 -+ »q,) f o | a0 (0)
n—1 1

X .
g =ik +1;;) +vp(O) [k + T :(6) - Z)l:l

(A8)

Let us perform the integral over k. Observe that if |k,|>Q
with Q=max,|/;,| then the integral vanishes as all the poles of
the integrand are in the same half plane. Thus, the range of
the internal frequency is limited by the external ones. With
this in mind,
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( L[t d0] i o
(91,42 - oq0) =1 kj<q 2m) 2m| dO | vp(6)
n-1
X X Ok, +1;,)
J=0
n—1 1

x |1 —.
i=0,i#j = i(liz=1;2) + 0p(0) - (1;= 1))
(A9)

where we have used the symbol 9 for the step function to
avoid confusion with the angular variable 6. Now, since ¢,
~|GP1(ye*)<vg|gl|, for general 6 we can ignore the fre-
quency dependence in the denominator of Eq. (A9). Then the
angular integration yields a factor of O(1) and the integral
over k, yields a factor of external frequency so that

4:
g

Fn(ql’qZ’ ’Qn) -~ (AIO)

Note that the momentum dependence in Eq. (A10) is far
from analytic. Also, note that for n=2 the result is consistent
with the standard Landau damping.

The only possible caveat to the estimate, Eq. (A10), is
associated with regions of angular integration where
ﬁp(ﬁ)-(f[—l:-)—>0, i.e., some combination of external mo-
menta becomes tangent to the Fermi surface. Then the angu-
lar integration acquires poles just off the real axis with the
imaginary parts of the poles provided by the frequency de-
pendence in the denominator of Eq. (A9). As long as the real
parts of the poles do not coalesce, i.e., no two momenta f,
—l:- and l:r —l;- are collinear, the angular integration still yields
a factor of O(1) and the estimate, Eq. (A10), remains correct.
This is the regime that we are considering in the present
appendix. The rest of the paper is devoted to the opposite
limit, where all the external momenta are nearly collinear
and the angular integral in Eq. (A9) is dominated by the
vicinity of two antipodal points on the Fermi surface to
which the external momenta are tangent. This observation
motivates the introduction of the two patch theory in Sec. II
and all the subsequent development of the present work.

Returning to the noncollinear regime, upon combining
Eq. (A10) with the Hertz scaling, Eq. (A7), we conclude that
the nth term in the series, Eq. (A1), scales as s">~!. There-
fore, all terms with n>2 represent nonlocal irrelevant per-
turbations, which confirms that the fluctuations with noncol-
linear momenta decouple.

We would like to point out that the argument above still
holds if one dresses the fermion propagator by the one-loop
self-energy, >(w,k)~—i sgn w|w|*3. This modifies the fre-
quency dependence in the denominator of Eq. (A9) via,
—i(l;;= 1) =2 (k,+1;;) -2 (k,+1;;). However, since X(w)
<vg|g] for typical w~|G]®, the estimate, Eq. (A10), is still
correct.
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APPENDIX B: COMPUTATION OF FEYNMAN DIAGRAMS

Here we provide some details of the computations of the diagrams in Sec. V.

1. Boson self-energy

We begin by evaluating the two-loop polarization correction in Fig. 4,

Pl = NS f dpLp fé’d)iDU)G(p)G(pw)G(p DG(p+q-1). (B1)

The contributions to the integral from the two patches are equal. Thus, integrating over p,, [, we obtain,

dp dp, didI,
2m)? (2m)?

D(l) ‘ g(pr)_ 0(p7+q7) % e(lT_pT)_ 0(lr_p7'_qr)

ic ic
S -pra)+2ap,racrqy  L-p-ab={-ph+20,p, - 1) g+ q)

811(q) =2N

s

(B2)

where here and below we use the notation {p}=sgn(p,)|p,|*>. We observe that the poles of the py integral are always in the
same half plane. Thus, 6°I1(¢)=0. This is consistent with Ref. 50, which found that the two-loop corrections to Eq. (3.3) are
suppressed by factors of [w]*? or |w|/|g,| ~|w[*?.

Now, let us proceed to compute the Aslamazov-Larkin diagrams, Fig. 6. We begin by evaluating the three point function
filq,l,—(I+q)] in Eq. (5.4). Note that f_[q,l,—(I+q)]=f.[P.q.,P,—P(I+q)], where P (ky,k,, }) (ko,—=ky.k,). The calcula-
tion of f is simplified when ¢,=0. Then, performing the integral over p, and, subsequently, p,, in Eq. (5.4),

0 v 6P+ ) - 6p)] !
I I

J[{p I} —{p}Hl- 21,,py—12—f[{p+l} {P-aq.~1,-2(q,+1)p,+q, - I

_ Lf % |0(p7'+ lT) - 0(p'r)|[0(ly) - 0(% + ly)] (B3)
2 27 —icy ’
T+ -+ - Bl 1, +1,)
N qy ’ ’
Thus,
MNAN? [ dLdldp. dp! 0p,+1, —070’+1—0’91v—01+,
Fll(g,=0,) = MM 7d3&&D(l)D(l+q)| (p ) (Pl 0y + 1) = 6(p))||6L,) = 601, + g,)]
4q; Q2m)’ 27 27 ; l—qxl / /
" p+ 1y {ph) + J +1,(q,+1)
y
1 1
% —ic q _—ic tla—=-a)
SRR R ey N N (R R DR w1+
qy gy
(B4)
Finally, integrating over /,,
. N A_N?( dldl,dp.dp. , , ,
8'M(q,=0.9) =—— f —’d§L—D(l)D(l+q)(z) sgn(I)|0(p,+1,) = Op,)||6(p, + 1) - 6(p,)l|6(1,) - 6(1, + q,)|
4q, Q2w 27 2w
1 1
X | — - +(@—-q). (BS)

—Lp+ =+ D= ') S+ - (b’ + B () + 2 (g, 4 1)

The integral is invariant under ¢g——g. Moreover, the integrals in the regions /.>0 and [.<0 are related by complex
conjugation. Thus,
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nldl, 1 1
i soq= M 2
3 T lr 4 (|Qy| B ly)2

1

_lz
l e2

Cf[(l p)2/3+p3/3+(l P’)2/3+P72/3]

h|qy| _ly 62

X
{ ef(1=p)F +p +U-p) 4]

Notice that the integral over [, is bounded by the external
momentum g,. This leads to a violation of the naive power
counting, which would predict that each diagram in Fig. 6
has a superficial degree for divergence Ai ~ Ai/ 3. Instead, we
find that for /,— 0, the two diagrams behave as

AT 1/3
F11(0.4) = - 6"11(0.4) ~ - m_quyl(g) . (B7)

(In reality, the divergence is cut once we exit the two patch
regime where the momentum [/, <</,. This occurs when [,
~li/3 becomes of order ly. However, for the Aslamazov-
Larkin diagrams the internal momentum /, is controlled by
external momentum ¢,. Hence, A,~¢;” and 5*I1=-&"I1
~q§/ 2, as found in Ref. 26.)

However, as expected for problems involving a boson
field coupled to the charge sector of the Fermi surface, the
divergence cancels when we add the two diagrams. In fact,

t 5112/3

for N> 1, the divergence is cutoff at 3/, ~q§, i.e.,

1~ N3/2q§’,/e2 (B8)

so that

2
9H®j}~—MkN”§. (B9)

Note that the result is parametrically larger in the large-N
limit than the bare boson polarization, Eq. (2.7) (although it
has the same scaling as the bare term). Also observe that the
sign of the contribution, Eq. (B9), is positive for the spin
liquid and negative for the Ising-nematic transition.

One may ask whether the enhancement in Eq. (B9) is an
artifact of taking ¢,=0. However, since the integral in Eq.
(B9) is saturated in the region, Eq. (B8) we expect the result
(B9) to be valid for, qT<N3/2q3 /€%, which i 1s certamly satis-
fied by the typical bosonic momenta g,~q’lé.

We can compute the proportionality factor in Eq. (B9) in

the large-N limit. Changing variables to /,=( )3/2|q>|3l,, Pr
=lx, pi=lx', I,=lq,ly,

2

°11(0,4) = O\, AL 2 (B10)

G-p)P+pl+(-p

. (B6
NP+ pl P+ AN (g, | - 1,)? } (B6)

25/233/4N3/2 © 1 1 1
C:——f lef dxf dx'f dy
™ 0 0 0 0
) Ry -y
{zﬁ

7 )3/2 3| {_ 7 )3/2 3J
_Z / = 1-
(N\E y T (N\E (1-y)

X —
ALAPE? +4y°(1-y)7]

—_—

(B11)

with,
A=xP+(1-xP+x?P+(1-x")"P. (B12)

For N> 1, the integral over [, is saturated in the region I,

~1, so
25/233/4 7312
C=— f f dx f dx’ J dy
-2/3

y(1-y)?
A[APT + 4y*(1 - y)*]

(B13)

After a change of variables, z=AE/3/[2y(1 -1,

37/4N3/2
C=~-— — f Z]/z( " l)f dyy'%/Z(l y)'i/Z
0

def dxw

311/4 N2
=5 J dxf dx' m (B14)
The integral over x,x" can be evaluated numerically,
J dxf dx' W =0.269653 (B15)
so that
C =~ -0.0960IN*?, N — . (B16)

We may also compute the constant C in Eq. (B10) for the
physical value N=2,

C ~ —0.04455. (B17)

075127-17



MAX A. METLITSKI AND SUBIR SACHDEV PHYSICAL REVIEW B 82, 075127 (2010)

2. Fermion self-energy Ny ; 3 dkfdzkdllfdzll dlzfdzlz
. &2(p,=0,p) = N\IN
We next compute the three-loop corrections to the fer- T + Q@3 2m? Q)3

mion self-energy in diagrams in Figs. 10(b) and 10(c),
XG,(p+ )G, (p+1)G_(k)G_(k+1,)G_(k+1
dic,d’k dl, d*1, dl,,d’l, + VG DG )Gk+ 1)

3 — 0 A — An3y3
67%(p,=0,p) = NAN. 2m)® 2w Qm)3 X D(1,)D(L,)D(l; = 1,). (B19)
XG(p=1)G(p=1L)G_(k)G_(k+1,)G_(k+1,)
X D(1,)D(L,)D(l, - 1,), (B13) Integrating over /;, and /,, we obtain

dk,d’k dl, dl,,dl,.dl,,
2m? @2m)? @2m)?

&2(p,=0.p)=- N)\+)\—f D(1,)D(L,)D(l; - 1)

y 1 Ol +k;) = 0(=1,,) Ol + k) = 0(=1,)
- %ki” - %w‘ 23+ BB+ 8+ 20k + p)ylyy - —f[(z2 FR)23+ BT+ 87 + 20k + p)yloy -

(B20)

&% (p,=0.,p)

) dkdk dl, dl,, dly dl,,
=— NN\ Qm? @m? (7 D(1,)D(1,)D(l; = 1)
% 1 0(11T+kT)_0(_llT)

_ ’l—i,fkiﬁ + - %[(l, 2 B0+ S+ 2k + p)lyy + 28, +

y 0Ly, + k) — 0(=1,,) (B21)

- %[(lz P12 4 B3] 8 4+ 2K+ p)ylay + 22, + 5*

where 5;:: o+ pi. Note the cancellation of the Fermi-surface curvature terms lfy,zy in the “planar graph” &°°3.

We can reduce the integration range to k>0 as the region k<0 is related by complex conjugation. There are then four
different kinematic regimes: (i) /,,>0,,,>0, (i) [,,<-k,,l,,>0, (iii) /,,>0,l,,<-k, and (iv) [,,<-k,,[,,<-k, The
integral over k, in the regime (i) vanishes as all the poles are in the same half plane. The regimes (ii) and (iii) are related by
l] — 12. ThuS,

8"3(p,=0,p)

=M f (jjf)zj dlle 2 2 d)li D(ll)D(lz)D(11¢+lzplly—lzy)ﬁ
- NkT + 0
X L 1
il—f]f((l1 )2/% 12/3) + 8+ 2(k+p)ly, - %f((lz+k)z/3 12/3) b 5420k )by -
j (;1:;2 f di,, f dl,, d(l; d)li DD -1
) 1 +H.c.,
- %kiﬂ + 0, %((l 0P+ 0D) + &+ 2(k+p), 1y, - ((12 02 4 )+ 8 + 20+ plydoy —

(B22)
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&%(p,=0.p)

&’k dl dly, [ dly,dly, 1
=—N)\ A f (2’7T) f le -2 (; )5 D(ll)D(ZZ)D(llT'I"lZwlly_lZy)icl—
_ _Iki/3+ 5];
N
1 1
>< .

1 ic
TVI((Z1 — k)22 B2 + & 4 20k + p)y i+ 205, + S — Z—VZ[(I2 F 028+ 204

L f dly, [ dlyydly, dlz,

& +2(k+p)yloy + 2l2‘ +6,

——fk2’3+b“
N T k
1 1
X = - +H.c.
ic ic
I—V£((ll_k)m + 23+ 5 +2(k +p) 11}+2l%y+5;]—vf[(12—k)2/3 + B3]+ 8+ 2k + p)yloy + 28, + 5
(B23)
Integrating over k, and shifting k,—k,—p,
* dk, dly, (% dly, ( diydly,
S (p,=0,5) = - N\ \_ 2i f by f f ! J - (; )§ D(I)D(U)D(y,+ Lyl — Lyy)
0
1 1
X
—f[k2’3+(l k)2 + 2] =2kl + 85— —f[(l )2+ B34 (L + 023 + B3]+ 2k, (L, - 1),
1~ 1y 1~ 2 2~
([ dk, dl,. f dly, [ dl,dly,
—T =L B1,)D(L)D(, - 1
+lf0 27Tf f (277)2 (1)D(L)D(1, = 1,)
1
X~ +Hec., (B24)

l}—i]f[kf/3+(ll—k)m + 571+ 2k 0, - 5*—1[1<2’3+(12 K2+ 5721+ 2k 1, - 5,

* dk. dly, (7 dly, ( dl\dl,
&S (p,=0,5) =~ N\ \_|2i f by J f - f 2 J (; )5 D()D(L)D(Ly -+ Lyl = L)
0 au

1 1
>< .

—%[ki’3+(ll—k)2’3 # PP = 200y, =28 - —f[(z

K204 124 (L + 02 + 1014+ 2k (= 1), + 25, - 1)

(* dk, dly, (7 dly, [ dlydl,
+l~f0 Ef f f (2 )2 D(ZI)D(ZQ)D(II—IZ)

1
>< .
4 (1, -

- +H.c. (B25)
c
K7+ 071+ 2k 1y, + 205, + 8 7vf[ki’3 + (L =k + 571+ 2k b, + 21 + 5

The integration regions /;,>0 and /;,<<0 give the same contribution. So, integrating over k

075127-19



MAX A. METLITSKI AND SUBIR SACHDEV PHYSICAL REVIEW B 82, 075127 (2010)

dl dl dl,,
53 (p,=0,5) = N\ A | 2 f f L f ”J e f 41)(1 )D()D(Ly+ Lyl — )

1

c
- ]—Vf{zzy[(zl B2+ B34 2+ 1, [+ 02 + B2 = kP + (- 1), 6]
dly, (* dl,, (*di
f J 1Tf 2Tf L j ZVD(I )D(IZ)D(ZIT l27"lly+12v)

ic
- TVI{lzy[(ll — 2P+ B2+ P+ 1, [ (- 02 + B2+ K2R + (1 + 1), 8

+H.c.,

dl dl
53CE(PT=O,P_)) =N)\+)\— 2f f le ZTJ J _XD(I )D IZ)D(l1T+ lZT’ll) lZy)
0 hy

1
X

ic
_ ]—vf{zzy[(zl P+ B+ P+ 1, [+ 02 + 157 = kP + 20, (1 = 1), = (1= 1), 8

di dl dl dl
+ f f le 27[ —o J _ZLD(Z )D(IZ)D(IIT 127’71])) + l2y)
0

1

ic
= L[ =07+ B2+ KT+ 1[0 = 07+ B2+ K1 = 201,00, (1 + ), = (0 + 1), 6,

(B26)

(B27)

Expanding the self-energy in &, and performing a change of variables [y, =kx, l,=k.x,, ly=(cpe’k,) Pyy, bhy=(cpe?k,) Py,

* dk,
83, (p,=0.9) =N A_(J, + 1) 5 f o
0 T

* dk
53CE+(pT= O’ﬁ) = 63C2+(p7-: Osﬁ = O) + )\+)\_(J3 + J4) 5;[ Tr’
0 T

where

6 (~ ” ” ” )’1)’2()’2—)’1)2
le—J dxf dxzj dyf dy,
) T T T D )+ x + (v, = )]

>< 9’
ol = D+ 277 + 11+ 31 [0+ DB+ 237 - 111

3 f“’ Jm fw Jw yiy2(y1 +y2)?
H=—| dx dx d d
T 1 ] 1 : 0 . 0 yz(x1+y1)(x2+yz)[|x1 X2|+(Y1+)’2)3]

>< b
(ol = D 4577+ 14 3 [ (6 = P+ 57 + 117
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y1ya(ya = y1)?

), anl, ), o0
Jy3=—— | dx dx dy dy
N 1 : 0 ’ 0 : ¥ z(xl+y1)(x2+y2)[x1+x2+(y2 y)’]

1
3yva( = y1)? - el G - 1)

X

2/3

+ 177+ 1]+ v, [+ DY+ x5 - 1]}

X

1 3 (B32)
<3y%y§(yz =3+ a0 = P+ O+ D437 - 1]}2>
3 (7 - - - yiya(yi +y2)°
J4=_f dxlf dsz d)ﬁf dy,
TN 1 1 0 0 (xy +yf)(x2+y;)[|x1 —x2|+(y1+y2)3]
1
3yiy3(vy + 30 - ﬁb’z[(xl — D427+ 174y, [( - D2+ 237 + 171
(B33)

Cutting off the UV divergence in Egs. (B28) and (B29) at
kT=AT~A§/eZ, we obtain to logarithmic accuracy,

3

&'3,(p,=0.5) =N +12)5*1og| e (B34)
&S (p,=0,p) = &3 (p,=0,5=0)
3
+ )\+)\_(]3 +J4)5[: logmgﬁ, (B35)
14

which is equivalent to Egs. (5.9) and (5.10) with J,=3
(J,+J,) and J,=3(J3+J,). Note that J, and J, are constants
independent of N,

J, =~ 0.01276, (B36)

J, = 0.02264. (B37)

On the other hand, the constants J5 and J, are N dependent.
In the large-N limit we can evaluate these constants analyti-
cally to leading logarithmic accuracy by setting N=2 in the
integrand,

2 o o0 o (e ]
J3 = f dxlf def dylf d)’2
772N2 1 0 0 Y1

y1ya(x; +J’§)(x2 +y§)(x1 +x+ (- Y1)3) .
(B38)

The above integral diverges logarithmically when y{,y,,x,
—0. Hence,

1 2
<3y%y%(y1 + )’2)2 + ﬁ{yZ[(xl - 1)% +x%/3 + 1]+ (- 1)%? +x§/3 + 1]}2>

J 2 f dx; J 4 f 4 f 1
~ — X 'y _—
PN ? : ¥ )’1)’2(X2+y;)

2 [Tdyyy o f dy,.

= O _

LS sz Y2 g0 Vi
Inspecting the original integral, Eq. (B32), we observe that
the logarithmic divergence in Eq. (B39) is cutoff when

y1(y2=y1)~ . Hence,

(B39)

2 (Y odyy, o [ dy
Jy = —log(y, —_— = log® N.
3 ﬂ,zszMm v, g()’z) (s V1 472N2 g
(B40)
Similarly,

1 oo o0 o0 oo
Jy= _f dxlf dxzf d)ﬁf dy;
WZNZ 1 1 0 0
X 3 3 3
yiva(xy +yD) (s + y )y = x| + (y1 + y2)°]

4 d d d
=~ ﬂ;sz xlf yzf yllOg[(y1+yz) 7.

(B41)

Inspecting Eq. (B33), we see that the logarithmic divergence
in Eq. (B41) is cutoff when y,y,~ 1%/ Writing, y,=y,2,

12 dy, dz
Jy=-— - —I1 +log(1 +
4 ﬂ,zszMm v Jowart 2 [log y, +log(1 +2)]

——log® N. (B42)

1
T 2N
We note that expressions (B40) and (B42) do not include
subleading polynomial corrections in log N. We can also cal-
culate the constants J3, J, numerically for N=2,
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J3 =~ —0.004491, (B43) malization of the chemical potential 6 away from criticality.
The UV contribution at three-loop order comes from the dia-
J, = —0.008158. (B44) grams in Figs. 10(b) and 10(c) and can be obtained by ex-

panding the bosonic propagators in Egs. (B26) and (B27) to

Finally, we compute the insertion of the ¢? operator into . . ]
Y P ¢” op linear order in r. This yields,

the fermion two-point function, which determines the renor-

a3 vV dly, (7 dly, (*dl,
53b_=—N f f lf 2J lf _X[D(l)+D(lz)+D(11¢+lzwll) lZy)]D(l )D(IZ)D(ZIT"'ZZT’lly L)

1 f J dly, f dl,, f dly, f dly,

ic
_ ]_Vf{lzy[(ll )2/3 12/3 k2”]+lly[(lz+k 2/3+12/3 ki/s]}

X[D(l}) + D(1,) + D(1, ,— Lnly+ l2y)]D(ll)D(l2)D(l17'_ Lol + lZy)

1
X — +He., (B45)

ic
_ ]—Vf{zzy[(zl — 23+ B2+ k2P 4+ 1, [ - 02 + B2+ k250

uv dl dl dl,,
2 f f L f = f f —X[D(l>+D<12>+D<zlf+zzf,zb L)IDU)DL)DUy 4 Lyl — L)

1

{l%[(l1 D2+ 52+ kP14 1, [(L+ 02+ B - kP + 20, by (L - 1),

f f s f B f ahy f 20D+ D) + DUy~ oy + ) IDUDEID(~ by, + ) (B6)

1
X — +H.c. (B47)

ic
- 1—vf{zzy[(z1 -+ 0P+ P+ L[ =02 + 57 + P =204, + 1),

We observe that the contribution from the diagram in Fig. 10(b) vanishes while the diagram in Fig. 10(c) gives upon switching
to dimensionless variables,

oz
5—=17¢"log A, (B48)
ar

with

2.2 2
Y2 =y1) Yi Y2
Jr=- dxf dxzf d)ﬁf dy, { +
ﬂ'zsz ! (x1+y1)(x2+y2)[x1+x2+(y2 y1)] xl"‘)’? x2+yg
—-Y

* ( 1 )] :
X1 +x+(yo—y
L gy A -y )P+ z{yz[m—1)2/3+x%/3+1]+y1[<x2+1)2’3+x§’3—1]}2

18 f“" f“’ S Yy +y2)? Y ¥
+ dxl dXQI dylf d)’Z +
TN 1 1 0 0 (xl+YT)(X2+)’%)[|751—X2|+()’1+y2)3] xl"‘)’? x2+y§
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by — x| + (g +yz)3

Evaluating the above integral, we obtain Eq. (5.18).

(B49)

1
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