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Vegard’s law states that, at a constant temperature, the volume of an alloy can be determined from a linear
interpolation of its constituent’s volumes. Deviations from this description occur such that volumes are both
greater and smaller than the linear relationship would predict. Here we use special quasirandom structures and
density functional theory to investigate such deviations for MxN1−xAs ternary alloys, where M and N are group
III species �B, Al, Ga, and In�. Our simulations predict a tendency, with the exception of AlxGa1−xAs, for the
volume of the ternary alloys to be smaller than that determined from the linear interpolation of the volumes of
the MAs and BAs binary alloys. Importantly, we establish a simple relationship linking the relative size of the
group III atoms in the alloy and the predicted magnitude of the deviation from Vegard’s law.
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I. INTRODUCTION

Vegard’s law is an empirical rule1,2 which states that a
property value of an alloy �here we will consider the volume�
can be determined from a linear interpolation of the property
values of its constituent elements, or in the case of higher
order alloys, constituent compounds. It is now established
that the volume of most alloys cannot be predicted using
such an average manner, and that obedience to Vegard’s law
is more the exception than the rule.3 The magnitude of any
deviation from the linear interpolation will depend on factors
including: �i� the relative size of the constituent elements, �ii�
the relative volume per valence electron, �iii� Brillouin-zone
effects, and �iv� electrochemical differences between the
elements.4 An elegant demonstration of the effect of just one
of these factors, the relative size of the atoms, is given by
Denton and Ashcroft.2 The aim of the current work is to: �i�
examine the adherence of ternary alloys, formed from two
binary group III arsenides, to Vegard’s law and �ii� to deter-
mine a general relationship between the value of any varia-
tion in the covalent radii of the constituent species.

Binary and ternary III-V alloys are a technologically im-
portant family of materials. The band gaps of the binary MX
alloys can be engineered by doping with other binary NX,
alloys �where M and N are group III atoms and X is a group
V atom�. This has facilitated, for example, the development
of highly specific optoelectronic devices such as high-
efficiency quantum dot �QD� lasers and single or multicol-
ored QD photodetectors made using InxGa1−xAs.5 Further-
more, complex devices, such as nanosized transistors, can be
made by lattice matching layers of binary and/or ternary
alloys.6 When attempting to lattice match III-V ternary alloys
to either binary alloys or other ternary alloys it is important
to be able to accurately predict the lattice parameter of the
ternary alloy for the relevant composition.

II. MODELING RANDOM ALLOYS

The materials examined here all have the formula
MxN1−xAs where M and N are group III atoms �B, Al, Ga,
and In�. These materials all exhibit the zinc-blende structure

with space group F4̄3m �Number 216�. For the binary �when
x=0 or x=1� III-V alloys �i.e., BAs, AlAs, GaAs, and InAs�
the As atoms are assigned to the 4a Wyckoff positions and
the group III atoms occupy the 4c Wyckoff sites, thus, cre-
ating two inter-penetrating face-centered cubic sublattices.7

In the ternary MxN1−xAs alloys, occupation of the 4a sublat-
tice by As remains unchanged, however, the two group III
ions are distributed randomly on the 4c sublattice.

It is possible to model disordered alloys by applying an
effective medium technique, such as the virtual crystal ap-
proximation �VCA�,8 where disorder is represented by as-
signing appropriate partial occupancies to each site of the
disordered sublattice. Unfortunately, this assumes that there
is a homogenous distribution of atoms on the disordered sub-
lattice, which ignores the possibility of clustering and asso-
ciated local distortions. In order to obtain a realistic descrip-
tion of a random alloy, while still retaining full atomistic
detail, Zunger et al.9 have developed a series of special qua-
sirandom structures �SQS�. These quasirandom structures
optimize the arrangement of the M and N atoms for a given
number of lattice sites, such that the structure as a whole
mimics the lowest order correlation functions �pair and many
body� of an infinite random alloy.9–11 Hass et al.12 compared
small �16 atom� SQS cells to the simulations of randomly
distributed cations in supercells containing very large num-
bers of atoms ��500� and found that the density-functional
theory �DFT� simulations based on the 16 atom SQS super-
cells adequately reproduced the dominant spectral features
observed in the large supercell simulations. As we are not
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considering charged defects with large strain fields, mini-
mum image effects are not expected to be an issue, therefore
our supercells containing 64 atoms are deemed appropriate
for this investigation. This combination of DFT and 64-atom
supercells has been successfully implemented by Chroneos
et al.13

III. SIMULATION DETAILS

The simulation SQS supercells adopted here are shown in
Figs. 1 and 2 for x=0.5 and x=0.25 �or 0.75� respectively.
The cell shown in Fig. 1 contains 32 atoms, however, to
create our simulation supercell this cell is extended in the c
direction, thus generating a 1�1�2 supercell. For the simu-
lations where x=0.25 or 0.75 the cell shown in Fig. 2 is
adopted unchanged.

The simulations were performed within the DFT frame-
work implemented in the CASTEP simulation package.14

The structures of our 64 atom SQS MxN1−xAs supercells for
x=0, 0.031, 0.25, 0.5, 0.75, 0.97, and 1.0 were relaxed to
zero strain using energy minimization under constant pres-
sure conditions. Exchange and correlation interactions were
modeled using the local density approximation �LDA� and

ultrasoft pseudopotentials with the plane-wave basis ex-
panded to a cutoff of 380 eV. Currently, the LDA is the
standard for simulations on materials such as GaAs.15,16 A
Monkhorst-Pack17 grid of 23 k-points was used to sample the
Brillouin-zone of our 64 atom supercells.

IV. RESULTS AND DISCUSSION

Figure 3 shows the variation in the unit cell volume, as a
function of x, for the six random alloys: InxAl1−xAs,
AlxB1−xAs, AlxGa1−xAs, InxGa1−xAs, GaxB1−xAs, and
InxB1−xAs. The crosses represent the unit cell volumes ob-
tained from the energy minimization of our SQS supercells
and the solid line represents the linear interpolation of the
end member binary group III arsenide volumes �i.e., Veg-
ard’s law�. Figure 3 shows that the unit cell volumes for the
intermediate compositions of the random alloys deviate from
Vegard’s law. The magnitude of the deviation �V�x�, ob-
served for MxN1−xAs can be determined using Eq. �1�,

�V�x� = VMxN1−xAs − �xVMAs + �1 − x�VNAs� , �1�

where VMxN1−xAs, VMAs, and VNAs are the unit cell volumes of
MxN1−xAs, MAs, and NAs, respectively. A positive value of
�V�x� corresponds to a ternary alloy with a volume greater
than that predicted from Vegard’s law and conversely a nega-
tive value implies that the volume of the ternary alloy is
smaller than the Vegard’s law value.

FIG. 1. �Color online� The 32 atom MxN1−xAs SQS unit cell
where x=0.5. This cell is extended in the c direction to form a 1
�1�2 supercell containing 64 atoms. The red spheres represent As
atoms, blue spheres represent M atoms and green spheres represent
N atoms.

FIG. 2. �Color online� The 64 atom MxN1−xAs SQS unit cell for
x=0.75. The red spheres represent As atoms, blue spheres represent
M atoms and green spheres represent N atoms.

FIG. 3. �Color online� Changes in unit cell volumes as a func-
tion of x in MxN1−xAs for the six random alloys. The crosses rep-
resent the unit cell volumes obtained from DFT simulations and the
solid line represents a linear interpolation of the binary alloy vol-
umes �i.e., Vegard’s law�.
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The deviation from Vegard’s law ��V�x�� for each of our
random alloys is plotted as a function of x in Fig. 4. Figures
3 and 4 show that for our ternary alloys there is a negative
deviation from Vegard’s law, with the exception of
AlxGa1−xAs, which exhibits a very small positive deviation.
There is limited experimental evidence concerning such de-
viations in ternary arsenides. However, for Al0.5Ga0.5As,
Gehrsitz et al.18 predict a deviation of 0.027 Å3, which com-
pares favorably with 0.10 Å3 predicted by our simulations.
Furthermore, Zhou and Usher19 also predict a positive devia-
tion for AlGaAs. For In0.5Ga0.5As, Katayama et al.20 predict
a value of −0.96 Å3, compared to −1.15 Å3 obtained from
our simulations. Conversely, the empirical based molecular
dynamics simulations of Branicio et al.21 predict a very
slight positive deviation from Vegard’s law in InxGa1−xAs.
This suggests that empirical potential based methods may
not be suitable for modeling random semiconductor alloys,
as discussed by Chroneos et al.,22 because they do not in-
clude electronic effects.

Chimot et al.23 performed LDA simulations on GaxB1−xAs
and InxB1−xAs using the VCA approximation and predict
large positive deviations from Vegard’s law. As mentioned
previously, the VCA assumes a homogeneous distribution of
atoms, which ignores local relaxation and therefore treats the
alloy as a mean zinc blende structure in which all 4c sites are
identical. By adopting SQS supercells the impact of local
environments in providing distorted tetrahedra and alter-
ations to the tetrahedral packing is included into our simula-

tions. It is these local distortions �an example of which is
shown in Fig. 5� that produce the negative deviation from
Vegard’s law observed in our simulations.

There have been a number of other studies that examine
deviations from Vegard’s law in other groups of semiconduc-
tor materials. Dridi et al.24 examined the deviations in lattice
parameters and band gaps of the wurtzite structured ternary
AxB1−xP alloys �where A and B are Al, Ga, and In� and
Chizmeshya et al.3 studied the wurtzite group IV XxY1−x al-
loys �where X and Y are Si, Ge, Sn, and C�. The crystallog-
raphies of the systems studied by these authors are not the
same as the zinc blende structured ternary alloys studied here
therefore their observations cannot be compared directly
with the present results. However, it is interesting to note the
complexity involved in generating an overarching model for
predicting deviations from Vegard’s law in semiconductors.

Other than the crystal structure type one of the factors
known to influence the volume of an alloy is the relative size
of the atoms.2 To investigate how the relative covalent radii
can influence the deviation from Vegard’s law, the deviation
at x=0.5 �i.e., �V�0.5�� is plotted against the absolute differ-
ence in the covalent radii of the constituent group III ele-
ments �i.e., �rM −rN�� in Fig. 6. The covalent radii used here
are taken from Cordero et al.25 Figure 6 shows that for very
small values of �rM −rN� a very small positive deviation from

FIG. 4. �Color online� The deviation from Vegard’s law ��V�x��
as a function of x in MxN1−xAs for the six random ternary alloys.
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FIG. 5. �Color online� Examples of As lattice sites in: �a� BAs, �b� In0.5Ga0.5As, and �c� InAs. In the binary alloys, BAs and InAs, the
B and In atoms form perfect tetrahedra around the As site, however, in In0.5Ga0.5As the bond lengths are not identical and are different from
the values in the constituent binary alloys.

FIG. 6. �Color online� The variation in �V�0.5� as a function of
�rM −rN�. The dotted line is the quadratic function �V�0.5�=a�rM

−rN�2+b�rM −rN�+c where a=−26.75, b=−0.015 and c=−0.034,
with an R2 value of 0.99. For comparison, the experimental data of
Katayama et al. �Ref. 20� and Gehrsitz et al. �Ref. 18� have also
been plotted.
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Vegard’s law is predicted. Conversely, as the difference in
the covalent radii increases the volume of the ternary alloy is
predicted to become increasingly smaller than that predicted
from Vegard’s law. A quadratic function, of the form
�V�0.5�=a�rM −rN�2+b�rM −rN�+c, has been fitted to our data
in order to provide a simple predictive model linking the
deviation from Vegard’s law in ternary arsenides and the ab-
solute difference in the covalent radii of the constituent
group III atoms. The parameters for this function are: a=
−26.75, b=−0.015, and c=−0.034 with an R2 value of 0.99.
The available experimental data18,20 is also reported in Fig. 6
and appears to support the results.

A possible explanation for the very slight positive devia-
tion predicted for AlxGa1−xAs can be found by considering
the covalent radii of the group III atoms and the resulting
unit cell volumes. The covalent radii for Al and Ga are 1.21
and 1.22 Å respectively,25 however the values obtained from
our simulations predict unit cell volumes of 175.90 Å3 for
AlAs and 175.43 Å3 for GaAs. This shows that despite the
covalent radius of Ga being greater than that of Al the vol-
ume for AlAs is greater than that for GaAs. Therefore,
AlxGa1−xAs is the only system examined here where the
group III atom with the largest covalent radius does not pro-
duce the binary alloy with the largest unit cell volume.

V. SUMMARY

We have employed DFT simulations of SQS supercells, to
elucidate the relationship between the difference in covalent

radii of the constituent group III atoms and the extent of the
deviation from Vegard’s law, exhibited by MxN1−xAs, zinc
blende structured, ternary alloys. For the majority of these
alloys a negative deviation is predicted �with the exception
of AlxGa1−xAs� and the magnitude of this deviation increases
as the difference in the covalent radii of the group III atoms
increases. The degree to which this trend can be applied to
other ternary alloys such as MxN1−xP is unknown, however,
Geist and Ascheron26 calculated a positive deviation from
Vegard’s law of 0.045 Å3 for Ga0.5Al0.5P and a negative de-
viation of −0.81 Å3 for Ga0.5In0.5P. These values are similar
to those predicted in our simulations of MxN1−xAs, for the
same combinations of group III atoms, which encourages us
to speculate that this relationship may extend to other zinc
blende structured ternary alloys.
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