
Topological insulators and Mott physics from the Hubbard interaction

Stephan Rachel* and Karyn Le Hur†

Department of Physics, Yale University, New Haven, Connecticut 06520, USA
�Received 31 March 2010; published 5 August 2010�

We investigate the Hubbard model on the honeycomb lattice with intrinsic spin-orbit interactions as a
paradigm for two-dimensional topological band insulators in the presence of interactions. Applying a combi-
nation of Hartree-Fock theory, slave-rotor techniques, and topological arguments, we show that the topological
band insulating phase persists up to quite strong interactions. Then we apply the slave-rotor mean-field theory
and find a Mott transition at which the charge degrees of freedom become localized on the lattice sites. The
spin degrees of freedom, however, are still described by the original Kane-Mele band structure. Gauge-field
effects in this region play an important role. When the honeycomb layer is isolated then the spin sector
becomes already unstable toward an easy-plane Neel order. In contrast, if the honeycomb lattice is surrounded
by extra “screening” layers with gapless spinons, then the system will support a fractionalized topological
insulator phase with gapless spinons at the edges. For large interactions, we derive an effective spin
Hamiltonian.
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I. INTRODUCTION

Topological insulators embody a new class of topological
states which have attracted great attention recently.1–4 The
key for this flourishing development is the understanding
that spin-orbit interactions can realize topological insulating
phases.5–9 The theoretical prediction of such phases in real
materials10–12 as well as their experimental observations13–19

are responsible for the success of this rapidly developing
field.

A topological insulator exhibits a bulk energy gap �like
ordinary insulators� while the edge �or surface in three di-
mensions� has gapless states which are protected by time-
reversal symmetry. The topological difference between a to-
pological insulator and an ordinary band insulator is
characterized by a Z2 invariant5 which is nonzero in the to-
pological phase. The existence of this topological quantum
number as well as the quantized spin Hall conductivity in-
spired the field,20–31 in particular, it was shown that the to-
pological insulator phase—or in two dimensions also called
quantum spin Hall �QSH� effect—is stable against weak dis-
order and weak interactions.20,26 Inside a topological insula-
tor, Maxwells laws of electromagnetism are altered by an
additional topological term with a quantized coefficient,
which gives rise to interesting physical effects.32,33

A major role has been played by a simple model intro-
duced by Kane and Mele5,6 consisting of a hopping and an
intrinsic spin-orbit term on the honeycomb lattice. The Kane-
Mele �KM� model �without the Rashba term� essentially con-
sists of two copies with different sign for up and down spins
of a model introduced earlier by Haldane.34 Haldane’s pio-
neering work realizes the quantum Hall effect without an
external uniform magnetic field. It breaks, however, time-
reversal symmetry �necessary for the quantum Hall effect�
which can be restored by taking two copies with different
signs for the spins together �as Kane and Mele did�. Origi-
nally they proposed the model as realization of the QSH
effect in graphene5,6 and today it should be seen as a para-
digm, a perfect theoretical model for topological insulator

phases in two dimensions. The honeycomb lattice is defi-
nitely interesting on its own due to the striking development
within the graphene community35 but also more exotic phe-
nomena like zero modes36,37 have been discovered, for ex-
ample. The honeycomb lattice has also attracted some atten-
tion in relation with exotic phases of light and the Jaynes-
Cummings lattice model.38 The additional spin-orbit
interactions now make the difference and are responsible for
the existence of a topological insulator phase.5,6 Conse-
quently, real materials with �strong� spin-orbit interactions
have been attracted particular notice.39–42 It was also shown
that strong nearest- and next-nearest-neighbor repulsions
can imitate the intrinsic spin-orbit interactions such that
QSH phases are stabilized in the absence of spin-orbit
coupling.43–45 Beside mercury telluride quantum wells and
the Kane-Mele model, topological insulating phases in two
dimensions are found to exist in the Kagome lattice46 and the
decorated honeycomb lattice47 provided the presence of spin-
orbit interactions.

Other aspects of topological insulators are disorder-
induced topological phases as predicted for the HgTe quan-
tum wells48,49 and for three-dimensional systems50,51 and the
proposed existence of axions on the surface of bismuth-tin
alloys.32 Axions were postulated more than 30 years ago in
the context of the standard model52 and their effective action
has now been recovered in topological insulators raising
hope to detect this dynamical axion field experimentally.
Moreover, a QSH phase in ferromagnetic graphene was
predicted53 which is protected by the product of charge con-
jugation and time-reversal symmetry. Most recently, a new
family of topological insulators has been discovered54,55 in
ternary Heusler compounds. Their additional open f-shell el-
ement might be the key for the realization of exotic topologi-
cal effects.

Another promising path for the realization of topological
phases and, in particular, QSH phases consists of cold atomic
gases loaded into optical lattices56 which are subjected by a
synthetic magnetic field. Such a field has a similar effect on
the neutral atoms as a magnetic field coupled to electrons
and has been demonstrated experimentally.57 A possible ex-
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periment to realize a topological insulator was proposed
recently.58–61 In this spirit, a realization of a topological band
insulator �TBI� seems to be feasible in the near future with
possibly two major advantages: �i� tuning of the topological
insulator band gap or of the details of the engineered Hamil-
tonian and �ii� availability of onsite interactions �Hubbard
model� with tunable interaction strength.

In this paper, we investigate the Hubbard model with in-
trinsic spin-orbit interactions on the honeycomb lattice which
corresponds to the KM model with interactions. Some as-
pects of the interacting Kane-Mele model were studied in
Refs. 62 and 63. A general theory of interaction effects in
topological insulators has been proposed introducing a topo-
logical order parameter in terms of the full Green’s
function.64 We consider the half-filled case at zero tempera-
ture. While the �noninteracting� KM model is known to re-
alize a TBI phase, it is also expected that for sufficiently
strong electron-electron interactions magnetic order will take
place. Therefore we want to clarify what happens and which
phases are present when adding interactions—ranging from
very weak to very strong. We focus on the dominant phases
at finite spin-orbit coupling. For very weak or no spin-orbit
coupling additional �spin liquid� phases might exist but are
beyond the scope of this paper. First, we show that interest-
ingly the TBI phase subsists up to quite strong interactions.

Then, applying the slave-rotor mean-field procedure, we
investigate the limit of stronger interactions where the charge
degrees of freedom form a Mott insulator whereas the spin
degrees of freedom are described by a renormalized KM
model. In a Mott phase, adding a particle at a given site costs
the Hubbard onsite energy U �in contrast, excitations carry a
well-defined momentum in the TBI phase�. At the mean-field
level, this phase has all the properties of a spin liquid �which
preserves time-reversal symmetry� with gapless spinon exci-
tations at the edges and is characterized by a hidden order
parameter in the spin sector similar to that in the original KM
model.5,43 On the other hand, one should not underestimate
the effect of dynamical compact U�1� gauge fields, especially
in two dimensions.65

In particular, one predicts66 that such a spin liquid phase
�with gapless edge spinons� found at the mean-field level can
only be stable beyond the mean-field limit if other gapless
layers �spinons� are present to screen the gauge field and
suppress the gauge fluctuations. Potential candidates can be
found in Refs. 67 and 68. Furthermore, Mott physics will
suppress the single-particle tunneling at the edges69 such that
the lowest relevant coupling between layers is the usual spin-
spin interaction which may remain irrelevant,66 then preserv-
ing the gapless edge spinons. Phases exhibiting similar spin-
charge separation were also reported in other systems40,41,66

and for topological insulators in the presence of a � flux.70,71

In contrast, if the honeycomb layer is isolated then the pro-
liferation of instantons will fatally result in a Neel ordering
in the XY plane.72,73 The two distinct scenarios at the Mott
transition are reported in Figs. 1 and 2. Following Ref. 66,
fractionalized TI refers to the spin liquid type Mott phase
with gapless spinons which preserves time-reversal symme-
try and spin-density wave �SDW� in the two figures always
refers to the occurrence of a spin-density wave formed in the
XY plane.

For very large interactions, applying a conventional
Hartree-Fock procedure and deriving an effective spin
Hamiltonian, we show that SDW phases with XY ordering
are allowed on the honeycomb lattice when adding the spin-
orbit term.

The paper is organized as follows. In Sec. II we introduce
the KM model, rederive some of its basic properties and
introduce the �Hubbard� interaction we consider throughout
the paper. In Sec. III we apply the Hartree-Fock method in
order to show that a conventional SDW phase with ordering
in the XY plane appears at large U. In addition, we derive an
effective spin model. Then, in Sec. IV, we use a mean-field
approach in momentum space as well as the slave-rotor pic-
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FIG. 1. �Color online� Phase diagram of the isolated honeycomb
layer where the proliferation of instantons produces a Neel order in
the XY plane already in the entrance of the Mott phase. Above the
red dashed line the SDW phase can be described in terms of a
mean-field Hartree-Fock theory whereas below the red dashed line
the easy-plane Neel order emerges as a result of subtle gauge fluc-
tuations beyond the mean-field solution. �The precise nature of the
“transition” associated with the red dashed line is beyond the scope
of this paper.�

0

1

2

3

4

5

6

7

8

9

0 0.2 0.4 0.6 0.8 1

U

TBI

Fractional TI

SDW

λ

FIG. 2. �Color online� Phase diagram in the presence of addi-
tional screening layers �with gapless spinons� allowing to screen the
gauge field and therefore stabilize the fractionalized TI phase found
at the mean-field level. Here, charge degrees of freedom are in the
Mott regime and spin degrees of freedom form a spin liquid with
gapless edge spinons.
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ture to argue that the TBI phase as present in the original KM
model is stable beyond renormalization-group �RG�
results6,74 up to moderate interactions. Then, we apply the
slave-rotor theory of Florens and Georges75–77 and discuss
the intermediate region and the gauge-field effects more
thoroughly.

II. MODEL AND GENERAL CONSIDERATIONS

The KM model5,6 which might be considered as a spinful
version of the Haldane model consists of two parts, a
nearest-neighbor hopping term and a second-neighbor hop-
ping spin-orbit term on the honeycomb lattice,

H = − t�
�ij�

�
�

ci�
† cj� + i� �

��ij��
�
���

�ij����
z ci�

† cj��. �1�

Here ci� is an electron annihilation operator either on sublat-
tice A or B �then denoted by ai� or bi�, respectively� fulfill-
ing the fermionic standard anticommutation relations
�ci� ,cj��

† �=�ij����. As usual t is the hopping integral, � is the
spin-orbit coupling, �ij� denotes nearest-neighbor and ��ij��
next-nearest-neighbor sites, �z is the third Pauli matrix, and
�ij = �1 as discussed below. Throughout the paper we con-
sider the Rashba spin-orbit interaction to be zero. The lattice
vectors of the honeycomb lattice are given by

a1 =
a

2
�3,�3�, a2 =

a

2
�3,− �3� �2�

and shown in Fig. 3. The lattice vectors have the length �3a
while the lattice spacing a is the distance between neighbor-
ing atoms A and B. Note that our notation of the honeycomb
lattice is adapted from the review of Castro Neto et al.35 We
further have the nearest-neighbor vectors

�1 =
a

2
�1,�3�, �2 =

a

2
�1,− �3�, �3 = a�− 1,0� , �3�

which are also shown in Fig. 3. The six next-nearest neigh-
bor vectors �i� are given by �1,2� = �a1, �3,4� = �a2, and �5,6�
= � �a2−a1�. In what follows we set a=�=1. Throughout the
paper N	 denotes the number of unit cells while N is the
number of particles. Hence, the number of lattice sites is 2N	

and at half filling N=2N	. If needed, we refer to the sublat-
tices A and B as 	A and 	B. The previous definitions imply

�
i�	

= �
i�	A

= �
i�	B

= �
k�BZ

= N	. �4�

As a first step we wish to reproduce the energy bands due
to nearest-neighbor hopping and switch to momentum space
via

ci� =
1

�N	

�
k

eikRick�, �5�

which yields

Ht = − t�
�ij�

�
�

�ai�
† bj� + H.c.� �6�

�7�

=�
k�

�lk�
† ,uk�

† �	− 
g
 0

0 
g

�	 lk�

uk�
� . �8�

The function g is given by g�g�k�= t� j=1
3 eik�j. Here we used

the unitary transformation matrix

T0 =
1
�2

g


g

− 1
�2

g


g


1
�2

1
�2

� �9�

to diagonalize Hk via T0
†HkT0=diag�−
g
 , 
g
�. Calculating

�
g
 explicitly results in the well-known tight-binding spec-
trum of the honeycomb lattice

E�k� = � 
g
 = � t�3 + 2 cos��3ky�

+ 4 cos��3ky/2�cos�3kx/2��1/2, �10�

two particle-hole symmetric bands which touch each other at
the six corners of the Brillouin zone �BZ� corresponding to
two inequivalent points. Expanding around these special
points reveals a linear dispersion which gives rise to the
name Dirac points. The positions of two inequivalent Dirac
points which are shown in Fig. 3 are

K = 	2�

3
,

2�

3�3
�, K� = 	2�

3
,−

2�

3�3
� . �11�

Although it is very convenient to expand around the Dirac
points and formulate a Dirac equation on the honeycomb
lattice we will keep throughout the paper the full tight-
binding model. As a second step, we consider the intrinsic
spin-orbit term6 of the KM Hamiltonian �1�. The expression
�ij gives �1 depending on the orientation of the sites. A
formal definition is

Γ
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M
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A B

kx

ky

FIG. 3. �Color online� Left: honeycomb lattice consisting of two
interpenetrating triangular lattices, A �dark blue dots� and B �cyan
dots�, with its lattice vectors a1 and a2 �dashed arrows�. In addition,
the three nearest-neighbor vectors �i �i=1,2 ,3� are shown connect-
ing the two sublattices �solid arrows�. Right: corresponding Bril-
louin zone with the two inequivalent Dirac cones K and K� and the
high-symmetry points 
 and M.
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�ij = �d̂1 � d̂2�z, �12�

where d̂1 and d̂2 are the unit vectors connecting the sites j
and i. Essentially, making a left turn yields “−1” while a
right turn “+1.” Note that hopping from a site of sublattice A
in direction � j� would yield the opposite sign than hopping
from a site of sublattice B in the same direction. Hence we
should keep in mind that �ij�z �where z is again the third
Pauli matrix�.

As we will see below the spin-orbit term opens a gap in
the bulk. For completeness, we notice that other possible
terms which open a gap in the spectrum are different from
the spin-orbit term. Such other terms, like a staggered sub-
lattice potential Hst=�i�ici�

† ci�, where �i=1 on sublattice A
and �i=−1 on sublattice B, result in an ordinary band insu-
lator and not in a topological phase since the gap is spin
independent. The spin-orbit term preserves the original unit
cell. We have shown the corresponding flux configuration per
spin and per sublattice in Fig. 4. The net magnetic flux
through a plaquette is zero following Haldane’s idea.34 The
flux pattern for one of the sublattices corresponds to a trian-
gular staggered flux lattice. Transforming the spin-orbit term
to momentum space leads to

�13�

where �k
†= �ak↑

† ,bk↑
† ,ak↓

† ,bk↓
† � and �zz is understood as a

4�4 matrix, �zz=diag�1,−1,−1,1� ��z for spin and z for
sublattices�.

The bands of the KM model are now obtained by diago-
nalizing the 4�4 matrix of H=Ht+HSO=�k�k

†Hk�k with
the matrix

Hk =
� − g

− g� − �

− � − g

− g� �
� . �14�

Blank entries should be thought as zeros. As the matrix con-
sists of two independent 2�2 matrices, the diagonalization
procedure is identical to Eq. �8� when replacing T0 by T↑ and
T↓. The exact form of the transformation matrices, T↑ and T↓,
is explicitly given in Sec. IV. The single-particle spectrum of
the KM model in the infinite system consists of two twofold-
degenerate energy bands �reflecting the Kramers degen-
eracy�,

E� = � ��k� = � �
g
2 + �2, �15�

which are plotted for several values of � in Fig. 5. The spec-
trum in Eq. �15� is still particle-hole symmetric. An impor-
tant feature is that an infinitesimal value of � opens an in-
finitesimal gap at the Dirac points. For evaluating the gap
size due to the spin-orbit term we know that only the Dirac
points K, K� as well as the zero-energy lines in � play a role
and it is, hence, sufficient to consider these special points. At
the Dirac points, we find

��K� = ��K�� = 3�3
�
 . �16�

At the zero-energy lines of �, we find �without loss of gen-
erality we consider here the line ky =0 only�

Φ−

Φ

3

−

Φ

3

−

Φ

3

−Φ Φ

Φ

Φ

FIG. 4. �Color online� Left: flux configuration per spin and sub-
lattice associated with the intrinsic spin-orbit term. Right: the flux
configuration of one sublattice corresponds to a staggered triangular
flux lattice.
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FIG. 5. �Color online� Energy bands �t=1� of the Kane-Mele
model for �a� �=0.05, �b� �=0.2, �c� �=0.5, and �d� �=1.0. The
“path” through the Brillouin zone is taken as shown in the inset of
�a�.
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��kx,0� = �t2�5 + 4 cos�3kx/2�� � 
t
 . �17�

The minimal value t is reached at the M point of the Bril-
louin zone. We summarize that the dispersion grows linearly
with � at the Dirac points but immediately when the value of
�=1 / �3�3�t is reached, the gap remains constant with a gap
size

� = 2t �� � 0.193t� . �18�

We further consider an ordinary next-nearest-neighbor
hopping term without spin-orbit interaction for reasons
which will become clear in Sec. V. This term is identical to
HSO when omitting i, �, and �ij and replacing ����

z by ����.
Hence we will find a function g2 instead of �,

g2�k� = 2 cos��3ky� + 4 cos��3ky/2�cos�3kx/2� . �19�

In contrast to the spin-orbit term, it breaks particle-hole sym-
metry but does not open a gap at the Dirac points. As already
mentioned this term is not present in the KM model �1� but
will become relevant in Sec. V.

The aim of this paper is to investigate the effect of a local
Hubbard interaction to the KM model: the Hubbard term
reads

HI� = U�
i

ni↑ni↓. �20�

We consider the case of half filling which allows us in prin-
cipal to rewrite the Hubbard interaction as

HI =
U

2 �
i
	�

�

ni� − 1�2
. �21�

This is a particularly convenient formulation for the slave-
rotor theory, we will, however, use form �20� as well. Note
that Eqs. �20� and �21� are identical at half filling.

III. SDW PHASE AT LARGE U

A. Mean-field arguments

In the past, a transition from the semimetal �Dirac liquid�
to a SDW phase has been evidenced in the context of the
ordinary Hubbard model ��=0� on the honeycomb lattice,
when increasing the strength of the onsite interaction. Within
the Hartree-Fock approach, this transition takes place78 at

Ũc=2.23t. Within quantum Monte Carlo �QMC� the transi-

tion was found78 at Ũc�4.5–5t, and by means of dynamical

mean-field theory the transition79 occurs even for Ũc�10t.
While the critical value of the interaction parameter strongly
depends on the used method there is no doubt about the
existence of the SDW phase for strong interactions. The rea-
son for the occurrence of a SDW phase is simply the bipar-
tite nature of the honeycomb lattice.

In this section, we will apply the Hartree-Fock method to

determine the phase boundary Ũc��� at which it becomes
favorable to decouple the Hubbard interaction �Eq. �20�� in
terms of the sublattice magnetizations mi

A= �ai↑
† ai↑−ai↓

† ai↓�
and mi

B= �bi↑
† bi↑−bi↓

† bi↓�,

HI� =
U

4 �
i�	A�	B

��ni↑ + ni↓�2 − �ni↑ − ni↓�2�

�U �
i�	A�	B

�1

4
ni

2 −
1

2
mi�ni↑ − ni↓� +

1

4
mi

2�
=

U

2 �
i�	

�− mA�ni↑
a − ni↓

a � − mB�ni↑
b − ni↓

b ��

+
UN	

4
�mA2

+ mB2
� + c , �22�

where ni=ni↑+ni↓, ni�
a =ai�

† ai�, and U�ini
2 /4=c is a constant

in the SDW phase. The SDW phase at large U implies a Mott
insulating phase for which we can evaluate �ni

2� explicitly.
Indeed, for U→+�, the Mott state is described by the exact
wave function


M� = �
i�	

ai�
† bi�̄

† 
0� , �23�

where � is either ↑ or ↓ while �̄ “points” in the opposite
direction. We find

�M
ni↑
2 + ni↓

2 + 2ni↑ni↓
M� = 1. �24�

Only one of the first two terms contributes depending on the
sublattice site i belongs to; the third term is always zero due
to the definition of 
M�. Hence �ni

2�=1 and c is a constant in
the SDW phase. We further assume that mi

�A/B�=m�A/B�. In
momentum space the mean-field �MF� decoupled Hubbard
interaction reads

HI� = �
k

U

2
�− mAnk↑

a + mAnk↓
a − mBnk↑

b + mBnk↓
b �

+
UN	

4
�mA2

+ mB2
� + c . �25�

While we could keep mA and mB independently, here we will
search only for an antiferromagnetic solution. To be more
precise we are considering only an Ising-type order param-
eter. In principal, one could also treat the full spin-rotational
problem �e.g., within a � model representation�, we expect,
however, no fundamental discrepancies with the simpler ap-
proach used here. In order to find the SDW phase we set

m � mA = − mB. �26�

Hence the mean-field Hamiltonian can be written as

HHF = �
k

�k
†�Hk + Um/2 diag�− 1,1,1,− 1���k +

U

2
N	m2.

�27�

We notice that the mean-field Hamiltonian coincides with the
original KM model when replacing � by �−Um /2 up to
additional constants. Now we write the mean-field free en-
ergy at T=0 as

TOPOLOGICAL INSULATORS AND MOTT PHYSICS FROM… PHYSICAL REVIEW B 82, 075106 �2010�

075106-5



F�m� = �
k

�− 2�
g
2 + �� − Um/2�2� +
Um2N	

2
. �28�

Minimizing the free energy with respect to m yields the fol-
lowing self-consistent equation:

m =
1

N	
�

k

mU/2 − �

�
g
2 + �� − mU/2�2
. �29�

The solution of Eq. �29� provides the phase boundary as
shown in Fig. 6. For �=0 we reproduce the earlier result by

Sorella and Tosatti78 which is Ũc=2.23t. With increasing �

we find that Ũc��� increases. The reader may notice that
formally we should add a Fermi function in Eqs. �28� and
�29� since it may play a role for larger values of m. Here we
focus on the phase boundary only which implies small values
of m and neglect this point.

For the usual Hubbard model �i.e., �=0� on the honey-
comb lattice the occurrence of the SDW phase is not surpris-
ing since we know that on any bipartite lattice an antiferro-
magnetic insulator, the SDW phase, will be favored in the
limit of large U �at least at half filling�. The effective Hamil-
tonian which describes the low-energy behavior of the Hub-
bard model for large values of U / t is the antiferromagnetic
Heisenberg model. It is, however, rather unclear whether the
Mott transition, i.e., the phase transition from a semimetal
into a gapped insulator phase, occurs simultaneously with the
transition from a disordered spin state into the SDW phase.
This unclearness is reflected in a current debate.80–85

While in the early works78 no indication was found for
two separate phase transitions �Mott-Hubbard and magnetic
phase transition�, Lee and Lee80 reported a possible realiza-
tion of the nodal spin liquid directly at the Mott transition.
While Herbut favored a direct semimetal-SDW transition us-
ing a large N approach,81 Hermele82 proposed the stability of
the SU�2� algebraic spin liquid in a small region followed by
a valence bond solid phase. A recent QMC investigation84

rather predicts the existence of a resonating valence bond
�RVB� phase between the Dirac-liquid and the SDW phases.

Within the Hartree-Fock procedure presented above we
cannot answer the question since the SDW order already
implies the Mott phase and does not tell anything about the
question where the phase transition into the Mott phase or in
a spin liquid phase occurs. It is, however, clear that a pos-
sible spin liquid phase must be somewhere below the transi-

tion Ũc=2.23t. The SDW phase is definitely the upper

boundary of such a scenario. The fact that Ũc��� increases at
finite � may be understood from the effective spin model
which we will discuss now.

B. Effective spin model

In what follows we will investigate the behavior of the
spin-orbit term in the strong-coupling limit U→� with t and
� keeping fixed. Similarly to the usual Hubbard model, we
expand the Hamiltonian in powers of t /U. The spin model
can be derived in a systematic way as shown, e.g., in Ref. 86
but essentially we have to consider the second-order process
of the Hamiltonian HSO=���ij���HSO�ij with the additional
prefactor −2 /U. The minus sign respects second-order per-
turbation theory which always lowers the energy,

�HSO�ij�HSO� ji = − �ij� ji�
2�ai↑

† aj↑ − ai↓
† aj↓��aj↑

† ai↑ − aj↓
† ai↓�

=�2	2Si
xSj

x + 2Si
ySj

y − 2Si
zSj

z −
1

2
ninj + ni� .

�30�

Without loss of generality we have considered the hopping
process on sublattice A but there is no difference with the
equivalent process on sublattice B. At half filling and for U
→�, we can assume ni�ni↑+ni↓=1 and neglect the last
terms which are constant. Together with the mentioned factor
−2 /U we find the effective spin model

H̃ = 
J2
�− Si
xSj

x − Si
ySj

y + Si
zSj

z� �31�

with the exchange coupling J2=4�2 /U on a triangular lattice
�where we assume that the sum counts every nearest-
neighbor pair only once�. The spin model then consists of a
XY term which favors ferromagnetic order and a Z term
which favors antiparallel alignment of the spins. From the
nearest-neighbor hopping term we obtain an isotropic anti-
ferromagnetic Heisenberg term with J1=4t2 /U. This term
stabilizes the antiferromagnetic order, i.e., the SDW. The J2
term �more precisely, its z component� competes with the J1
term. This tends to explain the increase in the critical inter-
action to reach the SDW order in the phase diagram, Fig. 6.

On the other hand, the xy component of the J2 term favors
ferromagnetic order in the XY plane on each sublattice.
While the ordering vector might point in any direction when
�=0, we assume that ordering within the XY plane is pre-
ferred immediately when ��0. This can also be seen from
energetic arguments. Once the ground state is XY ordered,
“↑” and “↓” in 
M� refer to the x component of spin. In other
words, Si

z acts like a spin-flip operator. Consequently, any

0

2

4

6

8

10

0 0.2 0.4 0.6 0.8 1

λ

U

SDW

FIG. 6. �Color online� The numerical solution of Eq. �29� is
shown �t=1�. For �=0, we confirm that the SDW transition occurs

at Ũc=2.23t in agreement with the result of Sorella and Tosatti

�Ref. 78�. With increasing �, Ũc increases up to 8.55 at �=1.0. The

fact that Ũc��� increases at finite � may be understood from the
effective spin model.
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operator containing Si
z has a zero expectation value; it par-

ticularly implies that for U→+�, �M
�k��k
†�zz�k
M�=0.

This suggests that the SDW phase �with preferable XY
order� might even persist for J2�J1 which is beyond the
scope of this paper. We conclude this part by making a brief
comparison with the ordinary J1-J2 model on the honeycomb
lattice with J1/2�0. For weak values of J2 /J1, a Néel order is
present. For moderate values of J2 /J1�0.3 a RVB phase was
proposed.87 For stronger frustrations, a valence bond crystal
exhibiting a spin gap is reasonable.87

IV. STABILITY OF TBI PHASE

In this section, we provide several arguments establishing
that the topological band insulator phase present for ��0 in
the original KM model is stable �against Mott physics� not
only for weak interactions6,8,20,26 but also for moderate inter-
actions U� t. We first consider a mean-field approach in mo-
mentum space which shows that the effect of U�2t for �
�0.2t does not affect the insulator phase and, hence, should
be irrelevant for the topological band insulator phase. Then
we introduce the slave-rotor theory of Florens and
Georges75,76 and argue that this provides a rigorous proof
concerning the stability of the TBI phase beyond the pertur-
bative regime. We will discuss both approaches to show that
the obtained results are valid beyond the renormalization-
group method.6 In addition, we will briefly discuss the Z2
topological invariant for the present situation.

A. Mean-field arguments

The tight-binding approach starts—after Fourier
transformation—with the momentum operators for both sub-
lattices �ak� ,bk��. Diagonalization of the tight-binding ma-
trix Hk introduces a new set of operators associated with the
bands. As the spin remains a good quantum number �see,
e.g., Eq. �14��, we call the new operators uk� and lk�, where
u and l refer to upper and lower bands.

The explicit transformation matrices between the sublat-
tice basis �ak� ,bk�� and the band basis �lk� ,uk�� are given by

	ak↑

bk↑
� = 	− �− − �+

�− �+
�	 lk↑

uk↑
� � T↑	 lk↑

uk↑
� �32�

and

	ak↓

bk↓
� = 	�+ �−

�+ �−
�	 lk↓

uk↓
� � T↓	 lk↓

uk↓
� . �33�

We define the functions

�� � ���k� = N�d�, �34�

�� � ���k� = N�, �35�

where

d� =
g�� � ��


g
2
�36�

and

N� =

g


�
g
2 + �� � ��2
. �37�

Note that g, �, � and then also d�, ��, ��, and N� are k
dependent. But for the sake of clarity we omit the k depen-
dence. To give the reader a better idea about �� and ��, we
have plotted 
�−�k�
2 for � / t=1.0 and for � / t=0.2 in Fig. 7.
Let us mention that d� is a complex function and hence ��

while �� is real. Nonetheless, to make the equations more
symmetric, we will use the complex conjugate of �� as well.
Technical aspects and mathematical considerations associ-
ated with the change in basis are presented in Appendix A.
There, we show useful formulas like 
��
2= 
��
2 and obtain
the important result,

�
k�BZ


���k�
2 = �
k�BZ


���k�
2 =
N	

2
. �38�

Now we want to investigate the effect of the Hubbard
term on the topological band insulator state more deeply. For
that purpose, we transform the interaction term into the band
basis. Assuming ��0.2t we know from Eq. �18� that the gap
size �=2t is large and hence we can neglect all terms con-
taining operators of the upper band �since it costs roughly the
energy � to make any process between lower and upper
bands�. Then we decompose the remaining term in a standard
way. Eventually the Hubbard term reduces to a chemical-
potential term, as we will see, where the chemical potential
is given by U /2. The whole procedure does not use any
additional assumptions and works for any interaction
strength U.

HI� = U�
i

ni↑ni↓

=
U

N	
�
kk�q

ak+q↑
† ak�−q↓

† ak�↓ak↑ + bk+q↑
† bk�−q↓

† bk�↓bk↑

�
U

N	
�
kk�q

�A�k,k�,q� + B�k,k�,q��lk+q↑
† lk�−q↓

† lk�↓lk↑, �39�

where we have suppressed all terms containing operators uk�
or uk�

† in the last line. The prefactors A and B are given by

A�k,k�,q� = �−
��k + q��+

��k� − q��+�k���−�k� ,

FIG. 7. �Color online� Exemplarily the function 
�−�k�
2 is
shown in the BZ for � / t=0.2 �left� and � / t=1.0 �right�. The dark
blue region corresponds to a value of zero while the white region to
a value of 1. The function 
�+�k�
2 is identical to 
�−�k�
2 by inter-
change in white and dark blue regions. The black lines mark the
boundary of the BZ and the black dot in the center the 
 point.
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B�k,k�,q� = �−
��k + q��+

��k� − q��+�k���−�k� . �40�

Now the Hubbard term will be decomposed as follows:

lk+q↑
† lk�−q↓

† lk�↓lk↑ � �q0�lk↑
† lk↑�lk�↓

† lk�↓ + lk↑
† lk↑�q0�lk�↓

† lk�↓�

− �q0�lk↑
† lk↑��lk�↓

† lk�↓� . �41�

Then the prefactors reduce to

A�k,k�,q��q0 = 
�−�k�
2
�+�k��
2,

B�k,k�,q��q0 = 
�−�k�
2
�+�k��
2. �42�

We find the MF-decoupled interaction term in the new basis
where we assume �nk�

l �= �lk�
† lk��=1 for �= ↑ ,↓ since the

lower band is completely filled. Therefore, we get

HI� � �
kk�

U

N	

�A�k,k�,0�nk↓
l + A�k�,k,0�nk↑

l + B�k,k�,0�nk↓
l + B�k�,k,0�nk↑

l − B�k,k�,0� − A�k,k�,0��

=U�
k
	
�−�k�
2

1

N	
�
k�


�+�k��
2nk↑
l + 
�+�k�
2

1

N	
�
k�


�−�k��
2nk↓
l

+ 
�−�k�
2
1

N	
�
k�


�+�k��
2nk↑
l + 
�+�k�
2

1

N	
�
k�


�−�k��
2nk↓
l � − UN	/2

=
U

2 �
k

��
�−�k�
2 + 
�−�k�
2�nk↑
l + �
�+�k�
2 + 
�+�k�
2�nk↓

l � = �
k

�effnk
l �43�

with the effective chemical potential �eff=U /2 and nk
l =nk↑

l

+nk↓
l . In the last line of Eq. �43�, we have dropped the con-

stant term. For ��0.2t, as the gap always spans from −t to t,
we conclude that as long as U�2t the effective chemical
potential lies in the gap, i.e., the U term does not affect the
TBI gap. Thus we can assume that the physics in the KM
model will be unchanged and consequently the edge modes
persist �they will be described by the helical Luttinger liquid
theory as a result of interactions24�.

B. General slave-rotor arguments

Now we will apply the slave-rotor formalism which al-
lows to address correlated electron systems at weak up to
moderate interactions. The method has been introduced by
Florens and Georges;75,76 we also refer the reader to the re-
view by Zhao and Paramekanti.77

Within this approach,75–77 the original fermion operators
will be rewritten by a product of a fermionic operator f i�, the
spinon or auxiliary fermion, and a phase factor ei�i, the rotor,

ci� = ei�i f i�. �44�

The idea is that the original fermions c� are represented by a
collective phase degree of freedom � �conjugate to the total
charge� and auxiliary fermions f�. Introducing an additional
variable, the angular momentum L� i�� associated with a
quantum O�2� rotor �, simplifies then the original quartic
interaction between the fermions as it is replaced by a simple
kinetic term �L2. State vectors in the new Hilbert space
should have the form 
��= 
� f�
���. The price we have to
pay for the whole rewriting of the original problem is that the
new Hilbert space is enlarged compared to the original one

since unphysical states are present. To resolve this problem
we have to impose a constraint,

�
�

f i�
† f i� + Li = 1. �45�

Since the original fermion operators fulfill anticommutation
relations also the spinon �or auxiliary fermion� operators do
so. The reader may notice that in the rotor condensate phase
the original electron and spinon operators are proportional,
and one will find a situation where the spinon band structure
describes physical electrons. In contrast, when the rotor is
uncondensed, there is spin-charge separation and the spinons
are emergent charge-neutral quasiparticles carrying spin
only. The term “spinon” should not imply that the particles
associated with the new f operators obey fractional statistics
in the spirit of the elementary excitation of the one-
dimensional Heisenberg antiferromagnet.

Rewriting the hopping term Ht yields

Ht = − t�
�ij�

�
�

�f i�
a†f j�

b e−i�ij + H.c.� , �46�

where fa/b refers to sublattice A/B and �ij ��i−� j. The spin-
orbit term HSO has a similar form,

HSO = i� �
��ij��

�
���

�ij����
z f i�

† f j��e
−i�ij . �47�

Rewriting the Hubbard term �Eq. �21�� which is local
yields

STEPHAN RACHEL AND KARYN LE HUR PHYSICAL REVIEW B 82, 075106 �2010�

075106-8



HI =
U

2 �
i
	�

�

ni�
f − 1�2

=
U

2 �
i

Li
2, �48�

where we have used the constraint and ni�
f = f i�

† f i�.
Without proceeding further, the introduced formalism al-

ready allows to readoff the following results. The Hubbard
interaction U affects the rotor sector only. As long as U� t
the rotors will condense favoring the uniform ansatz �ij =0. It
implies that the auxiliary fermions f i� behave like the origi-
nal electrons since exp��i�ij�=1 far away from the phase
transition. Superfluid or Bose-condensed phases are known
to be robust �roughly up to U� t�. We can assume, hence,
that the superfluid phase of the rotors also persists against
moderate interactions before the phase transition in the insu-
lating phase occurs. Both approaches presented in this sec-
tion are beyond RG arguments �the perturbative regime�.
Here, we have chosen to rewrite the Hubbard term in the
rotor variables.

In the seminal paper by Kane and Mele6 the stability of
the TBI phase is briefly discussed. The derived RG equations
indicate that additional Coulomb interactions increase the
spin-orbit gap size and does not destroy the TBI phase. The
RG procedure, however, is only applicable in the perturba-
tive regime where t�U ,�. In contrast, the arguments pre-
sented here provide evidence that for ��0.2t the TBI phase
is stable up to U� t �against the Mott phase� reaching the
strongly interacting regime. As a last point we shall mention
that the shown stability of the TBI phase implies also the
stability of the edge modes �which are described by the he-
lical Luttinger liquid theory as a result of interactions24�.

In Appendix B we present the slave-rotor approach using
a simple approximation to decompose Eq. �46�. We will re-
strict ourselves to the case �=0. When performing the mean-
field procedure it turns out that the used approximation leads
to results which are not so reliable in finite dimensions.
Therefore, in Sec. V, we will apply the � model representa-
tion of the slave-rotor theory to find the transition for finite
spin-orbit coupling where the rotors undergo a quantum
phase transition from superfluid to Mott insulating phase.
Before we address this issue, we briefly discuss the stability
of the TBI phase in the context of Z2 invariants.

C. Z2 invariants

For the �noninteracting� KM model considered here, there
exists in principle two nontrivial topological invariants, the
spin-Chern number of Sheng et al.21 and the Z2 invariant
proposed by Kane and Mele.5,6 The spin-Chern number can
be evaluated by integrating the Berry curvature of a fiber
bundle obtained by imposing twisted boundary conditions.21

The procedure demonstrated in Ref. 21 implied that the spin-
Chern number is a robust topological invariant. Essentially
the idea is that the system conserving Sz decouples into two
independent Hamiltonians for the up and down spins, each
Hamiltonian is characterized by a Chern integer. While the
sum of the Chern integers is zero due to time-reversal sym-
metry, its difference defines a quantized spin Hall
conductivity.2,21 The Z2 invariant is then given by half the
difference of the Chern integers �i.e., the spin-Chern number�

modulo 2. Here we will choose another way and calculate
the Z2 invariant directly for the KM model. We follow Fu
and Kane11 and briefly adapt the calculation of the invariant
for the sake of completeness.

To compute the Z2 invariant it is important to keep the full
tight-binding model; in this section, we use the notations of
Ref. 11. We express the matrix Hk of Eq. �14� in terms of 

matrices,

Hk = �
a=1

5

da�k�
a, �49�

where the five 
a matrices are given by 
1=x � I, 
2=y

� I, 
3=z � �x, 
4=z � �y, and 
5=z � �z. The coeffi-
cients d1 and d2 are essentially real and imaginary parts of g
�more precise, real and imaginary parts of exp�−ik�3�g�, re-
spectively, and d5=�. d3 and d4 are both zero. In addition to
the five 
a matrices, there are also their ten commutators

ab= �
a ,
b� / �2i�. Their anticommutators 
a
b+
b
a

=2�ab obey the Clifford algebra. The parity operator is de-
fined as

P = x
� I = 
1. �50�

Obviously, inversion P interchanges the sublattices �� but
not the spin ���. The time-reversal operator T is defined by

T = i�I � �y�K , �51�

where K denotes complex conjugation. The Dirac matrices
are chosen to be even under PT, PT
a�PT�−1=
a while the
commutators are odd under PT. Note that all 
a are odd
under P and T except 
1 which is even. Time-reversal and
inversion symmetries imply that the product PT commutes
with the Hamiltonian. The only time-reversal invariant points
of the BZ which have to fulfill for a reciprocal-lattice vector
−�i=�i+G are given by

�i =
1

2
�n1b1 + n2b2� �52�

with ni=0,1. We define �1 as the 
 point of the BZ �i.e.,
k= �0,0��, �2= 1

2b1, �3= 1
2b2, and �4= 1

2 �b1+b2�, where the bi
are the reciprocal-lattice vectors of the honeycomb lattice as
shown in Fig. 8. The latter three points are usually referred to
as M points. The Z2 invariants characterizing the occupied
band are determined11 by

�i = − sign�d1��i�� . �53�

The Z2 invariant �=0,1 which distinguishes a topological
band insulator in two dimensions from a conventional band
insulator is given by the product of all �i,

�− 1�� = �
i=1

4

�i. �54�

Since we can write d1�k�= t�1+cos�ka1�+cos�ka2�� and use
aib j =2��ij, we find d1��1�=3t, d1��2�=d1��3�= t, and
d1��4�=−t. Thus �1=�2=�3=−1 and �4=+1 which implies
by virtue of Eq. �54�
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� = 1. �55�

In fact, a nonzero Z2 invariant implies a topological band
insulator phase provided there is an energy gap throughout
the BZ. In particular, the argument with invariants is a
single-particle picture argument.28

As the mean-field interacting Hamiltonian has been re-
duced to a single-particle Hamiltonian �which leaves d1 un-
changed� the argument based on Z2 invariants is applicable
as long as the spin-orbit gap is present. The band Hartree-
Fock approach has precisely shown that the Hubbard term
behaves as a chemical potential which lies between the bands
as long as 
U
�2t. Thus we have substantiated our earlier
statement that the TBI phase and the presence of edge modes
will be stable up to a region beyond the perturbative regime.

V. MOTT TRANSITION

Now we will use the slave-rotor mean-field theory75,76 to
find the transition where the charge degrees of freedom form
a Mott insulating state �and not a band insulator�.

A. Self-consistency equations

In contrast to the approximation in Appendix B we will
use a more sophisticated approach75,76,80 in order to find the
transition to the Mott phase. We replace the phase field rep-
resenting the O�2� degree of freedom by a complex bosonic
field X=ei� which is constrained by


X��
2 = 1. �56�

The associated Lagrange multiplier is called �. The deriva-
tion of the Lagrangian and the decomposition of hopping and
spin-orbit terms is shown in Appendix C. The mean-field
parameters associated with the decomposition are given by

QX = ��
�

f i�
a�f j�

b � , �57�

Qf = �exp�− i�ij�� , �58�

for the hopping term and

QX� = ��
���

i�ij����
z f i�

� f j��� , �59�

Qf� = �exp�− i�ij�� , �60�

for the spin-orbit term. Finally we find the imaginary time
Green’s function for the f�

l fields,

Gfl =
1

i�n − �k
, �61�

and for the X fields,

GX =
1

�n
2/U + � + �k

. �62�

Here we introduced the renormalized KM spectrum for the
spinon sector,

�k = ��Qf
g
�2 + �Qf���2, �63�

and defined

�k = − QX
g�k�
 + QX��g2�k� , �64�

with g2 from Eq. �19�. Note that we consider only the half-
filled case here which allowed us to set �=h=0. In the ab-
sence of spin-orbit coupling, �→0, we find �k→Qf
g
 and
�k→−QX
g
 and recover, hence, the Green’s function from
Florens and Georges76 �when setting  �−
g
�. From there,
we find directly the five self-consistency equations,

1 =
1

N	
�

k

1

�
�

n

GX�k,i�n�

=
U

N	
�

k

1

��g
2 + 4U�� − min��k��

. �65�

In Eq. �65� we performed the evaluation of the Matsubara
sum at zero temperature �see Appendix D� and we introduced
the insulating gap

�g = 2�U�� + min��k�� . �66�

While �g is nonzero in the insulating phase, directly at the
phase transition it will vanish since the rotors condense. Be-
fore we can use Eq. �65� to find the transition line, we have
to know the explicit form of �k and hence of QX and QX� . The
latter two mean-field parameters are determined by use of the
�second and third� self-consistency equations. We start with
QX,

t�
j=1

3

�
�

�f i�
a†f j�

b � =
1

N	
�
k�

g�k��fk�
a† fk�

b �

=
1

N	
�

k
g�− �−

��− + �+
��+��fk�

l† fk�
l �

=
1

N	
�

k


g
2

�
g
2 + �2
. �67�

Due to the lattice symmetry, the sum over the three-nearest
neighbors, � j=1

3 , just appears as a factor 3 in the final expres-
sion. Thus we find the mean-field parameter

Γ

M

M

M

1

2
b1

1

2
b2

FIG. 8. �Color online� Brillouin zone with the four time-reversal
invariant momenta 
 and M. In addition, the reciprocal-lattice vec-
tors �with half of their length� are shown �red arrows�.
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QX =
1

3tN	
�

k


g
2

�
g
2 + �2
. �68�

We have plotted QX as a function of � in Fig. 9.
In a similar way we proceed in order to find QX� ,

��
j=1

6

QX� = ���j
�
���

i�ij����
z f i�

� f j��
=

1

N	
�

k
���k

†�zz�k�

=
1

N	
�

k
��
�−
2 − 
�+
2 − 
�−
2 + 
�+
2�

=−
1

N	
�

k

2�2

�
g
2 + �2
. �69�

Again the lattice symmetry is responsible for the fact that the
sum over the next-nearest neighbors, � j=1

6 , can be replaced
by a factor 6. Then the self-consistency equation reads

QX� = ��
���

i�ij����
z f i�

� f j��
=−

1

3�N	
�

k

�2

�
g
2 + �2
= − 
QX����
 .

�70�

We have plotted QX� as a function of � in Fig. 10. With the
knowledge of QX and QX� finally the rotor spectrum �k of Eq.
�64� is well defined and we can proceed with Eq. �65�. If one

moves toward the transition from the Mott insulator to the
superfluid phase of the rotors, the rotor gap �g must close. It
yields

Uc��� = � 1

2N	
�
k�

1
��k − min��k��−2

, �71�

which defines the transition line between TBI and the EMI
phase as shown in the phase diagram, Fig. 1. The sum over
k� means that formally the lowest bound corresponds to k
→kmin+!, !"1, and kmin is associated with the minimum of
�k. Hence, no divergence appears in the sum. A formal jus-
tification to cut the sum can be given by switching to “energy
space” and considering the density of states. The same line
of argument applies to Eqs. �73� and �75�.

As a last point we have to consider Qf and Qf� and its
behavior along the line Uc���. Applying the same line of
reasoning as for QX we directly find

Qf = �Xi
�Xj�
ijnn. =

1

N	
�

k
eik���Xk

a�Xk
b�

=
1

N	
�

k


g

6t

1

�
�

n

GX�k,i�n�

=
1

N	
�

k


g

6t

U

2�U�� + �k�
. �72�

Here �� denotes one of the three nearest-neighbor vectors.
Along the transition line we have �g=0 and obtain

Qf
c��� =

�Uc���
6tN	

�
k�


g

��k − min��k�

. �73�

It turns out that Qf
c is a slowly varying function of �. We

have plotted it in Fig. 11.
The last self-consistency equation determines Qf�.

Qf� = �Xi
�Xj�
ijnnn

=
1

N	
�

k
eik��� �Xk

�a/b��Xk
�a/b��

=
1

N	
�

k
eik���

1

2��
n

GX�k,i�n�

0.4

0.44

0.48

0.52

0 0.2 0.4 0.6 0.8 1

QX

λ

FIG. 9. �Color online� Numerical solution of the mean field Eq.
�68�. The behavior of QX��� is shown �t=1�.
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FIG. 10. �Color online� Numerical solution of −�QX� �red curve�
and −QX� �blue curve� as a function of � �t=1� is shown.
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FIG. 11. �Color online� Numerical solution of Qf
c���, i.e., Qf

along the line Uc���, as a function of � �t=1� is shown.
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=
U

2N	
�

k
eik���

1

2�U�� + �k�
, �74�

with ��� being one of the six next-nearest-neighbor vectors.
Thus we find Qf� along the Mott transition,

Qf�
c��� =

�Uc���
2N	

�
k�

eik���

��k − min��k�
, �75�

which we have plotted in Fig. 12. From Figs. 11 and 12 we
see that Qf

c and Qf�
c behave similarly but Qf

c is �roughly�
three times larger than Qf�

c.

B. Discussion

In Fig. 13, we show the spectrum of the noninteracting
KM model for �=0.2 as well as the renormalized spinon
spectrum for Uc��=0.2�. The geometry we considered is a
stripe with 14 unit cells in y direction while the stripe is
infinitely long in x direction. Here we see that interactions
contribute through Qf and Qf� such that the bulk spin gap is
decreased compared to the TBI phase.

At the mean-field level, spin-charge separation will occur
and, while the charge is frozen in the Mott insulating state,
the spin degrees of freedom will exhibit a Hamiltonian remi-
niscent of the KM model. In particular, this implies the ex-
istence of gapless edge spinons. In this sense this gives rise
to the fractionalized TI mentioned in Sec. I �Ref. 66� or a
“topological Mott insulator” as Pesin and Balents41 did. Note
that the topological Mott insulator phase has a different

meaning than in the work of Raghu et al.43 where the topo-
logical band insulator phase was caused by strong interac-
tions. On the other hand, as already mentioned in Sec. I, U�1�
gauge fields associated with the lattice theory,80 see also Ap-
pendix E, cannot be ignored in two dimensions. In particular,
to stabilize the fractionalized TI beyond the mean-field level,
one requires extra layers supporting gapless spinons allowing
to screen the gauge field.66 �The stability of spinon excita-
tions at the edges results from the fact that single-particle
tunneling is suppressed as a result of Mott physics.69� This
also implies that in the context of an isolated �single� honey-
comb layer the fractionalized TI is unstable to instanton pro-
liferation and to easy-plane Neel ordering.72,73

Let us assume that conditions are realized such that the
fractionalized TI is stable against gauge fluctuations. Then,
we can be even more precise when focusing on the spinon
bulk sector. We can write for the corresponding ground-state
wave function,


� f� = �
k�=↑,↓

fk�
l† 
0� , �76�

i.e., the lower band −�k �see Eq. �63�� is completely filled.
The explicit knowledge of 
� f� allows us to calculate the
expectation value of the z component of spin,

�� f

1

2
�ni↑

f − ni↓
f �
� f� =

1

2N	
�

k
�� f
�
�−
2fk↑

l† fk↑
l

− 
�+
2fk↓
l† fk↓

l �
� f�

=
1

2N	
�

k
�
�−
2 − 
�+
2� = 0. �77�

In the last line we have used Eq. �38�. In the same way, we
can easily check that �Si

x�=0. At the mean-field level, we can
also calculate the spin-spin correlation functions �Si

+Sj
−� for i

and j on the same sublattice or on different sublattices. We
show the former case explicitly,

�Si
+Sj

−� = �� f
f i↑
a†f i↓

a f j↓
a†f j↑

a 
� f�

=	 1

N	
�
k1

e−ik1�Ri−Rj�
�−�k1�
2�
� 	 1

N	
�
k2

eik2�Ri−Rj�
�+�k2�
2� ,

�78�

which we can evaluate numerically and find that the correla-
tions decay to zero on very short distances. In fact, when the
distance 
Ri−R j
 reaches roughly four unit cells, the correla-
tions are already smaller than 10−6. A similar calculation for
both i and j on sublattice B as well as i and j on different
sublattices reveals comparable results. We expect that the
one-dimensional character of spinon excitations at the edges
gives rise to power-law spin-correlation functions. Other ex-
otic spin liquid phases may be found in the vicinity of a Mott
state.88
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FIG. 12. �Color online� Numerical solution of Qf�
c��� as a func-

tion of � �t=1� is shown.
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FIG. 13. �Color online� Left: spectrum ��̃�kx� of the KM model
on a stripe geometry as explained in the text for �=0.2 and t=1.

Right: spectrum ��̃�kx� of the spinon sector for the same param-
eters at the critical line Uc��=0.2�. The hopping and spin-orbit
amplitudes are renormalized with Qf

c=0.68 and Qf�
c=0.26. The til-

des refer to the finite stripe geometry in contrast to the spectra of
the infinite system.
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The only “hidden” order which seems to be present is
reflected in �� f
�k�#k

†�zz#k
� f��0 being a remnant of
the TBI phase; here we have introduced the corresponding
vector #k

†= �fk↑
a† , fk↑

b† , fk↓
a† , fk↓

b†�.
In the phase diagram of Figs. 1 and 2 the region above the

TBI phase has to be handled with care for 0���0.1t and is
beyond the scope of this paper. In particular, in the absence
of spin-orbit coupling ��=0�, mean-field slave-rotor tech-
niques predict a Mott insulator with gapless spin
excitations.80 In the limit �→0 we recover the earlier result
of Lee and Lee,80 i.e., Uc=1.68t. On the other hand, in a
recent QMC study it was shown84 that the intermediate phase
for �=0 is a RVB spin liquid in contrast to Refs. 80 and 82.

While we have clarified the question what the effect of a
Hubbard onsite interaction is one could also consider
nearest- and next-nearest-neighbor repulsion with amplitudes
V1 and V2. Such a model in absence of spin-orbit coupling
was investigated by Raghu et al.43 From the band Hartree-
Fock approach presented in Sec. IV we see, however, that the
effect for small V1 and V2 is negligible. This is in correspon-
dence with Ref. 43 where strong nearest- and next-nearest-
neighbor interactions are required to reach QSH phases while
weak interactions leave the semimetal unchanged. As the in-
trinsic spin-orbit interaction already opened a gap, V1 and V2
should be of the same order to affect the phase diagram. As
large values of V1 and V2 are in the model under consider-
ation somewhat unphysical, we can conclude that additional
weak nearest- and next-nearest-neighbor interactions are
negligible for the KM model.

VI. CONCLUSION

We have investigated the Kane-Mele model in the pres-
ence of a Hubbard interaction as a paradigm for two-
dimensional topological insulators with interactions. Using a
mean-field procedure and arguments from the slave-rotor
theory, we have shown that the TBI phase characterized by a
Z2 topological invariant is stable �against Mott phases� up to
moderate interactions which are beyond the perturbative re-
gime. The topological band insulator phase is separated from
a Mott insulating region through Uc���.

At the mean-field level, charge constituents become fro-
zen in the Mott state while the spin constituents form a quan-
tum spin liquid with gapless edge spinons �preserving the
time-reversal symmetry�. Even though this fractionalized TI
phase is unstable against gauge fluctuations in the isolated
honeycomb lattice system,72,73 the vicinity of other screening
layers exhibiting gapless spinon excitations66 would allow to
stabilize such a phase of matter in �quasi-�two-dimensional
systems. For very large onsite interactions, the fractionalized
TI phase inevitably turns into a SDW phase with XY order-
ing.

For very weak spin-orbit interactions, other insulating
phases reminiscent of the “gapless Mott insulator” phase of
Pesin and Balents41 might exist. It remains an open question
if such a possible phase might be connected with the ex-
pected spin liquid phase for �→0.
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APPENDIX A: BAND BASIS

In this appendix, we present some supplementary material
concerning the band basis which was introduced in Sec. IV.
First, let us check that T↑

†T↑=T↑T↑
†=1 and T↓

†T↓=T↓T↓
†=1. We

find the diagonal elements 
��
2+ 
��
2=1 which can be eas-
ily checked. The off-diagonal elements are given by

�−
��+ + �−

��+ = N−N+�d−
�d+ + 1�

=N−N+	�2 − �2 + 
g
2


g
2 � = 0. �A1�

We will further need the following expressions:

N+N− =

g

2�

and N�
2 =


g
2

2��2 � ���
. �A2�

In the above transformations the limit g→0 should be
handled with care as the original eigenvectors diverge. This
is a consequence of the fact that the matrix Hk is already
diagonal for t=0. To consider the case with �=0, we recover
the transformation matrix �9� from Sec. II,

lim
�→0

T↑ = lim
�→0

T↓ = T0. �A3�

In order to prepare the following part of the section, we have
to show explicitly that �k
���k�
2=�k
���k�
2=N	 /2. One
can show that 
��
2= 
��
2 �which implies 
�+
2+ 
�−
2=1�
and it is sufficient to consider 
��
2 in the following. First
we show that 
���k�
2+ 
���−k�
2=1 and then we argue
that the result follows directly. By using 
g�−k�
= 
g�k�
,
��−k�=��k�, and ��−k�=−��k� we could calculate 
���k�
2
+ 
���−k�
2=1 explicitly. This is not necessary since the only
thing we have to show is


�−�k�
2 = 
�+�− k�
2. �A4�

By looking at the definition of �� and using ��−k�=−��k�,
Eq. �A4� turns out to be correct. Now we have to divide the
BZ into two parts, e.g., as follows: BZ=K1�K2 with K1

= �k� �− 2�
3 ,0�� �− 4�

3�3
,0�� and �k� �0, 2�

3 �� �− 4�
3�3

,0�� while
K2 contains the remainder of the BZ such that K1�K2=0.
This ensures that k�K1 implies −k�K2 and vice versa.

Hence we can split the sum over the BZ as

�
k�BZ


���k�
2 = �
k�K1


���k�
2 + �
k�K2


���k�
2

= �
k�K1

�
���k�
2 + 
���− k�
2�

= �
k�K1

1 = N	/2. �A5�
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APPENDIX B: SIMPLE SLAVE-ROTOR
MEAN-FIELD THEORY

In this appendix, we perform a simple mean-field decom-
position for the KM model with Hubbard interactions which
is rewritten in spinons and rotors. Starting from Eqs. �46�
and �47�, adding the rewritten interaction term HI
=U /2�iLi

2, we assume that state vectors in the Hilbert space
should have the form 
��= 
� f�
���. Decoupling the rotor
and fermion variables and treating the constraint by introduc-
ing a Lagrange multiplier h, we obtain effective Hamilto-
nians for spinon and rotor sector,

H f = − �
�ij��

tij
efff i�

a†f j�
b + i �

��ij��
�ij

eff�
���

�ij����
z f i�

† f j��

− �� + h��
i�

f i�
† f i�, �B1�

H� = − �
�ij�

Jij
eff cos��ij� + �

��ij��
Gij

eff cos��ij� + �
i
	U

2
Li

2 + hLi� .

�B2�

In the spinon sector we recover the original KM model ex-
pressed in f� operators rather than c� operators while the
rotor sector corresponds to a quantum-XY-like model for the
phase variables. The effective amplitudes are determined by
the following self-consistent equations:

tij
eff = t�cos��ij���, �B3�

�ij
eff = ��cos��ij���, �B4�

Jij
eff = t�

�

�f i�
a†f j�

b � f , �B5�

Gij
eff = ��

���

�i�ij����
z f i�

† f j��� f . �B6�

The expectation values are taken with respect to 
� f� or

���, respectively. In the following, we show the main steps
in finding the self-consistency equations and the phase tran-
sition within this simple approach. In fact, it is the analogous
calculation for the honeycomb lattice to Secs. IIIB2 and
IIIB3 of Ref. 76 for cubic lattices. We restrict ourselves to
the case �=0; the Hamiltonian H f reads in momentum space

H f = − �
k�

�fk�
a† , fk�

b†�	� + h Zg

Zg� � + h
�	 fk�

a

fk�
b � . �B7�

Here we decomposed the expectation value simply as
�cos��i−� j����cos ��2=Z. By diagonalization of the matrix
in Eq. �B7� we obtain the upper and lower bands,

 � = � Z
g
 − �� + h� . �B8�

We stress again that our constraint is differently chosen com-
pared to Ref. 76 where it is given by ��f i�

† f i�−L=1. In the
constraint used in this paper the L term appears with a posi-
tive sign. The difference is due to the different definition of
the fermions in term of spinons and rotors, see Eq. �6� of

Ref. 76. Now, the Lagrange multiplier h is defined from the
following constraint equation:

�L�� = − �
�
	�f i�

† f i�� f −
1

2
� . �B9�

To proceed further, we treat H�, which corresponds to a
quantum-XY model, at the mean-field level. The applied ap-
proximation, cos��ij��2 cos��i��cos�� j��−const, reduces the
rotor Hamiltonian to a mean-field Hamiltonian of indepen-
dent sites,

HMF
� = H0 + HI = �

i
	U

2
Li

2 − hLi� + �
i

K cos �i.

�B10�

Here the coupling constant K is given by

K = − 2t�
�

�
j

�f i�
a†f j�

b � f�cos � j��. �B11�

As long as we are in the rotor-condensed phase, we can
assume �cos � j���cos �� which allows us to evaluate K,

K = 2�cos ���
�

1

N	

�− t��
k

�g/t��fk�
a† fk�

b �

=4�cos ��
1

N	
�

k
− g

g�

2
g

�fk�

l† fk�
l �

=2
1

N	
�

k
− 
g
�cos �� � 2 ̄�1/2��cos �� . �B12�

The matrix elements in the previous equation are easily cal-
culated using the definitions of Sec. IV,

�fk�
a† fk�

b � = �− �−
��−�lk↑

† lk↑� =
�→0 1

2

g�


g

,

�+
��+�lk↓

† lk↓� =
�→0 1

2

g�


g

.� �B13�

We define the half bandwidth D=3t for the honeycomb lat-
tice and find numerically the result

D�
�

�f i�
a†f j�

b � = 
�̄�1/2�
 � 1.57. �B14�

Now let us consider Eq. �B9�,

�L� = − �
�
	�f i�

† f i�� −
1

2
�

=− �
�
� 1

N	
�

k
	1

2
�fk�

l† fk�
l � +

1

2
�fk�

u† fk�
u �� −

1

2�
=− 2	1

2
−

1

2
� = 0, �B15�

where we assumed that the lower band is completely filled
while the upper band is empty. Also, since we still assume
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the half-filled case, Eq. �40� of Ref. 76 is easily

n =
1

2�
�

�f i�
† f i�� =

1

2�
�

1

2
=

1

2
. �B16�

This is equivalent to set �+h=0. Thus, we can also intro-
duce �0�n� which is defined as

�0�n� =
h + �

Z
→

half filling

0. �B17�

Similar to Ref. 76 we obtain the Green’s function

Gfl�k,i�n�−1 = i�n − Z�k. �B18�

As a last step �cos �� has to be calculated. Following Ref. 76
we calculate it in first-order perturbation theory in K. We
start with �cos ��= �$ln

�1�
cos �
$ln
�1��, where


$ln
�1�� = 
ln� + �

l�ln

�l
cos �
ln�
Eln

− El

l� . �B19�

To first order in K only the “mixed” element contributes

�cos �� = 2K �
l�ln


�l
cos �
ln�
2

Eln
− El

. �B20�

The energies are given by El=1 / �2U��UL+h�2+const and
the matrix elements by 1

4 
�l
ei�+e−i�
ln�
2= 1
4 ��l,ln−1

+�l,ln+1
�.

Altogether we find the result

�cos �� = −
2K

U
, �B21�

which is in agreement with Ref. 76 at half filling. Then we
substitute �cos �� in Eq. �B12� and obtain finally

Uc = − 4�̄�1/2� = 4
�̄�1/2�
 . �B22�

By means of Eq. �B14� we find the phase transition at

Uc
� � 6.30t , �B23�

which should be considered as the correct result in d=�
dimensions. In this appendix, we used a simple mean-field
approximation with the severe restriction Z= �cos��ij��. This
approximation might be justified in large dimensions. There-
fore, we can assume that the result Uc

� is exact in d=�.

APPENDIX C: DERIVATION OF GREEN’S
FUNCTIONS

In this appendix, we pedagogically show all the relevant
steps starting from the slave-rotor Hamiltonian to the
Green’s functions. We have omitted this part in Sec. V for
the sake of clarity. The slave-rotor Hamiltonian reads

H = − t�
�ij�

�
�

�f i�
a†f j�

b e−i�ij + H.c.�

+ i� �
��ij��

�
���

�ij����
z f i�

† f j��e
−i�ij − ��

i,�
f i�

† f i� +
U

2 �
i

Li
2,

�C1�

where we still have to fulfill the constraint Eq. �45� with the

Lagrange multiplier h. Then, the action is built from

S0 � �
0

�

d�− iL�� + H + f†�f� , �C2�

where the first two terms correspond to the Legendre trans-
form between H and L and we are switching from phase and
angular momentum operator �� ,L� to fields �� ,���. Here L
and �� are related as follows:

i�� =
�H
�L

, �C3�

which yields L= �i /U���. We obtain the action

S0 = �
0

�

d��
i�

f i�
� �� − � + hi�f i� +

1

2U
�

i

���i + ihi�2

+ �
i
	− hi +

hi
2

2U
� − t�

�ij�
	�

�

f i�
a�f j�

b e−i�ij + c.c.�
+ � �

��ij�� 	����

i�ij����
z f i�

� f j�e−i�ij�� . �C4�

Now we have the choice to decompose the hopping and spin-
orbit terms either in a standard way �as Florens and Georges
did76� or in a more elaborate way �as Lee and Lee did80� to
obtain an effective theory. Since we are mainly interested in
the transition line to the Mott phase we restrict ourselves to
the first way for the moment. Thus we will use again the
decomposition �������+����− ������ with

�ij = �
�

f i�
a�f j�

b , ��ij� � QX,

�ij = exp�− i�ij�, ��ij� � Qf ,

for the hopping term and

�ij� = ����
i�ij����

z f i�
� f j��, ��ij� � � QX� ,

�ij� = exp�− i�ij�, ��ij� � � Qf�,

for the spin-orbit term. Then we replace the exponentials
exp�i�i� by complex bosonic fields X�� which are constraint
via 
Xi
2=1. This constraint is imposed by a complex
Lagrange multiplier �i. Then the decomposed Lagrangian has
the form

S = S� + S� + S�, �C5�

where S� contains the hopping term, S� the spin-orbit term,
and S� the other terms. S� is given by
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S� � �
0

�

d�− 
t
QX�
�ij�

Xi
�Xj + c.c.

− 
t
Qf�
�ij�

�
�

f i�
� f j� + c.c. + 
t
�

ij

QfQX�
= �

0

�

d�LX + L f + ¯� . �C6�

The second term S� is given by

S� � �
0

�

d��QX� �
��ij��

Xi
�Xj + c.c.

+ �Qf� �
��ij��

�
���

i�ij����
z f i�

� f j�� + � �
��ij��

Qf�QX��
= �

0

�

d�LX� + L f� + ¯� . �C7�

Introducing the X-field changes the Hubbard term such as

���i + hi�2 = ��i� + hi�Xi
����− i� + hi�Xi� �C8�

and the term S� becomes the form

S� =
1

2U
�

i

��i� + hi�Xi
����− i� + hi�Xi� + �

i

�i
Xi
2

+ �
i�

f i�
� �� − � + hi�f i� + ¯

=�
0

�

d�LX� + L f� + ¯� . �C9�

Here and in the previous equations the ellipsis corresponds to
the other terms which are independent of f� and X. The Fou-
rier transform of LX and L f leads in the �u , l� basis to the
bands obtained earlier,

LX = QX�
k

�− g�k��Xk
a�Xk

b + c.c.

=QX�
k

�− 
g
�Xk
l�Xk

l + 
g
Xk
u�Xk

u, �C10�

L f = Qf�
k�

�− g�k��fk�
a� fk�

b + c.c.

=Qf�
k�

�− 
g
�fk�
l� fk�

l + 
g
fk�
u� fk�

u . �C11�

For the X part of the spin-orbit term LX� we find the following
expression:

LX� = QX��
k

�g2�k��Xk
a�Xk

a + Xk
b�Xk

b�

=QX��
k

�g2�k��Xk
l�Xk

l + Xk
u�Xk

u� , �C12�

where g2�k� is the usual next-nearest-neighbor hopping con-
tribution as defined in Eq. �19�. The last term which must be

transformed into momentum space is L f� which clearly pro-
duces the � term. Therefore we will add L f to L f� in the
�f�

a , f�
b� basis and then transform both terms to the �f�

l , f�
u�

basis as we did with the original bands of the KM model,

L f + L f� = �
k�

Qf�− g�k�fk�
a� fk�

b − g�k��fk�
b� fk�

a �

+ �
k���

����
z Qf���fk�

a� fk��
a − fk�

b� fk��
b �

=�
k�

− �kfk�
l� fk�

l + �kfk�
u� fk�

u . �C13�

Here we have introduced the renormalized KM spectrum for
the spinon sector,

�k = ��Qf
g
�2 + �Qf���2. �C14�

Finally we find the imaginary time Green’s function for the
f�

l fields,

Gfl =
1

i�n − �k
�C15�

and for the X fields,

GX =
1

�n
2/U + � + �k

, �C16�

where we defined

�k = − QX
g�k�
 + QX��g2�k� . �C17�

APPENDIX D: MATSUBARA SUM

In the self-consistency Eqs. �65�, �72�, and �74� we had to
evaluate the following Matsubara sum:

1

�
�

n

GX�k,i�n� =
U

�
�

n

1

�n
2 + U�� + �k�

=
U

�
�

n

1

�i�n + A��− i�n + A�
, �D1�

where A=�U��+�k�. By taking the corresponding contour,
we find

0 = �
C

nB�z�
�z + A��z − A�

dz

=2�i
1

�
�

n=0,�1,�2,. . .

1

�i�n + A��− i�n + A�

− 2�i�nB�A�
2A

−
nB�− A�

2A
� , �D2�

where nB�z�= �exp��z�−1�−1 is the Bose function. The last
equation then implies

1

�
�
n�Z

1

�i�n + A��− i�n + A�
=

nB�A� − nB�− A�
2A
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=
coth��A/2�

2A
→

T→0 1

2A
.

At zero temperature we find the result

1

�
�

n

GX�k,i�n� =
U

2�U�� + �k�
. �D3�

APPENDIX E: DYNAMICAL GAUGE FIELD

In this appendix, we decompose the action Eq. �C4� in a
different way compared to Appendix C and show, how the
effective-field theory and the gauge field aij emerge. Follow-
ing Lee and Lee80 we decompose the hopping term via
Hubbard-Stratonovich decomposition, �ij =��f i�

a�f j�
b and

�ij =ei�ij,

� d!ijd!ij
�d! jid! ji

�e−��
!ij

2+
!ji


2−!ij
��ij−!ij�ij−!ji

��ji−!ji�ji�

=
�2

�2 e���ij�ij+�ji�ji�. �E1�

The same equation holds for �� and �� in order to decouple
the spin-orbit term,

�ij� = �
���

i�ij����
z f i�

� f j��,

�ij� = exp�− i�ij� .

In Eq. �E1�, � is given by � times the hopping or the spin-
orbit amplitude, respectively. We further follow Lee and
Lee and change the variables of integration by !ij

= 
%ij
e−wij+i�aij
+−aij� and ! ji= 
%ij
e−wij+i�aij

+−aij�. Note that !ij and
! ji are independent complex variables, and hence wij and aij

+

are independent and necessary. At this point, we replace
again exp�i�i� by the bosonic Xi field with the constraint

Xi
2=1 imposed by the Lagrange multiplier �i. Then we find
the action which coincides with Eq. �4� of Ref. 80 apart from
two terms coming from the spin-orbit interaction and the
slightly different notation of the rotor variables. We replace
the variables by their saddle-point values plus fluctuations
�see for details Ref. 80�, neglect the massive modes and we
can integrate out the �i field to restore the � field. Finally we
obtain the effective Lagrangian �similar to Ref. 80�,

L� = �
i�

f i�
� �� − iai

 + ih̃i − ��f i� +
1

2U
�

i

���i − ai
 − h̃i�2 − �

�ij�,�

t
%̃ij

Xeiai
j
f j�

� f i� − �
�ij�


t
%̃ij
f e−��i−�j−aj

i�

− �
��ij��

�
���


�
%̃ij
X�eiai

j
i�ij f j�

� ����
z − �

��ij��

�
%̃ij

f�e−i��i−�j−ai
j�. �E2�

Here ai
 and ai

j are the temporal and spatial gauge fields
coming from the fluctuations from hi and aij, respectively.
hi is the Lagrange multiplier associated with the global
constraint introduced earlier. The quantities with tildes
are the saddle-point values and are identical to the mean-
field parameters which we have evaluated in Sec. V. We
notice that both spinons and rotors couple to the U�1� gauge
field. Since we assume weak gauge fluctuations, we take
the saddle-point approximation, i.e., ai

j =0; we recover for
the spinons the same terms which resulted in Sec. V in

the renormalized KM spectrum �%̃ij
X →QX and %̃ij

X�→QX��.
We should also mention that the spinons are still coupled to
the gauge field through the first term in Eq. �E2� which con-
tains �f i�

� ai
f i�. In principle, although we have set ai

j =0, we
could allow for small deviations and expand exp�iai

j��1
+ iai

j; thus the spinons couple to both temporal and spatial
gauge fields. On the other hand, we know that the rotors
are gapped in the Mott phase and can be integrated out.
This generates the Maxwellian term �see, e.g., Refs. 72, 73,
and 80�.
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