
Intervalley plasmons in graphene

T. Tudorovskiy* and S. A. Mikhailov
Institute of Physics, University of Augsburg, D-86135 Augsburg, Germany

�Received 11 May 2010; published 24 August 2010�

The spectrum of two-dimensional �2D� plasma waves in graphene has been recently studied in the Dirac
fermion model. We take into account the whole dispersion relation for graphene electrons in the tight-binding
approximation and the local-field effects in the electrodynamic response. Near the wave vectors close to the
corners of the hexagon-shaped Brillouin zone we find low-frequency 2D plasmon modes with a linear spec-
trum. These “intervalley” plasmon modes are related to the transitions between the two nearest Dirac cones.
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Graphene, a recently discovered1,2 two-dimensional �2D�
material consisting of a single layer of carbon atoms has
been in the focus of experimental and theoretical research in
the past years �see Ref. 3 and references therein�. The carbon
atoms in graphene form a dense 2D honeycomb lattice, �Fig.
1�a��, with two atoms per elementary cell. The band structure
of graphene electrons4–6 consists of two bands touching each
other at six points k=Ki, i=1, . . . ,6 at the corners of the
Brillouin zone �BZ�, see �Fig. 1�b��. In the vicinity of Ki the
dispersion surface forms two cones with vertexes at Ki. In
the intrinsic graphene at zero temperature the lower �hole�
band is fully occupied while the upper �electron� band is
empty, and the Fermi level goes through the Dirac points.
Using the doping or applying a gate voltage between the
graphene layer and a substrate �in a typical experiment the
graphene layer lies on a Si /SiO2 substrate� one can shift the
chemical potential � to the electron or to the hole band and
vary the density of electrons and/or holes.

Near the Dirac points the graphene quasiparticles have a
linear, quasirelativistic dispersion

Ekl
Dir = l�V�k − Ki�, �k − Ki�a � 1. �1�

Here l=+1 and −1 correspond to the electron and hole band,
respectively, V�108 cm /s is the Fermi velocity in graphene
and a=2.46 Å is the lattice constant, �Fig. 1�a��. It is the
massless energy dispersion of graphene quasiparticles �Eq.
�1�� that leads to its amazing physical properties and caused
the great interest to this material.

In this Brief Report we address the problem of plasma
oscillations in graphene. The plasma waves in graphene have
been considered in Refs. 7–11. In these publications the plas-
mon spectrum has been calculated in the long-wavelength
limit qa�1 from zeros of the Lindhard dielectric function12

�Dir�q,�� = 1 −
2�gvgse

2

q�S
�
kll�

f�Ekl
Dir� − f�Ek+q,l�

Dir �

Ekl
Dir − Ek+q,l�

Dir + �� + i0

	��k + q,l��eiqr�kl	Dir�2, �2�

which can be obtained within the self-consistent-field
approach13 or, equivalently, in the random-phase approxima-
tion. Here S is the area of the graphene sample, f�E� is the
Fermi-Dirac distribution function, −e is the electron charge
�e
0�, q= �qx ,qy� is the wave vector of an electric field in
the 2D plane, q= �q�, gs=gv=2 are the spin and valley degen-

eracies, and � is the dielectric constant of surrounding me-
dium. The wave functions �kl	 have been found from the
Dirac approach, when the system is described �near the Dirac
points� by the effective Hamiltonian HDir=V��p̂�, where �
takes the values x ,y, �� are Pauli matrixes, and p̂� is the
momentum operator. The sub/superscript “Dir” in Eq. �2�
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FIG. 1. �a� The honeycomb lattice of graphene. All points
of the first sublattice �black circles� are given by n1a1+n2a2,
of the second sublattice �open circles� by n1a1+n2a2+b. �b� The
BZ of graphene. The basis vectors of the reciprocal lattice
are G1 and G2. The vectors Ki, i=1, . . . ,6, correspond to the
corners of the BZ �the Dirac points�. Dashed lines show the the
boundaries of the elementary cell both in direct and reciprocal
space. In the figure a1=a�1 /2,
3 /2�, a2=a�−1 /2,
3 /2�,
b=a�0,1 /
3�, G1=2�a−1�1,1 /
3�, G2=2�a−1�1,−1 /
3�,
K1=−K4=2�a−1�1 /3,1 /
3�, K2=−K5=2�a−1�2 /3,0�, and
K3=−K6=2�a−1�1 /3,−1 /
3�, where a= �a1�= �a2� is the lattice
constant and �G1�= �G2�=G=4� / �
3a�.
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reminds that the energies and the wave functions have been
calculated within the Dirac �effective medium� approxima-
tion. In the limit q�kF the spectrum of 2D plasmons takes
the form7,8

�p�q� = � e2gsgv���
2�2�

q�1/2

= � e2V
gsgv�ns
0

��
q�1/2

, �3�

which coincides with the standard 2D plasmon dispersion
�p�q�=
2�ns

0e2q / �m��� with the effective mass being re-
placed by m�= ��� /V2. Here kF= ��� / ��V� is the Fermi wave
vector and ns

0 is the equilibrium surface density of charge
carriers. At q
kF the curve �p�q� enters the region of the
interband damping and asymptotically tends to the line
�=Vq.7–11,14 The 2D plasmons �Eq. �3�� have been experi-
mentally observed in graphene in Refs. 15 and 16.

The results outlined above are based on Eqs. �1� and �2�
and are valid in the “long-wavelength” limit, when both the
plasmon wave vector q and the Fermi wave vector kF are
small as compared to the reciprocal-lattice vector G
1 /a.
Here we study the 2D plasmon spectrum in graphene at the
wave vectors q close to the corners of the BZ. The 2D plas-
mons propagate in the same periodic lattice as the 2D elec-
trons and their spectrum �p�q� should be a periodic function
of q with the same hexagon-shaped BZ. Near the corners of
the plasmon BZ q=Ki one can expect new low-frequency
plasmon modes. Indeed, each 2D plasmon wave vector
q�Ki corresponds to an intervalley transition in the electron
BZ K j→K j�, for example, q=K1 corresponds to the transi-
tion K5→K6, q=K2 to the transition K6→K1, and so on. At
q�Ki the energy difference Ekl−Ek�l in the denominator in
Eq. �2� is close to zero, which leads to the new, intraband
intervalley plasmon modes. In this Brief Report we show
that these low-frequency plasmon modes have the linear dis-
persion

�p�q� = Vp�q − Ki�, �q − Ki�a � 1 �4�

with the group velocity Vp
V. Figure 2�b� schematically
shows the low-frequency plasmon mode in the BZ: the cen-
tral red square-root “flower” and the blue “flowers” at the
corners of the BZ correspond to the conventional intravalley
2D plasmon �Eq. �3�� and the intervalley plasmons, �Eq. �4��
respectively. For comparison, the Dirac cones at the corners
of the electronic BZ are shown in Fig. 2�a�.

In order to adequately calculate the graphene response at
large wave vectors q
1 /a one should go beyond Eq. �2� and
take into account the local-field effects.17,18 The electromag-
netic response is then described by the matrix dielectric func-
tion

�GG��q,�� = �GG� −
2�e2

��q + G�
�GG��q,�� , �5�

�GG��q,�� =
gs

S
�
kll�

f�Ekl� − f�Ek+q,l��

Ekl − Ek+q,l� + �� + i0

	�k + q,l��ei�q+G��r�kl	�kl�e−i�q+G�r�k + q,l�	 ,

�6�

where G and G� are reciprocal-lattice vectors and �GG� is the
polarizability matrix. The summation over k in Eq. �5� is
performed over the whole BZ, �kl	 are the Bloch functions
and Ekl is the corresponding energy dispersion. The 2D plas-
mon spectrum is determined by zeros of the determinant of
�GG��q ,��

det��GG��q,��� = 0. �7�

From now on we use the tight-binding approximation6 for
the energy and the wave functions. Then the energy reads
Ekl= l��Sk�, where �=2�V / �
3a� is the full width of one
band and

Sk = 1 + 2ei
3kya/2 cos�kxa/2� . �8�

The Bloch functions are

�kl	 =
1


2N
�

a
eika��k

���r − a,z� + l��r − a − b,z�� , �9�

where N is the number of elementary cells inside the area S,
�k=Sk / �Sk�, � is the normalized atomic wave function, and z
is the perpendicular coordinate. Using the wave functions
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FIG. 2. �Color online� �a� The Dirac cones in the electron BZ
and �b� the “flower bed” of the low-frequency 2D plasmon modes
in the plasmon BZ.
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�Eq. �9�� one can calculate the matrix elements in Eq. �6�

�kl�e−i�q+G�r�k + q,l�	 =
1

2
M��q + G����k�k+q

� + ll�e−i�q+G�b� ,

�10�

where we assume that � depends only on �r� and
M�q�=�d3r���r ,z��2eiqr. The integration in this formula is
performed over the whole three-dimensional space.

If q�1 /a, the terms �GG� / �q+G�
M�q+G�M�q+G�� /
�q+G� in �Eq. �5�� are small for all G and G� except
G=G�=0. Then the general 2D plasmon dispersion �Eq. �7��
is reduced to the one used in Refs. 7–11 det��GG��q ,���
=�00�q ,��=�Dir�q ,��=0. If q is close to one of the vectors
Ki, nine terms in the matrix �GG� / �q+G� give a noticeable
contribution to the determinant of the matrix �GG��q ,��. For
example, if q�K5, the corresponding reciprocal-lattice vec-
tors are G=0, G1, and G2. For them �q+G���K5�=K and
the determinant of the infinite matrix �GG��q ,�� is
reduced to the determinant of a 3	3 matrix with
G ,G�= �0 ,G1 ,G2�.

In what follows we assume that q=K5+ q̃, q̃�kF�K, and
the temperature T=0. Then one can show that the interband
contribution �l� l�� to the polarizability tensor �Eq. �6�� is
negligible and we can use the linear �Dirac� approximation
for the energy in the vicinity of both cones. Keeping in �Eq.
�6�� only the intraband terms we get the following expression
for the polarizability tensor

�GG��q,�� =
gs

4S
M2�K��

k

�k − �k+q

Ek+ − Ek+q,+ + sgn�����

	�G�k,q��G�
� �k,q� , �11�

where �k=�����−Ek+�, � is the Heaviside step function,
�G�k ,q�=�k+q

� �k+e−i�q+G�b and G ,G�= �0 ,G1 ,G2�; the
chemical potential � can be both positive and negative, i.e.,
our results are valid for both electron and hole gases. Then

introducing the notations k=K1+ k̃, the angle �1 between the

vectors q̃ and k̃ and the angle �2 between the vector q̃ and
K2=−K5, we get

�GG� =
3gs

4�2�V
M2�K��

0

kF

k̃dk̃�
0

2�

d�1

	
�k̃ + q̃� − k̃

− ��k̃ + q̃� − k̃�2 + ��/V�2
fG��1 + �2�fG�

� ��1 + �2� ,

�12�

where fG���= �−e−2i�+e−iGb� /
6 for G= �0 ,G1 ,G2� and
�f � f	=�G=0,G1,G2

�fG����2=1.
If ����Vq̃, the integrand in Eq. �12� has poles on the �1

axis and the functions �GG� turn out to be complex. Similar
to the standard 2D plasmons7–11 this corresponds to the
single-particle intraband absorption �Landau damping�. At
larger frequencies, ���
Vq̃, the denominator in Eq. �12�
does not vanish and the functions �GG� are real. In this re-
gion one can therefore expect a weakly damped �at low tem-
peratures� low-frequency plasmon mode. As it will be seen

from the result below, the frequency of the new plasmon
mode is close to Vq̃. Evaluating the leading term of the
asymptotics of �GG� with respect to the small parameter
���� /Vq̃−1��1 we get

�GG� � �GG� −
�


���/Vq̃ − 1
fG��2�fG�

� ��2� , �13�

where

� =
3gs

2
2

e2

�V

kF

K
M2�K� . �14�

Noticing that the matrix � can be written as
�=1−const�f	�f �, and using the formula det�1−const�f	�f ��
=1−const�f � f	 we finally get the spectrum of the intervalley
plasmon modes in the form of Eq. �4�, where

Vp = V�1 + �2� . �15�

As it is seen from Eq. �14� the factor � is small as compared
to unity.

Calculating the experimentally measurable average Joule
heat �Q	= �j��r , t� ·Etot�r , t�+c.c.	 /2 we get

�Q	 =
��K

2�
��0

ext�2 Im���−1�00� , �16�

i.e., the dynamical structure factor is determined by the
imaginary part of the element G=G�=0 of the inverted di-
electric matrix. The last one is Im���−1�00�
= �2� /3��2��� /Vq̃−1−�2�.

The intervalley plasmon mode �Eq. �4�� should not be
confused with the acoustic plasmons which may exist in two-
or multicomponent plasmas and have the linear dispersion
��q in the long-wavelength limit q→0 �see e.g., Ref. 19,
where such low-q plasmon mode has been studied in double-
layer graphene�. The acoustic modes arise in systems with
two �or more� different types of charge carriers, e.g., elec-
trons in different 2D layers, like in Ref. 19, or in different
energy subbands in the same layer. In single-layer gated or
doped graphene �����T� there exists only one type of
charge-carriers electrons in the conduction band or holes in
the valence band. The two valleys in graphene describe dif-
ferent quantum states of the same electron but not two dif-
ferent types of electrons. Therefore, in a single-layer
graphene there exists only one plasmon mode: in the low-q
regime �q�K� its properties were studied in Refs. 7, 8, and
14, in the high-q limit �q�K�, at q close to the corners of the
Brillouin zone, it is studied in the present Brief Report. The
intervalley plasmon �Eq. �4�� is unique for graphene; it is a
direct consequence of the unusual energy dispersion in this
material, �Fig. 2�a��. Notice that the presence of the low-
frequency, finite q plasmon mode in graphene may lead to an
instability of the system and to formation of the charge-
density waves.20
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In conclusion, we have found the intraband intervalley
low-frequency plasmon modes with the linear
dispersion �Eq. �4�� and the group velocity �Eq. �15��.
The appropriate description of these modes requires to
take into account the local-field effects. The predicted
modes do not exist in conventional 2D electron systems

and are the unique feature of graphene. They could be ob-
served using Raman or electron energy-loss
spectroscopy.15,16,21–23
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