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We investigate the properties of a three-leg quantum spin tube using several techniques such as the density-
matrix renormalization-group �DMRG� method, strong-coupling approaches and the nonlinear sigma model.
For integer S, the model proves to exhibit a particularly rich phase diagram consisting of an ensemble of 2S
phase transitions. They can be accurately identified by the behavior of a nonlocal string order parameter
associated to the breaking of a hidden symmetry in the Hamiltonian. The nature of these transitions is further
elucidated within the different approaches. We carry a detailed DMRG analysis in the specific cases S=1. The
numerical data confirm the existence of two Haldane phases with broken hidden symmetry separated by a
trivial singlet state. The study of the gap and of the von Neumann entropy suggest a first-order phase transition
but at the close proximity of a tricritical point separating a gapless and a first-order transition line in the phase
diagram of the quantum spin tube.
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I. INTRODUCTION

Frustrated spin models in one dimension have attracted
attention for both the uniqueness of their characteristics and
the diversity of their properties. In contrast to higher dimen-
sional spin systems, quantum spin chains have no long-range
order. If there is no frustration, the properties of the chain are
essentially governed by the parity of the spin: the Heisenberg
spin chain for instance has a gapless spectrum and algebraic
correlations when the value of the spin is a half integer
whereas it has a gap and exponentially decaying correlations
when the spin is an integer.1 When frustration is present, the
problem gets much more complex and the possibilities for
the low-energy spectrum are also broadened. An illustrative
example is given by the spin ladder with S=1 /2 and addi-
tional diagonal couplings. Depending on the strength of the
frustrating couplings, the ground state of the system can be
described in terms of rung singlets, short-range valence
bonds,2 or would eventually dimerize.3 The transitions be-
tween some of these phases have been proposed to be decon-
fined quantum critical points which could support fractional-
ized spinons.4

Another family of problems concerns the integer-spin lad-
ders. The comprehension of integer-spin chains have consid-
erably improved since the discovery of the Affleck-Kennedy-
Lieb-Tasaki �AKLT� Hamiltonians5 and the early work of
den Nijs and Rommelse.6 In particular, the ground state of
the spin-1 Heisenberg chain is now well understood: it dis-
plays a subtle hidden topological degeneracy,7–9 associated to
a nonvanishing nonlocal string order parameter6 and supports
edge states. The question of the preservation of the topologi-
cal order when couplings between different chains are intro-
duced is an open issue. It is believed that this order should be
highly sensitive to perturbations. As a matter of fact, a
simple coupling between two spin-1 chains leads rapidly to
the destruction of the topological order,10 reflecting the fra-
gility of the edge states toward the perturbation �see also Ref.

11�. However, it is also possible to maintain the topological
phase by adding frustrating nearest-neighbor interactions. In
this case, a direct first-order transition between two different
topological phases can be observed.12 The question of the
stability of the topological order in spin ladders is of crucial
importance if one thinks of these systems as intermediates
between one-dimensional �1D� and two-dimensional �2D�
systems and regards them as a pathway to discover a spin
liquid behavior in two-dimensional systems.

In this work, we investigate the presence and nature of
topological phases in an asymmetric three-leg quantum spin
tube with integer-spin quantum numbers. The triangular spin
tube has already been extensively studied in the spin-1/2
case. Abelian bosonization techniques13 arguments suggest
that the system is gapped when the tube is symmetric and
maximally frustrated. It is interesting to introduce asymme-
try among the coupling in each triangle. The model with the
asymmetry has been studied by density-matrix
renormalization-group �DMRG� algorithm. Recent DMRG
calculations14 have demonstrated that the dimer order is un-
stable against a small but nonzero anisotropy coupling that
eventually drives the system into a critical phase.

Much less is known in the case of integer spins. The tri-
angular geometry provides a simple and natural way to in-
troduce frustration, and we thus hope to find unconventional
behaviors. Here, one coupling between two legs is varied,
thus controlling the strength of the frustration �see Fig. 1� in
order to explore a large phase diagram. The possibility of
quantum phase transitions with deconfined spinons is also an
interesting question.

Besides DMRG, a group of methods that can be used to
investigate this problem are the large-S approaches. Among
them is the nonlinear sigma model �NL�M� which furnishes
crucial information regarding the spectrum of spin chains
and ladders.1,15 Spin models with triangular geometry are
described in the continuum by a SO�3� rotation matrix field,
in contrast to collinear antiferromagnets �AFs� for which the
NL�M theory involves a single unit vector field.16 SO�3�

PHYSICAL REVIEW B 82, 075108 �2010�

1098-0121/2010/82�7�/075108�20� ©2010 The American Physical Society075108-1

http://dx.doi.org/10.1103/PhysRevB.82.075108


NL�M are characterized by the absence of a topological
term in the action17 and, in d�1, by a nontrivial fixed point
with an enlarged SO�4� symmetry.18 Even without topologi-
cal term, integer and half-integer spins behave differently
due to the occurrence of topological defects.19,20 It remains
to be seen how this scheme is perturbed by the introduction
of an anisotropy in the triangular geometry.

We determine the phase diagram of the anisotropic spin
tube with integer spin S by gathering together the results
obtained from diverse methods: strong-coupling expansion,
large-S approaches, and DMRG. We find that the tube sup-
ports 2S quantum phase transitions when the anisotropic cou-
pling is varied. The nature of the transitions is debated. We
begin in Sec. II with the proper definition of the model and
introduce its strong-coupling limit. Different phases are de-
limitated depending on the value of the quantum spin J of
each triangle. In Sec. III, we develop the notion of string
order parameter and we show how the spin-tube model can
be rewritten in terms of a local Hamiltonian with a discrete
Z2�Z2 symmetry. This hidden symmetry is broken when J is
odd and remains unbroken when J is even. To understand the
nature of the phase transition, we turn in the third part to the
large-S approaches. We begin with a spin-wave analysis to
determine the low-energy modes of the model. We then de-
rive the NL�M and the associated RG equations. In our deri-
vation, we put a careful emphasis on the evaluation of the
total Berry phase of the tube. We find 2S special values of
the anisotropic coupling corresponding to a nontrivial Berry
phase. Then, we focus on the special case of the spin-1 tube
with a strong-coupling approach and a DMRG study. The
DMRG results reveal the presence of two quantum phase-
transition points, in adequacy with the predictions of the
strong-coupling limit. The order of the transition is proposed
to be first order but the numerical data also strongly suggest
the proximity of the system to a tricritical point. Finally, we
provide a numerical phase diagram for the spin-2 tube where
various even/odd J phases compete.

II. MODEL AND SOME SIMPLE LIMITS

A. Model

The anisotropic triangular spin tube is a quantum ladder
problem defined by three relevant parameters �Fig. 1�: the
parallel coupling J�, the perpendicular coupling J� and the
anisotropy parameter 0��. The Hamiltonian reads

Ĥ = Ĥ� + Ĥ�,

Ĥ� = J��
i,a

�Si,a · Si+1,a� ,

Ĥ� = J��
i

�Si,3 · Si,1 + Si,2 · Si,3 + �Si,1 · Si,2� �1�

with i=1, . . . ,N being the intrachain index and a=1,2 ,3 be-
ing the rung index. The point �=0 corresponds to the unfrus-
trated open ladder while �=1 is also special because of its
translation symmetry in the transverse direction.

B. Classical case

We start by determining the classical configurations of
spins which minimize the energy of each triangle by replac-
ing the spin operators Sa with classical vectors Sna.

For ��0.5 the solutions that minimize the energy are of
the kind of the coplanar solution of Fig. 2�b�,

n1 = � sin �

0

cos �
�, n2 = �− sin �

0

cos �
�, n3 = �0

0

1
� �2�

with

cos � = −
1

2�
. �3�

In the extreme limit �→�, the two vectors n1 and n2 point
in opposite direction and the third spin is essentially free.
The system reduces then to the problem of one single chain.
On the opposite, decreasing � one enters the regime 0��
�0.5 in which the lowest energy state is an alternated col-
linear configuration of Fig. 2�a�. In this regime the physics
becomes the one of an open unfrustrated ladder.

Note that the collinear state and Eq. �2� are both continu-
ously degenerate but have a different degree of degeneracy.
For 0	��0.5, any alternated collinear configuration mini-
mizes the energy. Thus, choosing a ground state is equivalent
to picking up an oriented axis. For 0.5	�, all the classical
ground states are given by a global rotation of the triad
�n1 ,n2 ,n3�. This, in turn, requires to choose an oriented axis
and an angle.

FIG. 1. �Color online� The three different parameters defining
the coupling of the three-leg spin tube.

FIG. 2. �Color online� Top: the collinear configuration which
minimizes the energy for 0���0.5. Bottom: the coplanar configu-
ration which minimizes the energy for 0.5��.
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C. Quantum spins: The decoupled limit

Introducing the triangle spin J=S1+S2+S3 and the bond
spin S12=S1+S2, the rung Hamiltonian reads

Si,3 · Si,1 + Si,2 · Si,3 + �Si,1 · Si,2

=
J2

2
+ �� − 1�

S12
2

2
− �2� + 1�

S�S + 1�
2

=
J�J + 1�

2
+ �� − 1�

S12�S12 + 1�
2

− �2� + 1�
S�S + 1�

2
,

where we have replaced the spin operators by their eigenval-
ues. To determine the ground state, we need to label each
state by their value of total spin J and their intermediate spin
S12. For �=1, the S12 levels are degenerate and the ground
state is obtained for the smallest value of J. Thus, the ground
state is the singlet state �0,S� �if J=0, S12=S necessarily�.
When turning on the anisotropy, other levels will compete
with this state. It is straightforward to show that the sequence
of ground states �J ,S12� between �=1 and �=0 is

�0,S� → �1,S + 1� → ¯ → �S − 1,2S − 1� → �S,2S� . �4�

The first level crossing happens for �= S
1+S . The last level

crossing occurs at �=0.5. From this last result we can con-
clude that both, classically and quantum mechanically, the
point �=0.5 corresponds to the entrance into the unfrustrated
open ladder regime given by �=0. On the other side of the
isotropic point, ��1, the sequence of ground state is given
by

�0,S� → �1,S − 1� → ¯ → �S − 1,1� → �S,0� . �5�

The first crossing takes place at �= 1+S
S and the last one oc-

curs at �=1+S. After this point, the triangle consists of two
spins coupled into a singlet and an isolated spin. For in-
stance, for S=1, there is a level crossing at �=0.5 between
the singlet state �0,1� and the triplet �1,2� and another one at
�=2 between the singlet and the triplet �1,0�. In Fig. 3, we
plot the evolution of the main energy levels for S=2.

Thus, in the strong rung coupling limit J� =0, there are 2S
transition points in 0����. If we now add a small longi-
tudinal coupling J� 
J�, we can still expect that 2S+1 dif-

ferent phases are present. However, we need to know how to
effectively make the distinction between them. As we will
see in the next chapter, this can be achieved with a nonlocal
string order parameter. The nature of the phases correspond-
ing to J=0 and J�0 is clearly different. In the former case,
the tube just consists of a trivial superposition of singlets. We
will refer to this phase as the singlet phase. In the latter, the
properties of the tube are more similar to those of a single
chain with S=J spins, and we will refer to them as Haldane-
type phases.

III. INTEGER S CASE AND HIDDEN SYMMETRY

A. Hidden symmetry and string order parameters

In order to characterize the different phases suggested by
the strong-coupling analysis, we would like to find a suitable
order parameter enabling us to describe the phase transitions.
Usually, different phases are characterized by �local� order
parameters, which detect spontaneous symmetry breakings.
However, in some cases this standard approach does not
work. This includes, in particular, the Haldane phase of S
=1 chain: it has no local order parameter but still is a distinct
phase separated from a trivial phase by a quantum phase
transition. In order to characterize the Haldane phase, the
nonlocal “string order parameters,”6 one of which is

lim
�k−i�→�

	Si
z exp
i��

l=i

k−1

Sl
z�Sk

z� , �6�

is useful. It has been confirmed that it is nonvanishing within
the Haldane phase but is zero in a trivial phase �for example,
the large anisotropy phase of Ref. 8�.

The problem with the nonlocal order parameter such as
Eq. �6�, in general, is that it is not quite clear if there is
necessarily a phase transition between two states, when a
nonlocal order parameter vanishes in one state but is nonzero
in the other. Kennedy and Tasaki9 clarified the meaning of
the string order parameter Eq. �6��, as an order parameter
measuring a spontaneous breaking of hidden discrete sym-
metry. Namely, there exists a nonlocal unitary transformation

which transforms the Hamiltonian H to a Hamiltonian H̃
with short-range interaction and with a discrete Z2�Z2 sym-
metry. The Z2�Z2 symmetry is hidden in a nonlocal way in
the original Hamiltonian H.

The string order parameter Eq. �6�� is transformed by the
same nonlocal unitary transformation to the standard ferro-
magnetic order parameter. Thus, nonvanishing string order
parameter Eq. �6�� implies a spontaneous breaking of the
hidden Z2�Z2 symmetry. The spontaneous symmetry break-
ing clearly distinguishes the phases. In this sense, the string
order parameter indeed qualifies as an order parameter, de-
spite its nonlocality.

The hidden Z2�Z2 symmetry breaking also implies four-
fold ground-state degeneracy. This appears contradictory to
the uniqueness of the ground state in the Haldane phase.
However, the nonlocal unitary transformation only works for
the open boundary condition �OBC�. Thus the hidden Z2
�Z2 symmetry breaking implies fourfold ground-state de-
generacy of the original Hamiltonian H only in the open

0 0.5 1 1.5 2 2.5 3 3.5
α

-20

-15

-10

-5

0

E

| 2 , 4 >
| 1 , 3 >
| 0 , 2 >
| 1 , 1 >
| 2 , 0 >

J = 2J = 1J = 0J = 1J = 2

FIG. 3. �Color online� Spectrum of a single triangle for S=2 as
a function of � as given by the two sequences �4� and �5�. The
higher energy levels are not represented.
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boundary condition. This degeneracy actually corresponds to
the existence of the edge states with spin Sb=1 /2 at both
ends.

The appearance of the edge states can be understood5–9 in
the valence bond solid picture where each spin 1 is seen as a
triplet of spins 1/2. Spin 1 at each site is first decomposed
into two spin 1/2’s. Each constituent spin 1/2 is then coupled
to a spin 1/2 in the neighboring site to form a singlet. This
would give a simple dimerized state of a spin 1/2 chain.
However, projection to the triplet sector within each site
gives a nontrivial state for S=1 chain. If we consider this
state on a finite chain with the open boundary condition,
unpaired spin 1/2 is left free at each end. Namely, spin 1/2
degree of freedom appears at the ends. The above construc-
tion actually gives exact ground states for a special, solvable
Hamiltonian. For other models, the constructed state is of
course not an exact ground state. However, the appearance of
the edge states is a common feature within the S=1 Haldane
phase. As a consequence of the edge states, the ground states
of an open chain are asymptotically fourfold degenerate. As
mentioned above, this corresponds to the spontaneous break-
ing of the hidden Z2�Z2 symmetry.

Thus, the hidden Z2�Z2 symmetry breaking characterizes
the S=1 Haldane phase, unifying the string order parameter
and the edge states. However, it should be also noted that this
picture is only valid in the presence of the global Z2�Z2
symmetry. We will, in Sec. VIII, discuss from the perspective
of recent, more general characterization of the Haldane
phase.21,22

Now let us move on to our problem of the spin tube with
integer spin. Naturally, ladders/tubes are more complicated
than the single chain, and various generalizations of the
string order parameter have been proposed. However, as we
have discussed for the single chain, generally there is no
guarantee that a nonlocal “order parameter” really qualifies
as an order parameter. Therefore, in this paper, we first gen-
eralize the hidden Z2�Z2 symmetry to the tube. Then we
identify the corresponding string order parameters, which de-
tect spontaneous breaking of the hidden Z2�Z2 symmetry.

Following Ref. 23, the Kennedy-Tasaki transformation
generalized to the tube can be written as

V = �
j	k

exp�i�Jj
zJk

x� �7�

with Ji=Si,1+Si,2+Si,3. We impose the open boundary con-
dition on the tube �along the leg direction�.

It is straightforward to show that the spin operators trans-
form into

VSi,a
x V−1 = Si,a

x �
i	k

exp�i�Jk
x� ,

VSi,a
y V−1 = �

k	i

exp�i�Jk
z�Si,a

y �
i	k

exp�i�Jk
x� ,

VSi,a
z V−1 = �

k	i

exp�i�Jk
z�Si,a

z .

The natural generalization that comes to mind is to define the
two string order parameters,

�Ox� = lim
�k−i�→�

	Ji
x exp
i� �

l=i+1

k

Jl
x�Jk

x� , �8�

�Oz� = lim
�k−i�→�

	Ji
z exp
i��

l=i

k−1

Jl
z�Jk

z� . �9�

Applying the unitary transformation Eq. �7��, they reduce to
the local ferromagnetic order parameters,

�Õa� = �VOaV−1� = lim
�k−i�→�

�Ji
aJk

a� �10�

for a=x ,z. Now, let us consider the Hamiltonian. This trans-
forms into

H̃ = H̃� + H̃�,

H̃� = J��
i

 �

a=1,2,3
Si,a

x Si+1,a
x �exp�i�Ji

x�

+ 
 �
a=1,2,3

Si,a
z Si+1,a

z �exp�i�Ji+1
z �

+ 
 �
a=1,2,3

Si,a
y Si+1,a

y �expi��Ji
x + Ji+1

z �� ,

H̃� = J��Si,1 · Si,3 + Si,2 · Si,3 + �Si,1 · Si,2� . �11�

Note that the rung part is invariant under the nonlocal trans-
formation. The new Hamiltonian still consists of local inter-
actions but the global continuous SU�2� symmetry of the
original Hamiltonian has been hidden and only a discrete
Z2�Z2 symmetry remains explicit: it is now only invariant
under the rotation of all spins around the x and z axes by an
angle of �. An interesting observation is that for J�=0 the
three chains are still coupled but there is nevertheless an
enlarged �Z2�Z2�3 symmetry. This is because exp��i�Si,a

� �
=exp�i�Si,a

� � for �=x ,z.
We suggest that this “hidden” �nonlocal� symmetry and its

associate string order parameters delineate the phases of the
system. In the strong-coupling limit �J� 
J��, the phase dia-
gram of the spin tube consists of 2S+1 phases, labeled by the
spin index J, analogous to the Haldane state for a spin-J
chain. It has been demonstrated by one of us23 that not all
Heisenberg spin chains, but only the ones with J odd, do
break the hidden Z2�Z2 symmetry and possess a nonzero
string order parameter. Thus, as the anisotropy parameter �
is varied in the spin tube �with J�J��, we will encounter a
succession of phases with the string order parameters Eqs.
�8� and �9�� alternatively vanishing and nonvanishing.

It is also interesting to consider a disorder parameter
which detects unbroken hidden Z2�Z2 symmetry, given as

�OD� � lim
�i−j�→�

	exp
i��
l=i

j−1

Jl
z�� . �12�

In fact, this was introduced in Ref. 24 as a “parity correlation
function” and shown to vanish in the Haldane phase but
nonvanishing in a trivial phase. Here we discuss Eq. �12�
from a different viewpoint from that in Ref. 24.
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The nonlocal transformation Eq. �7�� maps the nonlocal
disorder parameter Eq. �12� to itself,

�VODV−1� = lim
�i−j�→�

	exp
i��
l=i

j−1

ei��k	lJk
z
J̃l

z��
= lim

�i−j�→�
	exp
i��

l=i

j−1

Jl
z�� , �13�

where we used the fact that exp��i�Jz�=exp�i�Jz� because
Jz only takes integer values.

This correlation function can be interpreted as follows.
The global � rotation of spins �in the transformed basis�
about z axis is a generator of the Z2�Z2 symmetry. Let us
consider a localized operation, namely, � rotation about z
axis only on the spins in the finite section between i and j.
This “localized symmetry generator” is no longer a symme-
try generator of the system. We apply this operation to the
ground state, and the overlap with the ground state is mea-
sured. The limit �i− j�→� is taken afterward. If the Z2�Z2
symmetry is spontaneously broken, the application of the
localized symmetry generator flips the order parameter in the
finite section. Thus the overlap with the ground state asymp-
totically vanishes in the limit �i− j�→�. Therefore, the dis-
order parameter Eq. �12�� vanishes if the hidden Z2�Z2
symmetry is spontaneously broken. This is quite analogous
to the well-known disorder parameter in the quantum trans-
verse Ising chain.25 On the other hand, it does not vanish
generically in a trivial phase where the hidden Z2�Z2 sym-
metry is unbroken.

The discussion here implies that Eq. �12� acts as a disor-
der parameter for the hidden Z2�Z2 symmetry, when the
hidden Z2�Z2 symmetry is well defined. It would be the
case even if the inversion �parity� symmetry is explicitly bro-
ken in the Hamiltonian, when the original argument in Ref.
24 does not apply. �Although here we discussed the case of
the tube, the same argument about the disorder operator ap-
plies to integer-spin chains.�

B. Edge states

Possible quantum phases of the spin tube may be charac-
terized by the hidden Z2�Z2 symmetry breaking �or non-
breaking�. As in the case of single chain, spontaneous break-
ing of the hidden Z2�Z2 symmetry implies fourfold
degeneracy of the ground states but only in the open bound-
ary conditions. This implies the existence of the edge state
�with half-integer spin, if the edge spin quantum number is
well defined�.

It also implies that, we can investigate whether the hidden
Z2�Z2 symmetry is spontaneously broken or not, by analyz-
ing the existence of the edge states. If there are no edge
states, the hidden Z2�Z2 symmetry cannot be spontaneously
broken. Existence of the edge state would suggest spontane-
ous breaking of the hidden Z2�Z2 symmetry. However, it
should be noted that the edge states could appear by a dif-
ferent mechanism unrelated to the hidden Z2�Z2 symmetry.

The existence of the edge states can be analyzed easily in
the strong-coupling limit �J� 
J��. In the strong-coupling

limit, we can project to the ground states of each rung, which
changes according to the sequence Eq. �4��, as the tube an-
isotropy parameter � is varied.

Let us first discuss the S=1 tube. In the isotropic regime
�J� 
J� and ��1�, each triangle tends to form singlets and
we thus expect a unique ground state �with no boundary
degeneracy� corresponding to the phase with unbroken Z2
�Z2. As this phase has no spin at the boundary, it will be
referred as the Sb=0 phase. On the other hand, in the aniso-
tropic, “unfrustrated” regime �J� 
J� and ��0.5�, the three
spins of each triangle couple to form a J=1 spin object. The
resulting physics is essentially that of the spin-1 chain and
we expect a ground-state degeneracy due to the boundary
spins. In the language of the transformed Hamiltonian this
corresponds to the broken Z2�Z2 phase with �O���0. We
will call this phase the Sb=1 /2 phase in relation with the
spin 1/2 edge state of a spin-1 chain.

We can also discuss the edge states in the weak-coupling
limit �J� J�� with a heuristic argument. Taken separately,
each chain of the tube is gapped, thus we can assume that a
weak interchain coupling will not change qualitatively the
physics in the bulk. On the contrary, solitary edge excitations
of each of the three chains are expected to be very sensitive
to any perturbation. As soon as a coupling J� is introduced,
they will be bounded, leaving a unique spin-1/2 degree of
freedom at each edge. This again corresponds to the Sb
=1 /2 phase, suggesting broken Z2�Z2. This picture is valid
for basically any nonzero value of �. The only special point
is �=1 where the translation symmetry in the transverse di-
rection leads to a bigger 1

2 + 1
2 degeneracy space as it happens

with three spin 1/2 with identical AF couplings.

C. Hidden Z2ÃZ2 symmetry breaking in the weak-coupling
limit

The edge state analysis implies that the hidden Z2�Z2
symmetry is spontaneously broken in the S=1 tube, in the
weak-coupling limit J�
J� for any value of �. However,
there is a subtle issue in the weak-coupling limit. It can be
shown that the string order parameters Eqs. �8� and �9��
exactly vanish at the decoupling point J�=0. Note that at
this point, the ground state is given by a simple product of
the ground states of each chain and the symmetry of the
transformed Hamiltonian is �Z2�Z2�3 as stated above. The
string order parameter Eq. �8�� can be decomposed as

�Oz� = lim
�k−i�→�

	Si,1
z exp
i��

l=i

k−1

Sl,1
z �Sk,1

z �
1

�	exp
i��
l=i

k−1

Sl,2
z ��

2

�	exp
i��
l=i

k−1

Sl,3
z ��

3

+ ¯ , �14�

where � �a is the expectation value with respect to the ground
state of chain a. While there are 3�3=9 terms, each one of
them contains at least one factor of
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	exp
i��
l=i

k−1

Sl,a
z ��

a

. �15�

This is nothing but the disorder operator for the single chain,
introduced in Ref. 24 and discussed in Sec. III A. It vanishes
because the ground state of each chain in the Haldane phase.
As a consequence, the string order parameter Eq. �8�� for the
tube also vanishes, apparently implying that the hidden Z2
�Z2 symmetry is unbroken.

On the other hand, the disorder operator Eq. �12�� also
vanishes because it is simply a product of the disorder op-
erators for the three chains. This rather suggests that the
hidden Z2�Z2 symmetry is spontaneously broken, in agree-
ment with the edge state analysis.

The resolution of this apparent contradiction is as follows.
The hidden Z2�Z2 symmetry is indeed broken spontane-
ously even at the decoupling point J�=0. However, the
string order parameters Eqs. �8� and �9��, which are trans-
formed to the ferromagnetic order in Jz,x by the nonlocal
unitary transformation Eq. �7��, are not “good” order param-
eters to detect the symmetry breaking near the decoupling
point.

In order to detect the hidden Z2�Z2 symmetry breaking
around the decoupling point, we introduce the following
variation in the string order parameter:

�Ozzz� = lim
�k−i�→�

�Si,1
z Si,2

z Si,3
z ei��l=i

k−1Jl
z
Sk,1

z Sk,2
z Sk,3

z � . �16�

The nonlocal transformation Eq. �7�� maps this order param-
eter to a local order parameter

�VOzzzV−1� = lim
�k−i�→�

�Si,1
z Si,2

z Si,3
z Sk,1

z Sk,2
z Sk,3

z � . �17�

This does measure spontaneous breaking of the Z2�Z2 sym-
metry because Si,1

z Si,2
z Si,3

z is odd under the global � rotation
about x axis.

At the decoupled point J�=0, Eq. �16� reduces to the
product of the standard string order parameter Eq. �6�� for
the independent chains. Since Eq. �6� is nonvanishing in the
ground state of each chain, the “product” string order param-
eter Eq. �16�� is also nonvanishing in the tube at the decou-
pling point. Therefore, the hidden Z2�Z2 symmetry is in-
deed spontaneously broken even at the decoupled point J�

=0, although the string order parameters Eqs. �8� and �9��
cannot detect the symmetry breaking. The edge spin Sb
=1 /2 in the weak-coupling limit, as well as in the strong-
coupling limit with anisotropy ��0.5, can be understood as
a consequence of the hidden Z2�Z2 symmetry breaking.
Thus no phase transition is expected between these two re-
gions, as both of them would belong to the hidden Z2�Z2
symmetry-broken phase.

We note that the product string order parameter Eq. �16��
is very similar to the O4 defined in Eq. �19� of Ref. 10.
However, there is a crucial difference between the two-leg
S=1 ladder case studied in Ref. 10 and the three-leg ladder/
tube case discussed in this paper. In the present case, the
product string order parameter detects spontaneous breaking
of the hidden Z2�Z2 symmetry, thanks to relation �17�.
However, in the two-leg ladder case, we find

VO4V−1 = O4. �18�

Thus O4 introduced in Ref. 10 does not detect hidden Z2
�Z2 symmetry breaking.

In general, the product of string order parameters of each
chain is an order parameter for the hidden Z2�Z2 symmetry
breaking in integer-spin ladder/tube with an odd number of
legs but not with an even number of legs. As a consequence,
the hidden Z2�Z2 symmetry defined with respect to Eq.
�7�� is broken in the weak rung coupling limit of the odd-leg
ladder/tube with an odd integer spin but remains unbroken in
the same limit if either the spin or the number of legs is even.

D. Conjectured phase diagrams for S=1 and S=2

Let us now discuss the phase diagram. Here we propose
the simplest phase diagram consistent with our analyses in
the previous sections. In Fig. 4, we show the conjectured/
numerical phase diagram for a S=1 spin tube as a function of
J� and �. In one of the two phases, the hidden Z2�Z2 sym-
metry is spontaneously broken and the edge state with Sb
=1 /2 appears. Although there are more edge state degen-
eracy on the special lines �=1 and J�=0, these lines are also
a part of the broken hidden Z2�Z2 symmetry phase. This
phase diagram is also confirmed by numerical simulations;
the details will be given in Sec. VI B.

We can also conjecture the phase diagram for the S=2
spin tube, as in Fig. 5. Based on the strong-coupling analysis,
we in principle expect three different phases: a singlet phase
with no edge states, centered around �=1, one phase with
1/2 boundary states, and two phases with Sb=1 boundary
spins. We can also discuss the weak rung coupling limit J�

→0 in terms of edge states, by repeating the calculation of
the decoupled triangle of the preceding section but by this
time reasoning on the edge S=1 spins of the three S=2
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α
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0.4

0.6

0.8
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1/2+1/2

J‖/J⊥

Sb = 1/2Sb = 1/2

Sb = 0

FIG. 4. �Color online� Numerical phase diagram for the spin-1
tube obtained with DMRG �see Sec. VI B�. Both phases can be
distinguished according to the string order parameters Oz see Eq.
�9� or Eq. �16� and Sec. VI B 1�. The label Sb for the different
phases stands for the value of the spin of the boundary state for
OBC. The transition between the Sb=0 and Sb=1 /2 regime is ana-
lyzed in more detail in this paper and turns out to be first order.
Phase boundaries obtained from an effective model �see Sec. VI A�
are also shown with dashed red lines and agree quite well with
numerical results.
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chains. We conclude, at the decoupling point J�=0, that
there are no edge states for 0.5	�	2 and that there should
be a single spin Sb=1 at the boundaries for any other value
of the anisotropy parameter.

The edge state with Sb=1 /2 would correspond to a spon-
taneous symmetry breaking of the hidden Z2�Z2 symmetry,
which clearly characterizes a distinct phase from those with
Sb=0,1. The phase with Sb=1 also appears to be different
from the Sb=0, concerning the edge state. However, there is
in principle no way to distinguish the phases with Sb=0 and
Sb=1. This is suggested by the fact that hidden Z2�Z2 sym-
metry is unbroken in the S=2 Haldane “phase.”23 In fact, it
was pointed out recently in Ref. 22 that the S=2 Haldane
phase with Sb=1 is adiabatically connected to a trivial phase
with Sb=0.

In our problem, the Sb=0 and Sb=1 “phases” are certainly
adiabatically connected at the decoupled point J�=0, where
the system is just a collection of three S=2 chains with the
Haldane gap. With an infinitesimal coupling J�, the gap
should not close for any value of �. Therefore we expect that
Sb=0 and Sb=1 phases actually belong to a single phase in
which the hidden Z2�Z2 symmetry is unbroken. One final
comment is the difference between the S=1 and S=2 cases
for ��1 and J� J�. For S=2, as the boundary states for
each chain is a spin 1, one can form a singlet state at the
boundary, in contrast to the S=1 case where Kramers’ degen-
eracy forbids us to have a nondegenerate state with an odd
number of spin-1/2 boundary states.

IV. LARGE S LIMIT: NONLINEAR � MODEL

A. Long-wavelength description of the spin tube

Having first examined the system from the strong-
coupling perspective, we now shift to the examination of the
large-S approaches whose greatest achievements culminate
with the nonlinear sigma model. The latter has shown to be
particularly important in order to distinguish the nature of the
ground state, the low-energy excitations and the possible
critical points of an antiferromagnet.26–28 It thus proves valu-

able to conduct such a study here to complete our previous
analysis. The NL�M can be derived from the Heisenberg
model when the spin S is large. In principle, it does not make
any distinction between integer and half-integer spins, as S is
just one between multiple parameters allowed to flow con-
tinuously to their renormalized values at long wavelength.
However, the parity of the spin profoundly influences the
value of the Berry phase, a purely quantum quantity origi-
nating from nonzero overlaps between coherent states and
entering the NL�M action. As shown by Haldane,1 the value
of the Berry phase eventually governs the properties of the
system in the infrared limit.

Although the spin-wave expansion cannot make good
quantitative predictions on a magnetic model in one dimen-
sion, it is useful to carry this analysis in order to identify the
low-energy, long-wavelength degrees of freedom in the spin
tube. These degrees of freedom will help later on to construct
a well-defined order parameter for the NL�M. A standard
spin-wave analysis made on top of the classical configuration
Eq. �2�� shows that there are three low-energy modes de-
picted in Fig. 6 and their canonical conjugate.

With the expression of the low-energy modes �ŷ
X, �ẑ

Y, and
�x̂
Y, and their respective conjugate modes �ŷ

Y, �ẑ
X, and �x̂

X, we
can re-express the slowly varying spin degrees of freedom.
The spin operators can be rewritten in a compact form by
introducing an infinitesimal SO�3� rotation matrix Ri

=exp�imiĴ� with Ĵ standing for the generator of SO�3�, and a
vector Li if we identify

L =�
− 2�

�4�2 + 2
�x̂
X

�ŷ
Y

3

−
�ẑ
X

�2 −
1

2�2

� m = i�
2�

�4�2 + 2
�x̂
Y

�ŷ
X

3

�ẑ
Y

�2 −
1

2�2

� .

The original spin operators read very simply

Si,a = Ri��− 1�ina + Li − �Li · na�na�� , �19�

where the vectors na are given in Eq. �2�. The number of
degrees of freedom on the left-hand and on the right-hand
sides of this equation is the same. Thus, this operation can be
regarded as a simple change in variables but if one is inter-

0 1/2 1

S = 1/2

S = 1/2
S = 0

b

b
b

α3

S = 1 S = 1
bb

1/2 2/3 1 2

||
J

FIG. 5. �Color online� Sketch of the phase diagram for the S
=2 spin tube. Again, the label Sb for the different phases stands for
the value of the spin of the boundary state. The Sb=1 /2 phases
�light red� must be separated from the others with real phase tran-
sitions �full lines�. On the other hand, there is no reason to expect a
real phase transition between the regions Sb=0 and Sb=1 so we
have plotted these boundaries with dashed-dotted lines.

FIG. 6. �Color online� The low-energy modes deduced from the
linear spin-wave theory are connected to the three rotations of the
initial triad around the axes x̂ , ŷ , ẑ. When propagating to the tube,
they underpin slow twists of the original structure which asymptoti-
cally cost no energy at long wavelengths.
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ested in a long-wavelength limit, the new variables Ri and Li
are the most adapted to describe the physics of the aniso-
tropic spin tube.

B. Derivation of the NL�M

After having derived the low-energy modes of the theory,
we can now focus on the construction of the NL�M. The
first point is to define a suitable local order parameter. In the
case of a coplanar configuration, the role of the order param-
eter will be played by the SO�3� rotation matrix. The under-
lying idea behind the construction of the NL�M is then to
consider the system in its symmetry-broken phase and to
take into account quantum fluctuations around the direction
of the order parameter. It is actually not necessary that the
system admits a broken-symmetry phase �it has none in 1D�,
it just needs to be at least ordered locally, which is the case in
the weak rung coupling limit J� J�. The continuum limit is
then reached within a Hamiltonian formalism or a path-
integral �Lagrangian� approach.29 One of the greatest possi-
bilities given by the NL�M is that it can be investigated with
renormalization-group techniques for which one can deter-
mine the nature of the possible fixed points governing the
physics at long wavelengths. The quantum NL�M for trian-
gular geometries and its RG analysis have already been ex-
tensively studied by Azaria et al.18,30 We shall refer later to
their work for the characterization of the spectrum. For now,
our starting point will be different. We will build the NL�M
in the Lagrangian formalism, following the construction of
Dombre and Read.17 This path-integral approach is particu-
larly illustrative regarding the construction of the Berry
phases. These complex terms will play a major role in our
analysis of the quantum spin tube.

In the long-wavelength limit, the fine scale of the lattice
becomes irrelevant and the lattice spacing � can be taken to
zero. To obtain a well-defined continuum limit, we need to
choose a local order-parameter field which has a smooth spa-
tial variation on the scale of �. To do so, we make use of the
following ansatz:17

Si,a�t� = S
Ri�t��− 1�ina + �Li�t��
�Ri�t��− 1�ina + �Li�t���

, �20�

where the fields R and L depend on the time t and the lattice
coordinate i. This is identical to Eq. �19� at first order in �.
Here however, to make a coherent calculation, we will need
to keep the development up to second order in �,

Si,a � SRi��− 1�ina + �Li − �na . Li�na� + �− 1�i�2

��
−
Li

2

2
+

3

2
�na . Li�2�na − �na . Li�Li�� . �21�

In particular, the square of the magnetization of the whole
triad is given by


�
a

Si,a�2
� S2
� − 1

�
�2

+ 9�2S2�TLi�2 + �2S2
� − 1

�
�2

��− Li
2 − 2Li

z2 + 3
�

1 − �
�

a

�na · Li�2�na · ẑ�� ,

where T��=���− 1
3�ana�na�, and �TL��=��T��L�. We set

again J� =J�=1 for simplicity and concentrate on the effects
of the anisotropy parameter �. The action we wish to esti-
mate is29

SNL�M = SBP + SH

=i�
i,a

�Si,a� −� d�HSi,a� , �22�

� denoting imaginary time. The first part of the action is the
Berry phase term. It measures the total area covered by each
of the spins Si,a on the sphere of radius S. Up to second
order, the Berry phase term reads

SBP = iS�
i,a

�− 1�i�Rina� + i3S� d�dx�TLi� · V , �23�

where V�=− 1
2�����R−1��R��� and ���� is the totally anti-

symmetric tensor. The first member of the right-hand side,

SBP� = iS�
i,a

�− 1�i�Rina� �24�

takes a particular significance when one allows for the pos-
sibility of singularities in the action. These singularities are
naturally present in the system because we start from a lattice
description with discrete variables and not fields. However,
we wish not to take them into account now and we will let
apart this term for the moment. We will reconsider it when
evaluating the role of the topological defects in the theory.

The second member of Eq. �22� is nothing but Hamil-
tonian �1� where the quantum spin operators have been re-
placed by the ansatz Eq. �21��. The Hamiltonian part, at
second order in �, reads

SH =� dxd�
−
1

�
Striad − 6�S2TL�x,�� · L�x,��

+ S Tr�PR�x,��−1�xR�x,���2��
with

Striad =
1

2
�a

Si,a�2
−

1 − �

2
�Si,1 + Si,2�2.

Since the action is quadratic in the field L�x ,��, we can
integrate the field out and finally express the action solely in
terms of the SO�3� matrix field R�x , t�,

SNL�M = S� dxd��Tr�PR�x,��−1�xR�x,���2�

+ Tr�QR�x,��−1��R�x,���2�� + iSBP� . �25�

Here P and Q are diagonal matrices whose expression is

CHARRIER et al. PHYSICAL REVIEW B 82, 075108 �2010�

075108-8



better given by the spin-stiffness and susceptibility tensors,18

��� = − Tr�Qt�t��, ��� = − Tr�Pt�t�� , �26�

with ���=�����, ���=�����, and

�1 =
S�1 + 2�2�2

��1 + 4��3 + � + 4�2��
, �2 =

9S�

�2 + 8��4 + ���
,

�3 =
S

�

 1

�
−

8

− 1 + 4��2 + ��� ,

�1 = �S
1 +
1

2�2�, �2 = 3�S, �3 = �S
2 −
1

2�2� .

�27�

Here t� are the generators of the SO�3� group. Finally, we
introduce the fields R�x ,��−1��R�x ,��=��

�t�. The action
reads31

SNL�M =
S

2
�

0

�

d�dx�����0
��0

� + ����x
��x

�� + iSBP� . �28�

C. Bare analysis of the NL�M

The two formulations of the action, Eqs. �25� and �28�,
are valid for all ��0.5. In particular, we should be able to
recover the isotropic limit �=1, and the unfrustrated cases
�=0.5 and �→�. For �=1, one notes that �1=�3��2 and
�1=�3��2. In the language of the SO�3� matrices, this
translates into an additional SO�2� global right symmetry of
the action: R→RUR. This symmetry is reminiscent of the
discrete C3v symmetry of the triangle for �=1. Since the
configurations of fields classically minimizing the action also
possesses a SO�2� symmetry, this model is referred to as the
SO�3��SO�2� /SO�2� NL�M.16,18 When �=0.5, one finds
�1=�2, �1=�2, and �3=�3=0 and recovers the description of
the collinear antiferromagnet in terms of a O�3� /O�2�
NL�M.

There is another, third representation of the action Eqs.
�25�–�28�� that nicely illustrates the effect of the anisotropy
parameter �. Remembering that a SO�3� matrix is nothing
more but a set of three orthonormal vectors: �eb�a=Rab, we
can use the fact that e2=e3�e1 to rewrite the bare action in
terms of two orthonormal unit vectors,

SNL�M = S1 + S3 + Scoupling + SBP� ,

Sa =
1

2g̃a
� dxd��c̃a���ea�2 +

1

c̃a

��xea�2� ,

Scoupling = −
�

2
� dxd��e3 · ��e1�2, �29�

where the new constants can be easily expressed as a func-
tion of the spin-stiffness and susceptibility tensors. The be-
havior of the different couplings as a function of � is easily
obtained from the expression of the spin-stiffness and sus-

ceptibility tensors. An important point is that for �→0.5,
g1→�, and �→0, i.e., when �=0.5 the e1 field becomes a
spurious degree of freedom with null stiffness. This is con-
sistent with the collinear picture in the range 0���0.5.
Such a model is in fact well described by the fluctuations of
a single unit vector e3.

D. Renormalization-group analysis of the NL�M

The above bare analysis of the NL�M is insufficient to
describe properly the behavior of the spin tube in the infrared
limit. As it is well known from the study of the quantum spin
chain, quantum fluctuations always renormalize the param-
eters entering a NL�M action and eventually drive the sys-
tem into a quantum disordered state in 1D.32 Thus, in order
to understand the properties of the system at long wave-
length, one must perform a renormalization-group analysis to
determine how do the different coupling constants Eq. �27��
renormalize. We are going to use the results for the one-loop
RG equations,18,30 starting with the set of bare couplings Eq.
�27��. To make the distinction between isotropic and aniso-
tropic cases, we introduce the two anisotropy parameters
�2=1−�2 /�1 and �3=1−�3 /�1 and the coupling g=2 /�1, the
latter playing the role of an effective coupling constant. The
set of couplings �= �c1 ,c2 ,c3 ,�2 ,�3 ,g� obeys the general
RG equations,

��

�l
= − ������ . �30�

We have integrated numerically these equations for differ-
ent values of � ranging from �=0.55 to �=0.95 �similar
behaviors were also observed for values above �=1�. The
flows of the coupling constants are presented in Fig. 7 for
�=0.55 and �=0.95. Note that the spin-wave velocities do
renormalize here as a consequence of the non-Lorentz invari-
ance of the theory.18,30 The numerical integration of the RG
equations yields the unambiguous result that the symmetry is
dynamically enlarged in the infrared limit, similarly to the
higher dimensional cases. For any value of ��0.5, the spin-
wave velocities renormalize to the same value c1

�=c2
�=c3

�

while the two anisotropy parameters �2 and �3 fall to zero.
The symmetry of the model in the long-wavelength limit is
therefore SO�3��SO�3� /SO�3��SO�4� /SO�3�. The cou-
pling g diverges, as one could have expected in one dimen-
sion. Hence, there seems to be no qualitative differences be-
tween the cases �=1 and ��0.5, ��1 at the one-loop
level, suggesting that a deviation from the point �=1 is an
irrelevant perturbation. However, we have not taken into ac-
count so far the role of the Berry phase term, which as we are
going to see plays an important role when ��1.

V. BERRY PHASES AND INSTANTONS

A. Instantons in SO(3) NL�M

The continuous part of the sigma model does not make
any distinction between the integer and the half-integer
quantum spin tubes. In fact, the preceding RG equations sug-
gest that the model is gapped in both cases and admits a
unique ground state for any �. Nonetheless, the DMRG data
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show unambiguously a dimerization of the ground state of
the spin tube for S= 1

2 at �=1.14,33 Analogously, the
Majumdar-Gosh model, whose NL�M also has the SO�3�
�SO�2� /SO�2� symmetry, is dimerized.20,34 In a single spin
chain, the difference between integer and half-integer spins
can be explained in the NL�M by the presence of a topo-
logical term in the action.1 Here, such a term is absent be-
cause of the triviality of the second homotopy group of the
SO�3� manifold,17,35

�2SO�3�� = 0.

However, only continuous space-time configurations of the
field R�x ,�� have been considered up to now. In fact, there
also exist configurations containing vortices with singular
cores. These defects originate from the nontrivial first homo-
topy group of SO�3�,

�1SO�3�� = Z2. �31�

For classical antiferromagnets on the triangular lattice, these
vortices are argued to be the driving force of a phase
transition.36

In quantum systems, topological defects radically affect
the behavior of the disordered phases of the O�3� /O�2�
NL�M in 2D,19 leading the system to dimerization, and of
the SO�3��SO�2� /SO�2� NL�M in 1D.20 The specificity of
our system is that the SO�2� symmetry is, at least at the bare
level, no longer present when ��1. Thus, we would like to
investigate the conjugate action of the topological defects,
also known as instantons,32 and of the anisotropy in the spin
tube. For integer S, we will see that the presence of the
topological defects gives rise to the emergence of 2S peculiar
values of � that we could associate with the critical points
determined from the strong-coupling approach.

We would like to review first the nature of the instantons
in our system. Instantons are topological defects associated
to the symmetry group of the order parameter. The SO�3�
group manifold is isomorphic to a ball of radius � in three
dimensions whose diametrically opposite points on the sur-
face are identified. One can associate to a rotation around an
axis n by an angle �, the vector �n with �� −� ,��. The
redundancy between two opposite points on the surface of
the sphere stems from the identification between a rotation
about an axis n of angle � and the rotation about the same
axis of angle −�. It is then clear that the SO�3� manifold is
nonsimply connected, with the ensemble of closed path in
SO�3� dividing into two classes: one containing the loops
shrinkable to a point and the other ones containing strings
joining two opposite points of the ball. This is equivalent to
say that the first homotopy group of the SO�3� manifold is
given by Eq. �31�. Considering the evolution of a matrix
R�x� through space, an element of the nontrivial class is

R�t� = � cos ��x� sin ��x� 0

− sin ��x� cos ��x� 0

0 0 1
� �32�

with ��x=0�=0 and ��x=L�=2�, where L is the size of the
system. Conversely, the trivial class will consist of matrices
which stay close to the identity matrix at all positions.

Turning back to our 1+1-dimensional problem, suppose
now we start from a configuration in the trivial sector with
all e1 vectors pointing up and all e2 vectors pointing right,
where again R��= �e��� �see Fig. 8�. If nothing “sudden”
happens, i.e., if the time evolution process is sufficiently
smooth, the chain should visit other configurations but stay
in the trivial topological class. However, it is also possible
that some nontrivial configurations arise during time evolu-
tion that will connect the two classes of path. These are the
instantons. A pair of instanton �going from the trivial to the
nontrivial class� and anti-instanton �i.e., the opposite� is rep-
resented in Fig. 8. In the continuum, an instanton will appear
as a singularity. It is clear that such an event is unlikely to
happen if the tube is ordered. However, since the model is
disordered at long wavelengths, these events will eventually
proliferate. Now, it may be that the proliferation of instan-
tons is constrained by the Berry phase term. Here, we would
like to calculate

SBP� = iS�
i,a

�Rina��− 1�i, �33�

which is the discrete part of the total Berry phase Eq. �23��
that we let apart. For this purpose, we follow Dombre and
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FIG. 7. �Color online� Top: renormalization flow at �=0.55 for
�a� the three velocities c1, c2 and c3, �b� the anisotropy parameters
�2 and �3, and �c� the effective coupling constant g. Bottom: same
plots for �=0.95. The curves were obtained by integrating numeri-
cally the RG equations of Mouhanna �Ref. 30�.
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Read again and consider a first time path R��� satisfying the
closed boundary conditions and a second one R����=R���
+�R��� infinitesimally close to R���. The difference of
Berry phases between the two paths can be easily evaluated
to be

�SBP� = iS� d��
a

��Rna� · ���Rna � Rna�

=− iS� d�V��R−1�R����
�
a

na��� .

B. Isotropic case, �=1

In the isotropic case, we have the important result that

�SBP� = 0 �34�

and any smooth change in the history of R��� will not
change the value of the Berry phase of the triad. Thus, this
quantity can be used to index the two classes of �1SO�3��,
exactly like the hedgehog number classifies the configura-
tions of the spins in two dimensions.1,29 Because the quantity
is a topological invariant, we just need to calculate it for one
path representing each class. For the trivial class, we can take
the identity matrix so that �a�R�t�na�=04�S�. For the
nontrivial class, we can consider the rotation of the triad
around an arbitrary axis. In this case, the Berry phase of the
triad will be 2�S4�S�. So, the alternating sum Eq. �33��
reads

SBP� = iS�
i,a

2�qi�− 1�i, �35�

where qi=0,1 depending on which class the matrix Ri be-
longs to. Consequently, the total Berry phase will be 0 or
2�S depending on the number of nontrivial paths. If S is an
integer, the Berry phase has no effect. But if S is a half
integer, we see that there are two different values for SBP,
defining two different vacua. To see the influence of the in-
stantons on the system, we remember the arguments of Rao
and Sen.20 An instanton is a discontinuity in the Berry phase
of two neighboring triads. Because of closed boundary con-
ditions in the partition function, an instanton necessarily
comes with an anti-instanton. As we saw, the creation of such
a pair links the two vacua labeled by SBP=0 and SBP=2�S.
The instantons are situated on the links of the lattice as they
live on the plaquettes of the lattice in the �2+1�D case�. A
pair of instanton and anti-instanton define a string of a given
size. If this size is even, the Berry phase of the string is 0; if
it is odd, it is 2�S �Fig. 9�. It is then easy to see that if S is
half integer, there will be destructive interferences between
paths with strings of different sizes. In particular, if we shift
an instanton by one lattice site, we expect the dynamical
contribution from the Hamiltonian to not change but the
Berry phase to change by 2�S. For instance, the two paths of
Fig. 9 will contribute in the partition function,

Z = ¯ + �1 + e2i�S�eSNL�M + ¯ . �36�

For half-integer spins, different instantons-anti-instantons
contributions are compensated by destructive interferences.
Thus, the two topological sectors q=0,1 are nonconnected
and we are left with two degenerate ground states labeled by
the two elements of �1SO�3��. As shown by Read and
Sachdev37 in a large N analysis of the �2+1�D Heisenberg
model, this kind of destructive interferences between instan-
tons leads to dimerization in disordered phases. This seems

FIG. 8. �Color online� Evolution of the spin tube from the two
different topological sectors of SO�3�. Each triad is represented by
two orthonormal vectors e1�x , t� and e2�x , t� that one can connect
with the classical configuration of spins on each triangle
�Si,1 ,Si,2 ,Si,3� �Ref. 16�. In the continuum, e1 and e2 also stand for
the first two vector columns of the rotation matrix R�x , t�. Starting
from a Néel configuration, the system tunnels to a nontrivial con-
figuration via an instanton event �+�. The system returns to the
trivial configuration via an anti-instanton �−�.

FIG. 9. �Color online� Two space-time configurations differing
by the shift of one instanton. The two crosses represent the posi-
tions of the singularities. A straight line represents a trivial path in
SO�3� while a loop is a nontrivial path. The Berry phase associated
with each loop is �2�S depending on the sublattice.
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to be the case here: the spin-1/2 isotropic model is known to
be dimerized by DMRG.

On the other hand, integer spins allow instanton events to
proliferate as all events come with the same phase. This
makes that the two vacua are well connected. This “tunnel-
ing” between vacua lifts the degeneracy and the ground state
is therefore unique.

C. Anisotropic case, �Å1

For ��1, the difference in Berry phase between two ma-
trices R and R+�R belonging to the same topological class
is

�SBP� = − iS� d�V��R−1�R�����
a

na��

=i
S

2

1 − �

�
� d��e3 · ���e3 � e3� . �37�

In the anisotropic case, the Berry phase can no longer be
used to classify topological classes. For example, the path
contribution to the partition function from the two configu-
rations drawn on Fig. 9 is now

Z = ¯ + e2i�SL�ei�S/2��1−�/���0
Ldx�d��xe3·���e3�e3��

+�ei2�Sei�S/2��1−�/���0
L+1dx�d��xe3·���e3�e3��eSNL�M + ¯ .

�38�

Here, we have been careful to write the total Berry phase
as a continuous integral over the string. By doing so, we
made the approximation that the order parameter R�x , t� is
sufficiently smooth so that the derivatives �xei are well de-
fined. This development is valid if we stay in a given topo-
logical sector of SO�3�. For a configuration with many in-
stantons, we should separate the contributions from the
different topological sectors and write it as a sum of inte-
grals,

SBP� = i�
i,a

2�Sqi�− 1�i

+ i
S

2

1 − �

�
�
i=0

P−1 �
xi

xi+1

dx� d��xe3 · ���e3 � e3� , �39�

where �x1 , . . . ,xi� denotes the position of the P instantons.
Note that without instantons i.e., if R�x , t� is a smooth field
everywhere�, we can regroup all the integrals into a single
one and this term identically vanishes

�
−�

+�

dx� d��xe3 · ���e3 � e3�

=� � dxd����e1 · �xe2� − �x�e1 · ��e2�� = 0, �40�

given the periodic boundary conditions �PBCs� we imposed.
Note that, as we explained above, the terms in Eq. �39� are
not the total contribution to the Berry phase but just the ones

coming from configurations where the e3 field is smoothly
varying. This incomplete accounting in the Berry phase term
results in an apparent violation of parity, as the last term in
Eq. �39� is parity invariant only when �1−��

� is an integer.
Let us finally recover some well-known result in the ex-

treme limits �=0.5 and �→�. In this case, the symmetry of
the order parameter reduces to O�3� /O�2��S2. There are no
instantons in this case since �1�S2�=1. It is then straightfor-
ward to show that Eq. �39� reduces to

SBP
tot� = i

S

2
�

−�

+�

dx� d��xe3 · ���e3 � e3� = 2i�Snn � Z .

We recall that having a nontrivial skyrmion number for a
smooth space-time configuration of the vector field e3 re-
quires discontinuities on the field e1. However, as this last
field gets zero stiffness for �=0.5 and decouples we recover
for the field e3 the form of the NL�M with the correct topo-
logical term of a single chain of spins S as we should.

1. Half-integer spins

Reiterating the argument that led us to the twofold degen-
eracy of the ground state for �=1 and half-integer spins, we
find with Eq. �38� that the different instantons-anti-instantons
contributions do not cancel out anymore. The tunneling pro-
cess between the two topological sectors is present and the
topological degeneracy is lifted. Consequently, we can make
use of an important result for spin chains, the Lieb-Schultz-
Mattis theorem,38 suggesting that the system is in a gapless
phase. This theorem states that spin Hamiltonians with local
interactions and an half-integer spin per unit cell like Eq. �1�
either support gapless excitations or have a ground-state de-
generacy. Ruling out the possibility of a degeneracy here
tends to the scenario of a critical behavior. This is indeed
what appears in the study of Sakai et al.14 where, for S
=1 /2, the DMRG data point at a preservation of the spin gap
only in a narrow range around �=1.

2. Integer spins

An interesting application for integer spins is a possible
extension of Haldane’s conjecture to the quantum spin tube.
Reconsidering again the Berry phase term, we examine the
possibility of rewriting the sum of integrals Eq. �39�� into a
single one,

i
S

2

1 − �

�
�
i=0

P−1 �
xi

xi+1

dx� d��xe3 · ���e3 � e3�

�i
S

2

1 − �

�
�

−�

+�

dx� d��xe3 · ���e3 � e3� . �41�

Because of Eq. �40�, we saw that the integral on the right-
hand side of Eq. �41� must vanish for any smooth configu-
ration of the field R�x , t�. However, it is possible that the
field e3�x , t� is smooth but that R�x , t� is not �see for instance
Fig. 8: the vectors e1 and e2 change sharply of direction
where the instantons take place but e3 remains constant�. In
this case, writing the Berry phase as a single integral is al-
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lowed and this integral will be different from zero. However,
we must emphasize that the identification Eq. �41�� is not
totally complete since we elude all the instantons events
where e3 is discontinuous. However, in the region ��0.5 we
saw that in the bare action the stiffness of the e1 is very
small. One can then suppose that in this limit the low-energy
configurations with nontrivial topological index are those
where the e3 is smoothly varying and the necessary discon-
tinuities are in the e1 field configuration. Keeping this picture
even for larger values of �, from Eq. �41� one then recog-
nizes a topological term for the unit vector e3. But this time,
it is multiplied by a factor ��−1� /�. For the O�3� /O�2�
NL�M, it is known that such a term would lead to a signifi-
cant change in the spectrum of the model if it is an half
integer in which case the NL�M is gapless. Here, we find 2S
particular values of � for which this happen

�p =
S

S − 
p +
1

2
� → SBP� = i��2p + 1� − S 	 p +

1

2
	 S,

p � Z , �42�

the last inequalities coming from the condition ��0.5. For
�=�p, the Berry phase reduces again to an odd multiple of
�. Finally, the full anisotropic sigma model at these points
read

SNL�M =� dxd�� 1

2g̃a
�c̃a���ea�2 +

1

c̃a

��xea�2� + ��e3 · ��e1�2

+ i
2p + 1

4
�xe3 · ���e3 � e3�� . �43�

Would the RG analysis of the preceding section have pre-
dicted a decoupling of the field e1, we would have concluded
that the last equation represents 2S critical-field theories,
each corresponding to an SU�2�1 Wess-Zumino-Novikov-
Witten �WZNW� model, as it happens for a dimerized spin S
chain.39 However, the RG results suggest the opposite sce-
nario: the coupling between the e1 and the e3 is a relevant
perturbation and any nonzero skyrmion configuration must
come with a fugacity, corresponding to the energy cost of a
discontinuity of the e1 field configuration. This would ex-
clude the scenario for a SU�2�1 WZNW criticality. Although
the one-loop RG results are well suited to study the vicinity
of the point �=1, one can question their validity in the qua-
sicollinear regime ��0.5. The nature of the transition points
J→J+1 J is the total spin per triangle, see Eq. �4�� is thus
unclear for the case J big �i.e., close to �=0.5� and we are
going now to study the transition J=0 to J=1 in the case of
an S=1 tube.

VI. S=1 CASE

In this section, we will focus on the spin-1 case for which
two quantum phase transitions are expected �close to �
=1 /2 and �=2, respectively, when J� /J�
1�.

A. Effective model for the S=1 tube

In the small J� limit, we can apply simple perturbation
theory in order to obtain an effective model which should be
valid close enough to a critical point. As recalled in Sec. II, a
single triangle exhibits at low energy a level crossing be-
tween one singlet and one triplet states both at �=1 /2 and
�=2. If we restrict ourselves to the neighboring of one level
crossing, then we can build an effective model by keeping
only these low-lying degrees of freedom. Because the Hilbert
space of one singlet plus one triplet is equivalent to two spin
1/2, we prefer to describe the effective model in terms of
effective spin-1/2 variables so that the effective model of the
spin tube becomes a spin-1/2 two-leg ladder Hamiltonian.

By performing first order �in J�� degenerate perturbation,
we end up with a SU�2� spin-1/2 ladder that only contains
two-spin-exchange interactions of the form

Ĥeff = �
i

J̃�S̃i,1 · S̃i,2 + J̃��S̃i,1 · S̃i+1,1 + S̃i+1,2 · S̃i+1,2�

+ J̃d�
i

�S̃i,1 · S̃i+1,2 + S̃i,2 · S̃i+1,1� �44�

and the effective exchange are as follows:

� � 1/2:J̃� = 2� − 1, J̃� = 
11

8
+

5

9
�J� ,

J̃d = 
11

8
−

5

9
�J� � 0.82J� ,

� � 2:J̃� = 2 − �, J̃� =
13

9
J� , �45�

J̃d =
5

9
J� � 0.56J� . �46�

This mapping allows for a straightforward explanation of the
occurrence of quantum phase transitions. Varying � is
equivalent to changing the effective rung exchange from
strongly positive to strongly negative, which means that the
spin-1/2 ladder is in a rung-singlet phase on one side and in
a Haldane phase on the other side. Because this spin-1/2
model is simpler and has already been studied intensively,
we can use some results from the literature to clarify the
nature of the phase transition.

From the bosonization point of view, which is valid when

J̃� is the dominant energy scale, Nersesyan and Tsvelik40

have argued that there should be a transition when J̃�=2J̃d
with the possibility of deconfined spinons. A more refined
analysis by Starykh and Balents has shown that marginal
interactions modify these conclusions so that the transition
between rung singlet and Haldane phase becomes either first
order or has an intermediate columnar dimer phase.3 These

estimates J̃�=2J̃d for the quantum phase transition are plot-
ted on the phase diagram in Fig. 4.

From the numerical point of view, early DMRG
computations41 were interpreted in favor of a second-order

�respectively, first-order� phase transition for J̃d / J̃� smaller
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�respectively, larger� than 0.287. The absence of an interme-
diate dimerized phase was confirmed by more recent numeri-
cal work4,42 although these studies do not agree on the order
of the transition: either it is always first order4 or it could be

continuous for small J̃d / J̃� �0.2.42 Given that our effective

models have a relatively large ratio J̃d / J̃� �respectively, close
to 0.42 and 0.38 for both critical cases ��1 /2,2�, all nu-
merical studies agree that the phase transitions are first order.

B. DMRG results for the S=1 tube

In order to have an unbiased answer, we have decided to
perform numerical simulations of the S=1 tube with the
powerful DMRG algorithm43 for several values of J�. Simu-
lations are done mostly with OBCs with system sizes up to
3�64 but also with PBCs on some cases. Typically, we keep
up to 1600 states, which is sufficient to have a discarded
weight smaller than 10−8.

1. String order parameter

In order to draw a numerical phase diagram and to com-
pare it with the conjectured one �see Fig. 4�, we have com-
puted the z component of the string order parameter see Eq.
�9�� for several values of J� and �. In order to extract the
bulk value and avoid finite-size effects due to the edges, we
have taken the following definition in our simulations:

�Oz� =	JL/4
z exp
i� �

l=L/4

3L/4

Jl
z�J3L/4+1

z � . �47�

In Fig. 10, we plot this quantity as a function of the frus-
tration � for a small J� /J�=0.1. We conclude that the string
order is finite for �	0.57 and ��1.92, and it vanishes else-
where, i.e., our model does exhibit quantum phase transi-
tions. Therefore, as a function of �, we find successively a
topological phase �with Sb=1 /2 in the presence of OBC�, a
nontopological one, and again a topological phase �with Sb
=1 /2 in the presence of OBC�. This is the behavior expected
from the perturbation and the mapping to an effective spin-1

or spin-0 chain. Indeed, for small or large �, we can derive
an effective spin-1 Haldane model for which the string order
parameter is known44 to be �0.374, which is close to our
value in both limits.

In order to complete our phase diagram in Fig. 4, we also
compute the string order parameter for larger J� /J� where
perturbation is no more valid. Data are shown in Fig. 11 and
have a quite different behavior: now, the string order param-
eter is finite for all �, i.e., we have no phase transitions along
this line. By computing �Oz� for various J� and �, we esti-
mate that the tip of the J=0 lobe occurs for J� /J�=0.67 and
�=1.

Now, we present data for a vertical cut in the phase dia-
gram of Fig. 4 by fixing �=0.75. By varying J� /J�, the
string order plotted in Fig. 12 vanishes for J� /J��0.34 and
is finite beyond. In Fig. 12, the string order parameter �Oz�
remains finite up to J� /J��3. However, as we have dis-
cussed in Sec. III C, �Oz� vanishes in the weak-coupling
limit.

In order to ascertain that there is no other phase transition
when going to the decoupled chain limit, we have computed
the product string order parameter of Eq. �16� as well as the
usual one for the nonfrustrated case �=0. Data are shown in
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Fig. 13 for both order parameters. When the chains are al-
most decoupled, the product string order parameter is close
to the product of the standard string order parameter for the
independent chains. On the opposite side, when the dominant
coupling is J�, the perturbative argument that we have given
above �see Sec. VI A� indicates that the three-leg ladder be-
haves effectively as a spin-1 chain for which the string order
parameter �Oz� reduces to the usual one; this is indeed what
is found numerically on large system size.

2. Spectral gap

We have also calculated the excitation gap by DMRG. In
order to estimate the bulk gap, the gap is extracted differ-
ently from the finite-size spectrum depending on the bound-
ary conditions. For OBCs, in a Haldane-type phase, the real
gap should be calculated between the S=1 sector and the S
=2 sector since the sectors S=0 and S=1 are already degen-
erate because of the edge states. On the contrary, for a sin-
gletlike state, the gap is defined between the S=0 sector and
the S=1 sector. For periodic boundary conditions, there are

no edge states and thus, the gap is uniquely defined to be
between S=0 and S=1. The evolution of the gap is presented
in Fig. 14 �left for OBC and right for PBC�. For OBC on
largest system sizes and fixed J� /J�=0.1, the DMRG indi-
cates that the gap between S=0 and S=1 is almost zero for
�	0.57 or ��1.92 but is finite in between �data not
shown�. The gap between S=1 and S=2 is plotted in Fig. 14
for J� =0.1J� and exhibits a striking difference in three re-
gions. For �	0.57 or ��1.92, the gap is finite and almost
constant with �. In contrast, in the intermediate � region, the
gap increases almost linearly away from these critical points.
Extrapolation of the data for large system sizes seems to go
in favor of a finite gap everywhere �see Fig. 14� but note that
the extrapolated gap at the critical points is extremely small.
Both critical points are identical to the values we had found
with the string order parameter. We observe that the gap is
roughly constant in the Sb=1 /2 phase, except in the vicinity
of the transition point. Note that this is in accordance with
the qualitative picture of the strong-coupling limit. For small
or very large �, the effective model is a spin-1 chain with an
effective spin exchange of order J� �but independent of ��;
therefore, the spin gap essentially depends on the value of J�

but is independent of the anisotropy parameter �.
In order to make connection with the perturbation theory,

we have also performed simulations of the effective spin-1/2
ladder see Eq. �44�� corresponding to our parameters choice.
Due to the Hilbert-space reduction, we are able to simulate
larger clusters. As can be seen in Fig. 15, we obtain a very
good agreement between both sets of data since we are in-
deed considering a small J� case where perturbation is ex-
pected to be accurate. We have plotted an infinite-size ex-
trapolation by using the two biggest ladders �L=64 and L
=128� which confirm that the spin gap has a large drop
around �=0.57. However, at the critical point, our data can-
not certainly exclude an extremely small but finite gap. This
result would imply a first-order phase transition, in agree-
ment with other numerical studies on the ladder
systems.4,41,42

3. von Neumann entropy

In this part, we fix J� /J�=0.1 for which we have found
two quantum phase transitions for �=0.57 and �=1.92, both
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with an extremely small but finite spin gap at the transition.
Since these critical points seem to be very close to tricritical
points �the correlation lengths are very large at the transi-
tions�, another quantity of interest here is the von Neumann
entropy of a finite segment of the chain. It is defined by

SvN��� = − Tr��� ln ��� , �48�

where ��=Tr� � is the reduced density matrix associated to a
block of � spins. This quantity is known to behave funda-
mentally differently for critical and noncritical systems.45,46

It saturates at a finite value when the system is noncritical
while it increases logarithmically for critical systems. The
analytic expression of S� is given by

SvN��� =
c

6
ln�2L

�
sin
��

L
�� + g , �49�

where c is the central charge and g is a constant. The von
Neumann entropy is represented in Fig. 16 as a function of
the conformal distance d���= �L /��sin��� /L�. For �=0.5
and �=0.6, the entropy converges to a finite value �the same
results holds for all other values far enough from both criti-
cal points�. On the contrary, for �=0.57 and �=1.92, it does
not saturate but grows with the system size, which should be
in favor of a gapless character of the two critical points. The
entropy displays also a large periodic oscillation. Such an
oscillation has already been observed in other critical spin
chains47 and may be related to the existence of soft modes at
k=0 and k=� in the problem.48 Thus, the decay in correla-
tion function would not be simply algebraic at the critical
point but the decaying function would be multiplied by an
oscillatory factor. Because of the oscillations, it is hard to
distinguish what is the best fit between c= 3

2 and c=2.
However, from our DMRG data on the gap, as well as the

mapping to an effective ladder, we conclude to a very weak
first-order transition, especially in the strong-coupling limit
J� 
J�. This last scenario is supported by the bosonization
studies and the DMRG computation of the effective Hamil-
tonian �44�. Still, von Neumann entropy exhibits a critical
behavior with c=3 /2 or c=2 at the critical points, which is
valid on rather large length scales. Therefore, we believe that

this spin tube can be tuned very close to a tricritical point
separating a first-order transition line from a possible con-
tinuous transition line nearby. The gapless transition at the
critical points could then be correlated with the presence of a
nontrivial topological term in the NL�M. Note that there are
no such critical points in the phase diagram of the two-leg
ladder with S=1,10,49 and that there is no topological term in
the corresponding NL�M as well.50 Of course, the link be-
tween the NL�M and the critical point of the DMRG data
still needs to be clarified with further investigations, both
analytically and numerically.

VII. S=2 CASE

In this section, we consider the spin-2 case for which four
quantum phase transitions are expected as a function of the
frustration � for a fixed J� /J�
1.

A. Effective model for the S=2 tube

In principle, one can apply simple perturbation theory in
order to obtain an effective model valid close enough to any
of the critical points for small J� /J�. Here, we have two
types of critical points: �i� close to �=1 /2 or �=3, and as
recalled in Sec. II, a single triangle will have a quintet and a
triplet as low-energy states and �ii� close to �=2 /3 or �
=3 /2, low-energy states consist in one triplet and one sin-
glet.

Although one can derive both kinds of effective models,
case �i� does not allow to make analytical progress. On the
contrary, for the second case, the effective model turns out to
be formally the same as for the spin-1 tube �see Sec. VI A�,
i.e., first-order degenerate perturbation results can be mapped
onto a SU�2� spin-1/2 ladder that only contains two-spin-
exchange interactions of the form given in Eq. �44�. The
effective exchanges are given as

� � 2/3:J̃� = 3� − 2, J̃� =
23

5
J� ,

J̃d =
7

5
J� ,

� � 3/2:J̃� = 3 − 2�, J̃� =
151

40
J�, J̃d =

39

40
J� . �50�

As explained in details in Sec. VI A, such a mapping ex-
plains the occurrence of a quantum phase transition when

J̃��2J̃d, as well as giving insight on the order of the tran-
sition.

Both quantum critical lines are plotted in Fig. 5. More-

over, for both cases we are in a regime where J̃d / J̃x
�0.25–0.30, for which there is no consensus yet on the
order of the transition.4,42 Still, if the transitions are first
order, the gap at the transition should be very small, which
means that for most practical purpose, the system will appear
critical on length scales smaller than the �large� correlation
length.
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B. DMRG results for the spin S=2 tube

Simulations are done mostly with OBCs with system sizes
up to 3�64 but also with PBCs on some cases. Typically, we
keep up to 1600 states, which is sufficient to have a dis-
carded weight smaller than 10−6.

We have computed several spectral gaps with various
boundary conditions and various total spin sector, in order to
avoid edge effects, but finite-size effects are rather large and
spin gap values quite small so that no definite answer on the
phase diagram can be obtained this way.

A clearer signal is given by the string order parameter see
Eq. �47�� which can distinguish between odd-J and even-J
Haldane phases. Unfortunately, this quantity alone cannot
distinguish between J=0 and J=2 phases but we can rely on
the presence/absence of edge states to distinguish these
phases. In Fig. 17, we plot various spin gaps as a function of
the frustration �. Obviously, if edge states carry a spin Sb,
then the bulk spin gap is obtained between lowest levels of
total spin �2Sb� and �2Sb+1�, �2Sb,2Sb+1, i.e., once edge states
have been polarized. In the thermodynamic limit, the two Sb
edge states form �2Sb+1�2 degenerate states. Our data are
obtained on finite lengths up to L=32 and we perform a 1 /L
linear extrapolation to get an estimate of the thermodynamic
limit spin gaps. For a small J� /J�=0.1, our data shown in
Fig. 17 indicate successively regions with Sb=1,1 /2,0 and
then in reverse order for increasing �, as had been conjec-
tured initially in Sec. III B.

In order to get more insight in this phase diagram, we
have computed the string order parameter see Eq. �47�� for
several exchange couplings. Data are shown in Fig. 18 and
confirm the existence of even/odd Haldane S phases: a spin-0
phase has a vanishing order parameter already on finite sys-
tems �see � close to 1�; a spin-1 phase has a finite and posi-
tive string order parameter; a spin-2 phase should have a zero
string order parameter but convergence to the thermody-
namic limit is rather slow, as is already known for the spin-2
Haldane chain for instance.51 Note that the string order data
are perfectly consistent with the edge states picture drawn
from the spin gap data. This way, one can draw a quantitative
phase diagram for the spin-2 tube in Fig. 19, which confirms
the qualitative picture conjectured in Fig. 5.

VIII. DISCUSSION AND CONCLUSION

In this paper we have shown that a simple model such as
a three-leg quantum spin ladder can give rise to a very rich
phase diagram. As it is now ubiquitous in quantum spin
chains, integer and half-integer spins must be treated sepa-
rately. For half-integer spins, the Berry phase analysis of Sec.
V C 1 points toward a quantum phase transition between a
gapped spectrum and a degenerate ground state for � close to
1 and a gapless regime on each side of this phase, as it has
indeed being observed for the S=1 /2 case.14 The semiclas-
sical picture of this scenario is a phase transition separating a
gapped isotropic coplanar phase and a pseudocollinear gap-
less regime. Not surprisingly the difference in behavior at
large scales is dictated by the Berry phase terms present in
the action.

For integer spins the situation is even more interesting. If
we consider the strong-coupling regime J�J� it makes no
doubt that 2S quantum phase transitions are expected for a
spin S tube when varying the anisotropy parameter �. These
phase transitions separate gapped phases, and this scenario is
reminiscent of what happens in dimerized spin chains when
varying the dimerization parameter �see, for example, Af-
fleck’s lectures39�.

These phase transitions can be understood in terms of
spontaneous breaking of the hidden Z2�Z2 symmetry. The
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FIG. 17. �Color online� Various spin gaps �ab for the spin-2 tube
as a function of � for J� /J�=0.1. Data are extrapolated to the ther-
modynamic limit from simulations with systems of length L=8, 16,
and 32.
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broken hidden Z2�Z2 symmetry can be detected by a string
order parameter or by edge states with half-integer spin.
While a simple generalization of the string order parameter
to the tube vanishes in the weak rung coupling limit, an
alternative string order parameter remains finite in the same
limit for odd spin S. Additionally, in some regions of the
phase diagram, there exist phases with integer-spin edge
states. Although they appear to be nontrivial phases, they can
be adiabatically connected to a trivial phase with no edge
state. This is consistent with an unbroken hidden Z2�Z2
symmetry in these phases.

More insight into the phase diagram can be obtained with
the recent discussion concerning the characterization of the
Haldane phase.21,22,52 The Haldane phase can remain a dis-
tinct phase separated from a trivial phase by a quantum
phase transition, even when the hidden Z2�Z2 symmetry is
not well defined and the string order parameter is not useful.
It turns out that the Haldane phase is a topological phase
protected by any one of the following three symmetries: �1�
global D2 �=Z2�Z2� symmetry of � rotation about x, y, and
z axes, �2� time-reversal symmetry �for S� j→−S� j�, and �3�
lattice inversion symmetry about a bond center �link parity�.
The hidden Z2�Z2 symmetry is well defined only with the
symmetry �1� above. Most generally, the Haldane phase is
characterized by an exact double degeneracy of the entangle-
ment spectrum.

In this paper, we limited our discussion to the tube with
SU�2� symmetry of spin rotation and all the symmetries �1�–
�3� listed above. Within this limitation, the hidden Z2�Z2
symmetry can be used to characterize the nontrivial phases,
which have edge states with a half-integer spin Sb. On the
other hand, we expect that the phases with the broken hidden
Z2�Z2 symmetry correspond to the generalized Haldane
phase with an exact double degeneracy of the entanglement
spectrum. It is protected by either of the symmetries �2� or
�3�, even when the symmetry �1� is explicitly broken and the
hidden Z2�Z2 symmetry is ill defined. In particular, as long
as the lattice inversion symmetry abound a bond center is
preserved, the generalized Haldane phase is protected as a
distinct topological phase. This protection may be roughly
understood by the intrinsic odd parity with respect to the
lattice inversion associated to an odd number of valence
bonds between the neighboring rungs.22

The above general analysis implies the existence of a
quantum phase transition between a “topological” phase and
a “trivial” phase. However, it does not tell the order of the
transition or its universality class.

For dimerized chains, the NL�M approach shows that the
critical points correspond to an effective half-integer chain
which is described by an SU�2�1 WZNW model. Our analy-
sis of the NL�M in the triangular spin tube has shown that
the situation is different here indicating that we must expect
phase transition of a different kind. Arises then the question
of whether these transition points are expected to be first
order or more interesting critical theories as, for example,
higher levels SU�2� WZNW models.

The case of the S=1 ladder has proven to be a very inter-
esting and instructive example. The low-energy behavior of
this system can be shown to be equivalent to a two-leg spin-
1/2 ladder. This ladder system has two obvious extreme re-

gimes corresponding to a collection of singlet states �strong
antiferromagnetic couplings between the chains� and a
Haldane phase of an effective spin-1 chain �strong ferromag-
netic coupling between the chains�. The most recent
bosonization analysis3 indicates that the transition between
these two regimes can be either first order, or a couple of
�gapless� lines surrounding a dimerized phase. These gapless
lines have central charges c=1 /2 and c=3 /2, this last one
corresponding to a SU�2�2 WZNW model. We have per-
formed extensive DMRG computations on this system. The
analysis of the spectral gap and the von Neumann entropy
tend to indicate a weak first-order transition for our system
but in any case the close proximity to the tricritical point.
This allows us to speculate that by introducing further mi-
croscopic parameters, as, for example, second-neighbor in-
teractions, the transition can be made second order but this
issue is beyond the scope of the present work. This result is
also encouraging for analyzing the nature of the transition for
higher spins with both numerical and novel analytical tech-
niques.

One important point is that many of the results obtained
here generalize to ladders with a higher odd number of legs
displayed with periodic boundary conditions �so in a frustrat-
ing manner�. Of course frustration becomes weaker as one
increase the number of legs. In this sense the three-leg ladder
is a representative of a family of quasi-one-dimensional sys-
tems where frustration plays a crucial role in the emergence
of an interesting physics. Moreover, the interplay of Berry
phases and frustration is a generic feature that promises very
interesting and sometimes surprising results in more general
situations than the one studied here. Interesting physics aris-
ing from the effective action of frustrated magnets can also
show up in two-dimensional frustrated magnets. The quan-
tum mechanical origin of magnetization plateaux in the pres-
ence of a magnetic field53 in either one-dimensional or two-
dimensional systems is another example of this interplay.
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APPENDIX: RG FLOW EQUATIONS

In the following appendix, we give the detailed form of
the renormalization group Eq. �30� for the coupling constants
of the SO�3� field theory Eq. �28��. These equations were
obtained by Mouhanna30 by integrating the quantum fluctua-
tions at a one-loop order,
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dc1

dl
= − g

− c2
3c3

3 + c1
4c3 − c3�2 + c2��3 − 1��2 + c1

2c2c3− c3
2��2

2 − 1� + c2c3�2�2�3 − 1� − c2
2��3

2 − 1��
8c1c2c3��c2 + c3���2 − 1���3 − 1�

,

dc2

dl
= − g�c2

4c3
2 + c1c2

2c3c3
2�1 − 2�2� + 2c2

2��3 − 1�� + c1
2c2

2c3
2�− 1 + �2�2 + �2 − 2�3�� + c2

2��3 − 1�2� − c1
3c3c3

2��2 − 1�2

+ c2
2�− 1 + 2�2 − 2�2�3 + �3

2���/8c1c2c3��c1 + c3���2 − 1���3 − 1�� ,

dc3

dl
= − g�c2

2c3
4 + c1c2c3

2c2
2�1 − 2�3� + 2c3

2��2 − 1�� − c1
3c2c3

2��2 − 1��1 + �2 − 2�3� + c2
2��3 − 1�2� + c1

2c3
2c3

2��2 − 1�2

+ c2
2�− 1 + 2�3 − 2�2�3 + �3

2���/8c1c2c3��c1 + c2���2 − 1���3 − 1�� ,

d�2

dl
= − g�c1

2�c2 + c3���2 − �3���3 − 1� + c3c3
2��2 − 2��2 + c2

2��3 − 1��3 + c2c3��3 − 2�2�3 − 1�� + c1�c2c3�2�1 + �2 − 3�3�

+ c2
2��3 − 1��3 + c3

21 − �2 + 2�2
2 − �1 + �2��3���/4��c1 + c3��c2 + c3���3 − 1�� ,

d�3

dl
= − g��c3 − c1���2 − 1�c2

2 + c1c3�2 + c2�c1 + c3��2� + c1
2�c2 + c3���2 − 1� − 2c2

2�c2 + c3�2� − c1c2�c2 − c3 + c2�2

+ 3c3�2���3 + c2c2
2 + c1�2c2 + c3���3

2�/4��c1 + c2��c2 + c3���2 − 1�� ,

dg

dl
= g2c3�2 − c2��3 − 1��c3 − c3�2 + c2�3�

4��c2 + c3���2 − 1���3 − 1�
.
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