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Geometrically a crystal containing dislocations and disclinations can be envisaged as a “fixed frame” Cartan-
Einstein space-time carrying torsion and curvature, respectively. We demonstrate that electrons in defected
graphene are transported in the same way as fundamental Dirac fermions in a nontrivial 2+1-dimensional
space-time, with the proviso that the graphene electrons remember the lattice constant through the valley
quantum numbers. The extra “valley holonomy” corresponds to modified Euclidean symmetry generators.

DOI: 10.1103/PhysRevB.82.073405 PACS number�s�: 73.90.�f, 03.65.Vf, 72.10.Fk

I. INTRODUCTION

The miracle of graphene is that nonrelativistic electrons
scattering against a lattice potential experience a low-energy
world in which, in nontrivial regards, they behave in ways
reminiscent of Dirac’s relativistic fermions: the Klein para-
dox, Landau quantization, the fine-structure constant, and so
forth. An ambitious but natural question to ponder is whether
this coarse-grained graphene world might mimic some as-
pects of gravitational structure? In Cartan’s generalization of
Einstein’s geometrical formulation of gravity, torsion and
curvature can be put in one-to-one relation with the disloca-
tions and disclinations, the topological defects of the crystal
lattice.1 The analogy is incomplete in the sense that crystal
spaces are nondiffeomorphic. The general covariance of
space-time translates into the requirement that the action of
the medium should be independent of arbitrary elastic defor-
mations, something obviously violated by crystal and de-
fected crystal geometry, which therefore correspond to
spaces with a preferred metric or a “fixed frame.” In addi-
tion, in the crystal the translations and rotations of Galilean
space are broken to discrete subgroups and this implies that
both curvature and torsion are quantized in units of the dis-
crete Burgers and Frank vectors, the topological invariants of
the dislocations and disclinations, respectively. One can
nonetheless still study the transport of matter in such topo-
logically nontrivial fixed frame backgrounds; several such
analogous gravity systems have been identified, including
the sound waves of superfluid He4 and the nodal Fermions of
the He3 A phase, which perceive the hydrodynamical flow
fields as geometrical �Christoffel� connection.2

To what extent does this analogy extend to the Dirac-type
fermions in graphene? We are inspired by the previous
work3,4 demonstrating that the holonomy accumulated by
electrons in graphene encircling a disclination �cone� coin-
cides with that associated with a Dirac fermion encircling the
conical singularity, the entity encapsulating curvature in 2
+1-dimensional gravity. However, in order to complete the
identification these earlier works added an ad hoc U�1�
gauge flux to the conical singularity, acting with opposite
sign on the valley quantum numbers of the graphene elec-
trons, raising the issue of whether the identification is merely
coincidental. Here we will settle these matters by focusing
on the influence of dislocations, corresponding to torsion in

the gravitational analogy. Torsion is a less familiar aspect of
the geometrical formulation of gravity.1,5–7 Ignored at first by
Einstein, it was introduced by Cartan8 as an a priori ingre-
dient of a geometrical theory. It was later pointed out by
Kibble7 that its inclusion becomes necessary in the presence
of spinning particles, as their spin currents source torsion in
a dynamical space-time, though whether torsion propagates
in the space-time is a matter to be settled by observation, an
as yet open question because torsional effects turn out to be
too weak to be measured with present day experimental tech-
nology, but the situation is different in the “analogous”
graphene system. Dislocations correspond with large fixed
frame localized torsion sources.

We demonstrate that the holonomies associated with
graphene electrons encircling dislocations resemble those
coming from the most natural implementation of torsion in
the connection of doubled fundamental fermions, in the case
that their cones would be displaced away from zero momen-
tum. It is just the fact that the discreteness of “graphene
geometry” is remembered exclusively by the long-
wavelength fermion modes by the large momenta where the
Dirac cones reside, and this is surely different from the way
that Planck scale discreteness �when it exists� affects funda-
mental fermions. We subsequently show that the mysterious
U�1� flux of the graphene disclination has precisely the same
origin, bringing us to the conclusion that the parallel trans-
port of electrons in graphene with dislocations and disclina-
tions is in the long-wavelength limit identical to that of Dirac
fermions living at large momenta in a 2+1-dimensional
Cartan-Einstein space-time with torsion and curvature. This
identification completes the understanding of topological de-
fects and parallel transport in graphene and opens the possi-
bility to search for exotic phases based on the nontrivial geo-
metrical structure that the graphene electrons experience.

II. TORSION IN ELASTICITY AND ITS COUPLING
TO FERMIONS

Within a geometric formulation of elasticity theory, dislo-
cations become sources of torsion �see Refs. 1, 9, and 10 and
especially the recent relevant pedagogical introduction,11 as
well as references therein�, stemming from their translational
character. Torsion T assigns a vector to an infinitesimal area
element at each point in space, measuring the nonclosure of
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a loop obtained by parallel transport of the two infinitesimals
forming the “edges” of the given surface element along each
other.1,5–7 The definition makes this vector completely analo-
gous to the Burgers vector in a crystal lattice. This gravity/
geometry analogy has been verified in familiar electron sys-
tems, producing results compatible with the tight-binding
approach.12–14 Formally, torsion is defined as a vector valued
two-form on space-time, Ta=T��

a dx�∧dx�, with �,
�� �0,1 ,2�, and ∧ the wedge product of differential forms.
In this work the relevant example is of one dislocation at the
origin of two-dimensional space, with Burgers vector b, with
a corresponding torsion �see Refs. 1 and 9 and references
therein�

Ta = ba��x��dx ∧ dy . �1�

The flux of this form through any area containing the origin
is given by the Burgers vector ��Ta=ba.

The rules of parallel transport in the space are contained
in the connection �=���

� dx�, written as a matrix valued one-
form, which in spaces with torsion is more than just the
Christoffel symbol. Namely, the metric g�� of space deter-
mines the symmetric part �in the lower indices� of the con-
nection, i.e., the Christoffel piece. The torsion adds addi-
tional information about parallel transport in space, as it is
related to the antisymmetric part of the connection,1,5

T��
� = 1

2 ����
� −���

� �. The geometry is consistently defined only
if the Einstein-Cartan �EC� structure equations are satisfied,

R = d� +
1

2
��,�� , �2a�

T = d� + � ∧ � , �2b�

where the curvature R is a matrix valued two-form and � is
an arbitrary frame �i.e., �a�x� are the dual basis vectors of the
tangent space at x�.

Let us now define the 2+1-dimensional structure of the
graphene Dirac equation15,16 by identifying the Dirac
matrices as �0=	3 � 
3, �1= i	3 � 
2, and �2=−i	3 � 
1,
which satisfy the Dirac algebra ��a ,�b�=2�ab. Here ��� de-
notes the flat Minkowski metric �=diag�1,−1,−1�. The 	
Pauli matrices act in the space of the valley index K� while
the 
 Pauli matrices act on the sublattice �A /B� degrees of
freedom.

Since spin is defined with respect to rotations acting in a
tangent frame, to study the equation of motion of a spinning
particle we must use5 an orthonormal set of basis vectors.
This special case warrants new notation,

�a � Ea,

� � � �orthonormal frame� ,

where the � form is commonly called the spin connection.
The change to and from a holonomic frame dx� is made
through the vielbein �here dreibein� dx�=ea

�Ea and the in-
verse �ea

��−1�e�
a . The components of the metric written in

these two bases satisfy

�ab = e�
a g��e�

b. �3�

Intuitively, the vielbeins provide the square root of the met-
ric, which is needed since spinors are square roots of vectors.
Then the relevant �zero-mass� Dirac equation in a curved
torsionful background is

i�aea
�D� = 0 �4�

with the covariant derivative given by

D� = 	�� −
1

4
��ab�a�b
 . �5�

In EC theory the metric and torsion are independent, and
we must include the effect of dislocation in both according to
the elasticity/gravity analog principles. The displacement
field ui in the crystal changes local distances while in curved
spaces metric defines the distance ds2=g��dx�dx�, so they
are related by the mapping,

gij = �ij + �iuj + � jui. �6�

Time is essentially decoupled from space in this condensed-
matter system �gi0=0�. We use the well-known displacement
field ui corresponding to a dislocation situated at the origin in
two spatial dimensions,17 and via Eq. �6� determine the
metric.18 The b is to be regarded as infinitesimal in the con-
tinuum theory so that we retain only linear terms throughout.
For simplicity we take the Poisson ratio 
=0 and fix b to
point along the x axis.

The strategy is to find an orthonormal basis Ea on this
space, and then the spin connection from Eq. �2b� by using
the physical input about the defect in Eqs. �1� and �6�. For
the basis we get

	E1

E2 
 =�1 −
b

2�r
sin �

b

2�r
cos �

b

2�r
cos � 1 −

b

2�r
sin ��	 dr

rd�

 �7�

and �1
2=−�2

1=d��+ b
�rcos ��. It is noteworthy that the ma-

trix of one-forms �� is always antisymmetric as it represents
the rotation of the orthogonal basis during parallel transport.
The first term d� appears due to the use of polar coordinates
and is responsible for a term −�1 /2r �Refs. 16 and 19� in Eq.
�4�. One can check that the curvature obtained through Eq.
�2a� is zero by using d�d��=0 since this term does not con-
tribute in Cartesian coordinates.

The spin connection produces a trivial holonomy for the
Dirac spinor but a nontrivial topological action is present in
the Ea basis �there is in fact some freedom in the EC formal-
ism to move torsion effects between the basis one-form and
the spin connection, obvious in Eq. �2b��. The connection
encodes for the integrable elastic deformation around the dis-
location, and the vector field corresponding to the � “poten-
tial” in Eq. �5� follows the deformation of the crystal due to
the missing row of atoms. More quantitatively, the singular-
ity in displacement encoding the topological defect is fully
contained in u�̂0=− b

2� ln�x+ iy� due to u�̂0=−bx̂.20 In this case
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�=0. Another example is the elastically unrelaxed displace-
ment field in Ref. 1, corresponding to E1=dx+ b

2�d�,
E2=dy, and �=0.

The above examples are instructive in emphasizing the
relation ��Ta=��dEa=Ea=ba. Obviously, the topologically
nontrivial part of E will always be in the form of a b

2�d�
correction to the basis vector Ea along the Burgers direction,
b · x̂a=b. This can easily be checked explicitly for our setup
in Eq. �7�, if the Ea basis is rotated to �Ex ,Ey�, with our
previous choice of Burgers vector. The topological action of
the dislocation on the Dirac electron should then be viewed
as a Berry phase arising from the term

i�aea
��� = i�a��a

� + fa
����

=i����exp	� dx�f�
���
 = 0, �8�

where fa
��b�= f�

a �−b� is the perturbation proportional to the
Burgers vector. The nontrivial holonomy �Berry phase� is
responsible for the salient feature of long-range influence of
the crystal defect,3,16,21 taking the value

H�b� = e�dx�f�
���� = eib·�−i��, �9�

where we recognize the Volterra operation of translating the
wave function by the Burgers vector to describe the topology
of a dislocation. However, the correct holonomy follows
from the effect of translation by b �which is of order of a
lattice constant� on the true Bloch wave function,16,19 in
other words

Hlattice�b� = eib·K	3. �10�

The connection is striking and pleasing, because the con-
tinuum translation generator −i� is replaced by a translation
generator K	3 of the underlying lattice wave function, which
is a finite momentum �K�� state.

Equation �9� encapsulates the essence of arguments relat-
ing the vielbein and the gauge field of Poincaré �here Euclid-
ean� group translations in gauge theories of gravity.

III. CURVATURE AND DISCLINATIONS

In the case of disclinations, the associated curvature exists
in 2+1 dimensions as conical singularities and has been con-
sidered in the graphene lattice.3,4,22 However, special care
has to be taken to include the exchange of Fermi points, i.e.,
the internal degree of freedom, that occurs for specific open-
ing angles, by using an additional gauge field with only 	
operator structure. Therefore an additional gauge field is in-
troduced, alongside the curvature. Following the discussion
in the previous section it becomes clear that it is more con-
sistent to view the additional Fermi point effect as a change
in the generator of rotations for the graphene Dirac spinor.

The correct holonomies in the presence of a
disclination with the fundamental opening angles at the ori-
gin, obtained by the Volterra construction, are3,19,22

H�2� /3�=exp�−i 2�
3


3

2 � and H�� /3�=−i	1exp�−i �
3


3

2 �. Note
that rotating by � /3 maps the Fermi points into each other,

hence the 	1 matrix. We rewrite this in an illuminating way
�� is the angle of disclination�,

Hlattice	� � n
�

3

 = e−i��
3+3	1�/2, �11�

where we see the spinor rotation �half-angle� generator 
3 /2
replaced by �
3+3	1� /2, in order to accommodate the finite
lattice-constant effect due to the existence of two electron
species, at finite momenta K�. This is a generalization to the
spinor case of the observation that the disclination holonomy
is the representation of the rotation operator by the defect
opening angle.23 It stems from the fact that the spin-
connection term, which produces the nontrivial holonomy in
this case, is actually given by the rotation generator
1
8��ab��a ,�b�=��12


3

2 = �
2�d��


3

2 and fixes the curvature
two-form R2

1=−R1
2=d�=���x��dx∧dy.

IV. GENERAL TORSION COUPLINGS

Here we identify additional possible couplings of torsion
to the specific electronic degrees of freedom in graphene,
based on general considerations �see Ref. 13 for a similar
analysis in a different condensed-matter system�. The
Riemann-Cartan curved space with torsion is defined by Eq.
�1�, and fixed through the choice of the connection �once a
tangent basis is specified�, which itself provides the covariant
derivative to be used in the Dirac equation, Eq. �4�. This
coupling of geometry to the spinor can in principle be ex-
tended by additional scalar terms containing torsion, which
might follow from the choice of an action for the full
gravity+matter theory,6,10,18,24 or in some cases only by an
ad hoc choice. These terms are linear in torsion at the least,
and so effectively behave as a delta function potential in
space �Eq. �1��. Obviously this makes no contribution to a
holonomy but is interesting from a general viewpoint.

If we choose to start from a covariantized Dirac Lagrang-
ian in 2+1 dimensions �see Ref. 6 for the treatment of
3+1 dimensions�, we get an additional term in the Dirac
equation i�a��a+Tab

b �=0 �written in anholonomic
coordinates, with the covariant derivative becoming
�a=�a− 1

4�abc�
b�c�. At this point we can extract all similar

torsion content from the covariant derivative �a, by separat-
ing the antisymmetric part of the connection. Again in 2+1

dimensions we get �a= �̃a− 1
2Tab

b − 1
4Tabc�

b�c, where �̃a con-
tains only the Christoffel symbol part of the connection. The
Dirac equation reads

i�a	�̃a +
1

4
Tab

b +
1

12
�a�t

5�bcdTbcd
 = 0 �12�

with the formally defined “traditional” �t
5� i�0�1�2=	3 � 1.

It seems that since the topological effect of the dislocation is
present strictly in the Ea basis, which stems from the singular
displacement field through the metric �Eqs. �3� and �6��, it is

enough to retain the Christoffel connection part of �̃a, as if
there was no torsion �the additional terms in Eq. �12� do not
contribute�. One must note, however, that torsion cannot be
simply disregarded, as it is present in the space due to Eq.
�2b�.
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Our form of T �Eq. �1�� constrains the polar vector
Tab

b = �ẑ�b�a��x�� to be orthogonal to the Burgers vector, and
this is the only possible polar term. Considering axial-vector
couplings generally, in the relevant 2+1-dimensional case,
there is no traditional �5 matrix which is independent of the
�a algebra, and which could be used to reduce the spinors to
Weyl components, because it commutes, instead of anticom-
mutes, with the �a. However, in the case of graphene we are
dealing with a reducible representation of the Clifford alge-
bra, built out of two irreducible ones �one at each K� Fermi
point�. For this case, there exists a �new

5 matrix, which can be
defined for the present odd dimensional situation and having
all the properties of �t

5 acting in even dimensions.25 The �new
5

represents the parity transformation which mixes the two ir-
reducible representations, i.e., in our case it must map be-
tween K+ and K− spinor components �they are connected
through parity, as K+=−K−�. In contrast, the dislocation
gauge coupling, which it should reproduce, acts via phase
shifts without coupling the two K points �of the 	3 form�. The
above observations do not prevent the appearance of terms
containing �t

5, and the last term in Eq. �12� is of such a form,
but it happens to be identically zero due to the contraction
�abcTabc=0.

To further connect with the lattice dislocation coupling
Eq. �10�, one could consider the generalization of forming
scalars making use also of the K vector. The allowed
combinations are �abcTbc

d Kd�t
5 and �abcTbd

d Kc�t
5 but neither is

usable. The first one has the free index timelike a=0
�contributing a time-dependent Berry phase constant in

space� due to nonzero Tbc
d having purely spacelike indices.

The second term has the same feature �K also has no time
component�, although it has the correct matrix form
�abcTbd

d Kc�t
5=−b ·K	3��x��.

V. CONCLUSIONS

We have shown how electrons in defected graphene can
be viewed as moving in a geometry with curvature and tor-
sion, with all the topological lattice effects included in an
appropriate adjustment of the underlying space symmetry
generators. This is a fresh view on the subject in graphene,
treating both types of defects equally, while matching them
clearly with their governing symmetry sectors.

We anticipate that this perspective will aid in understand-
ing the electron transport in graphene when many topologi-
cal defects are present. The modified version of the Euclid-
ean group, Eqs. �10� and �11�, shows that a nontrivial
extension of the symmetry of the Dirac particles is realized
due to the defects. The fact that the holonomies are non-
Abelian renders this to be a highly nontrivial problem, and
further research should shed light on the intricacies of such a
system.
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