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We develop a quantum field theoretical framework to analytically study the three-body constrained Bose-
Hubbard model beyond mean field and noninteracting spin wave approximations. It is based on an exact
mapping of the constrained model to a theory with two coupled bosonic degrees of freedom with polynomial
interactions, which have a natural interpretation as single particles and two-particle states. The procedure can
be seen as a proper quantization of the Gutzwiller mean field theory. The theory is conveniently evaluated in
the framework of the quantum effective action, for which the usual symmetry principles are now supplemented
with a “constraint principle” operative on short distances. We test the theory via investigation of scattering
properties of few particles in the limit of vanishing density, and we address the complementary problem in the
limit of maximum filling, where the low-lying excitations are holes and diholes on top of the constraint-
induced insulator. This is the first of a sequence of two papers. The application of the formalism to the
many-body problem, which can be realized with atoms in optical lattices with strong three-body loss, is
performed in a related work �S. Diehl, M. Baranov, A. Daley, and P. Zoller, Phys. Rev. B 82, 064510 �2010��.
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I. INTRODUCTION

Lattice theories with constrained bosons have proven to
be a powerful description of various spin models and
strongly correlated systems in condensed matter physics.1 On
the other hand, such theories with constrained lattice bosons
have recently arisen naturally in effective models for experi-
ments with cold atoms in optical lattices. In the presence of
large two-body and three-body loss processes, bosons in an
optical lattice are described on short timescales by a model
with two-body and three-body constraints, respectively.2,3

The behavior of the Bose gas is changed drastically; for ex-
ample, in the case of the three-body constraint, the creation
of an attractive Bose gas with atomic superfluid �ASF� and
dimer superfluid �DSF� phases is possible.3 While the possi-
bility of such an ASF-DSF transition has been predicted ear-
lier in the context of continuum attractive Bose gases near
Feshbach resonances,4,5 the constrained lattice system offers
an intrinsic stabilization mechanism to observe such a phe-
nomenology in experiments. This serves as one motivation to
study such models theoretically in more detail, in particular,
exploring the consequences of the presence of the constraint.
We also note that by the same dissipative blockade mecha-
nism, constrained models with fermions may be created.6,7

Here our goal is to describe the physics of a constrained
boson system beyond a mean field plus spin wave approach
�see, e.g., Ref. 1�. In order to do this, we find an exact map-
ping of the original constrained bosonic Hubbard model to a
theory of two coupled unconstrained bosonic degrees of free-
dom which interact polynomially. The resulting theory is
conveniently analyzed in the framework of the quantum ef-
fective action, which makes it possible to study both thermo-
dynamical and dynamical properties of the system via vari-
ous many-body techniques. As a consequence, we can
demonstrate several remarkable features of the three-body
constrained attractive Bose lattice gas, which are uniquely

tied to this constraint and not treated properly within a
simple mean field plus spin wave approach. In particular, we
show the emergence of an Ising quantum critical point on the
phase transition line between atomic to dimer superfluid
phases, which generically is preempted by the Coleman-
Weinberg mechanism8 where quantum fluctuations drive the
phase transition first order, rendering the correlation length
finite.4,5,9–11 We also show the presence of a bicritical point12

in the strongly correlated regime at unit filling of bosons,
which is characterized by energetically degenerate orders. In
our case this corresponds to the coexistence of superfluidity
and a charge-density wave. Furthermore, quantitative effects
of quantum fluctuations on the position of the phase bound-
ary can be investigated systematically.

The formalism we develop here has much broader appli-
cations than the bosonic lattice gas with a three-body con-
straint. In particular, it could be used to treat systems with
effective constraints arising from large interaction param-
eters, and it is also applicable to constrained fermionic mod-
els, which could arise due to strong loss features in three-
component fermion gases.7,13 As a result, we focus in this
paper on presenting the quantum field theoretical construc-
tion in detail and give benchmark calculations for this
method. Its application to the many-body attractive lattice
Bose gas with three-body constraint is left to,14 where we
discuss in detail the results outlined above. The results of the
present and the related paper14 are summarized in Ref. 15,
where we also indicate how to probe our findings in experi-
ments with ultracold atoms.

This paper is organized as follows. We begin by review-
ing the microscopic derivation of the three-body constrained
model via a dissipative blockade mechanism in Sec. II. In
Sec. III we give an overview of our formalism and a com-
parison to existing methods for treating constrained models.
Section IV contains the central result of this paper, the map-
ping of the constrained model to a coupled boson theory
already anticipated above. In Sec. V we apply the formalism
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to the two limits where true many-body effects are absent,
n=0 and maximum filling n=2. There our boson model re-
duces to Feshbach-type models, which we analyze in terms
of Dyson-Schwinger equations.16 We perform the above-
mentioned benchmark calculations at n=0. Furthermore, we
investigate hole/dihole scattering and bound state formation
at n=2, and present a fourth order perturbative calculation
for the dimer-dimer interaction. This will be needed as an
input for the many-body theory in Ref. 14. Our conclusions
are drawn in Sec. VI.

II. DERIVATION OF THE CONSTRAINED
MICROSCOPIC MODEL

In this section, we review how the three-body hardcore
constraint for the Bose-Hubbard model emerges from strong
three-body loss.3 We consider bosons in the lowest Bloch
band of an optical lattice, which are described by the Bose-
Hubbard Hamiltonian ���1�

HBH = − J�
�i,j�

ai
†aj − ��

i

ai
†ai +

1

2
U�

i

ai
†2ai

2, �1�

where ai�ai
†� is the bosonic annihilation �creation� operator at

site i. J is the hopping rate, � the chemical potential, and U
the onsite interaction. The convention �i , j� first sums over all
sites i, and then over the neighborhood of each i spanned by
sites j, and ��i,j�=�i��j	i�. This model is valid in the limit
where J ,Un��, where � is the separation between Bloch
bands and n is the mean density.

Three-body loss in this system is due to inelastic colli-
sions of three atoms, two of which form a deeply bound
molecule. Together with the third atom, molecule formation
is compatible with energy and momentum conservation, un-
like the case of two-particle collisions. Since the binding
energy of the molecule typically strongly exceeds optical lat-
tice depths, the resulting kinetic energy of the products
couples them to the continuum of unbound states, thus lead-
ing to their escape from the lattice. This picture allows us to
write down a zero-temperature master equation in the Mar-
kov approximation, which in the simplest approximation ne-
glects loss arising from particles on neighboring lattice sites.
This master equation is given by

�̇ = − i�Heff� − �Heff
† � +

�3

12�
i

2ai
3�ai

†3,

Heff = H − i
�3

12�
i

ai
†3ai

3, �2�

where the decay rate �3 can be roughly estimated from the
experimentally measured continuum loss rate via the usual
Wannier construction.3 We have absorbed the Schrödinger-
type terms of the dissipative evolution into an effective
Hamiltonian with imaginary, and thus decay, term. The re-
maining recycling term couples sectors in the density matrix
with particle number N ,N−3, . . . and ensures a norm con-
serving time evolution.

We are now interested in the limit of strong loss, �3
�J ,U, which suggests a perturbative expansion in 1 /�3. The

scale �3 only couples states with three and more particles per
site. We therefore define a projector P onto the subspace with
at most two atoms per site and its complement as Q=1− P.
To second order in perturbation theory we then find the pro-
jected Hamiltonian

HP,eff 
 PHBHP + PHBHQ�QHBHQ�−1QHBHP

= PHBHP −
i	

2 �
i

Pci
†ciP �3�

and the corresponding Master Equation is

�̇P = − i�HP,eff�P − �PHP,eff
† � + 	�

i

Pci�Pci
†3P �4�

with �P= P�P. The effective decay rate and jump operators
are given by

	 
 12
J2

�3
, ci = ai

2�
�j	i�

aj/�2. �5�

The respective terms in HP,eff have simple interpretations:
the leading term describes the coherent dynamics of lattice
bosons but with the constraint of not populating a single site
with more than two particles. This projected part H
= PHBHP can thus be written as a three-body constrained
Bose-Hubbard Hamiltonian

H = − J�
�i,j�

ai
†aj − ��

i

ai
†ai +

1

2
U�

i

ai
†2ai

2,

ai
†3 � 0. �6�

The leading correction is imaginary and describes particle
number loss. The decay rate 	�1 /�3 is, however, very small
in the considered limit. Consequently, over timescales 

=1 /	, one realizes indeed the physics of the Bose-Hubbard
model with three-body hardcore constraint. In Ref. 3, we
have shown that, e.g., in atomic Cesium systems close to the
zero crossing of the scattering length, the loss rate �3 is the
dominant energy scale. There, we have also analyzed the
many-body dissipative dynamics of Eq. �2� in the regime
described by Eq. �3� with exact density matrix renormaliza-
tion group �DMRG� methods in one spatial dimension, in-
cluding the specification of a scheme with which the ground
state of PHP can be reached. This motivates a more detailed
analytical investigation of the zero-temperature phase dia-
gram of Eq. �6�. As mentioned in the introduction, such a
scenario with dominant three-body loss also arises naturally
in three-component fermion systems close to a Feshbach
resonances,13 where it arises due to the proximity to rapidly
decaying Efimov state.

III. OVERVIEW

In this section, we provide an overview and discussion of
our construction and compare it with existing theoretical ap-
proaches. The starting point is a truncation of the onsite
bosonic Hilbert space to three states corresponding to zero,
single, and double occupancy. Following Altman and
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Auerbach,17 we introduce three operators creating these
states out of an auxiliary vacuum state. The operators are not
independent but obey a Holonomic constraint, such that one
of the degrees of freedom can be eliminated. We propose a
resolution of this constraint in a fashion that �i� produces
polynomial interactions between the two remaining operators
and �ii� allows us to interpret them as standard bosonic de-
grees of freedom. The Hamiltonian written in terms of these
bosonic operators is an involution on the physical Hilbert
space �associated to onsite occupation �2�, i.e., all matrix
elements coupling into the unphysical sector with onsite oc-
cupation �2 vanish. Consequently the partition sum for this
Hamiltonian decomposes into a physical and an unphysical
part. In order to distinguish the respective contributions, we
choose to calculate the quantum effective action from a func-
tional integral representation of the partition sum. This is the
most general polynomial in the operators of the theory which
is compatible with the symmetries of the microscopic Hamil-
tonian, respectively, the microscopic action. We argue that
the general restrictions imposed by symmetry are supple-
mented by a further new “constraint principle,” the require-
ment that the contributions to this polynomial be compatible
with the constraints imposed by the microscopic
Hamiltonian—the evaluation can proceed as in a standard
polynomial boson theory. This opens up the powerful tool-
box of modern quantum field theoretical methods for calcu-
lations in onsite constrained models and the effective action
provides a unified framework to treat the strong correlations
at short distances characteristic to lattice superfluids as well
as the deep infrared sector of the theory, where questions on
the nature of the phase transition can be addressed. Similar to
symmetries, the restrictions imposed by the constraint on the
full theory leverage over from the microscopic theory. How-
ever, unlike symmetries, the relevance of the constraint de-
pends on scale, being restrictive on short distances, while on
long distances power counting arguments lead to an effec-
tively unconstrained though interacting spin wave theory.

Our approach may be conceived as a proper quantization
of the Gutzwiller mean field theory: The construction implies
that the zero-order contribution to the thermodynamic effec-
tive potential is the Gutzwiller mean field energy. The qua-
dratic fluctuations reproduce spin wave theory. However, due
to the exact nature of the mapping we can also assess the
effects of interactions systematically. At the same time, this
shows that while the mapping is exact, it builds on the
knowledge of qualitative properties of the ground state of the
system, such as the symmetry-breaking pattern. In other
words, given this pattern, we can systematically construct the
excitations and their interactions on top of it. The bias intro-
duced by the assumptions on the ground state is actually
shared with all analytical approaches to many-body systems
involving symmetry breaking.

One established way to deal with constrained bosonic
theories with a finite number of onsite states would be to
map it to the corresponding spin model �spin 1 in our case�
and subsequently analyze this model. In practice, however,
the analytical evaluation of the spin model beyond a free
spin wave level is technically challenging. Furthermore, the
spin language is not particularly advantageous and physically
intuitive for models which originate from a constrained bo-

son theory, cf. Sec. IV. We see a central advantage of our
formalism vs such a spin model approach in the straightfor-
ward interpretation of the two bosonic fields in physical
terms, which are close to the original degrees of freedom.
For example, at low density n
0 and close to maximal fill-
ing n�2 they may be interpreted as atoms and bound states
of these, dimers, respective holes, and diholes, which are
indeed expected to form the dominant low energy excitations
in the respective situations. At intermediate densities hybrid-
ization takes place. The microscopic Hamiltonian reduces to
Feshbach-type models with the characteristic splitting term
of dimers/diholes into atoms. The role of the detuning is now
played by the interaction term U. We may view this result as
a built-in Hubbard-Stratonovich transformation on the level
of the Hamiltonian, which importantly respects the con-
straint. At this point, we note an important difference of our
approach to the one by Dyson and Maleev,18 which map a
spin model to a model with a single bosonic degree of free-
dom. The generalization of a Hubbard-Stratonovich transfor-
mation to such a model would be problematic.

Other related approaches to constrained models have been
put forward in the context of slave boson theories for the
description of strongly correlated fermions19,20 or in the
Schwinger-boson or Holstein-Primakoff approach to spin
models.1 While these formulations are, in principle, exact,
the practical implementation of the constraint is done on an
approximate level only,20 or in a fashion that makes it diffi-
cult to assess coupling constants of an effective low-energy
theory or thermodynamic quantities.19 Our approach is tai-
lored to make these accessible. Furthermore, we stress that
our exact implementation of the constraint differs from the
conventional approximate treatment via expansion of the
square root as done, e.g., for the case of large spin S in the
Schwinger-boson or Holstein-Primakoff approaches.1 We
provide concrete benchmarks for our procedure through the
analysis of the vacuum problem of a few scattering particles.
While our approach yields the correct nonperturbative
Schrödinger equation for two-particle scattering and the right
coefficient for an induced nearest-neighbor �nn� dimer-dimer
interaction, the square-root expansion would produce wrong
prefactors.

Clearly, going beyond the mean field approach in con-
strained bosonic models is nowadays possible making use of
powerful numerical techniques such as quantum Monte
Carlo21–23 or variational simulations.24 However, often a
more analytical understanding of the physics leading to a
certain quantitative effect is desirable. Furthermore, as we
have mentioned above, our formalism can be extended to
fermion systems, which is not straightforward with numeri-
cally exact techniques.

IV. MAPPING THE CONSTRAINED MODEL TO AN
INTERACTING BOSON THEORY

In this section we derive the mapping of the bosonic
model with three-body hardcore constraint Eq. �6� to an un-
constrained model with two bosonic degrees of freedom,
coupled via polynomial interactions. This construction de-
pends on the filling of the lattice. We concentrate on the
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“vacuum limit” of zero density and temperature first, where
one deals with a few particles and many-body effects, such
as spontaneous symmetry breaking, are absent. The generali-
zation to arbitrary filling 0�n�2 is performed in Sec. IV C.

A. Reduction in three on-site states

We start from the three-body constrained Bose-Hubbard
Hamiltonian �6�. The constraint makes it possible to restrict
the Hilbert space on each site to three states with occupation
0,1,2. We introduce three operators that create “particles” in
these states. Such a slave-boson-type procedure has been
proposed previously by Altman et al.17 in the context of the
repulsive Bose-Hubbard model, where it constitutes an ap-
proximation. Here this step is exact

	�� = t�,i
† 	vac� =

1
��!

ai
†�	vac�, � = 0,1,2. �7�

The operators t�,i are so far only defined by their action of
the “vacuum” state 	vac� and we discuss their commutation
relations below. They obey a Holonomic constraint

�
�=0

2

t�,i
† t�,i = 1. �8�

In the space spanned by 	0� , 	1� , 	2� we may express the cre-
ation operator as

ai
† = �2t2,i

† t1,i + t1,i
† t0,i. �9�

Hence we can express the original Hamiltonian equivalently
in terms of the new operators, defining non-Hermitian kinetic
operators

Ki
�10� = t1,i

† t0,i, Ki
�21� = t2,i

† t1,i �10�

and Hermitian potential energy operators

n̂1,i = t1,i
† t1,i, n̂2,i = t2,i

† t2,i �11�

we obtain

Hkin = − J�
�i,j�

�Ki
�10�Kj

�10�† + 2Ki
�21�†Kj

�21� + �2�Ki
�21�Kj

�10�†

+ Ki
�10�Kj

�21�†�� ,

Hpot = − ��
i

n̂i + U�
i

n̂2,i, n̂i = n̂1,i + 2n̂2,i. �12�

We observe that the local terms become simple �quadratic� in
this representation, while the nonlocal terms are fourth order
in the operators, giving rise to “kinematic” interactions. The
onsite interaction part therefore can be treated exactly while
the complexity of the problem is now encoded in the hop-
ping term. This is reminiscent of the conventional Gutzwiller
�mean field� approach to the Bose-Hubbard model. Indeed,
implementing a Gross-Pitaevski-type mean field theory for
the above Hamiltonian by formally replacing the operators
by complex valued amplitudes t�,i→ f�,i, the above Hamil-
tonian operator reduces to the Gutzwiller energy expression
EGW= ��	H	�� for the case that the wave function 	��

=
i	��i is truncated to the three lowest Fock states on each
site, 	��i=��=0

2 f�,i	��i. In this case, the Holonomic constraint
reduces to the normalization condition for the wave function,

i�� 	��i=��f�,i
� f�,i=1∀ i.

It may be tempting to try to develop a many-body theory
including the description of spontaneous symmetry breaking
at finite density for the above Hamiltonian directly in terms
of the t� operators in the sense of a Bogoliubov-type theory
on top of the Gross-Pitaevski mean field, via a replacement
of the type t�,i= f�,i+�t�,i familiar from low density con-
tinuum theories. Such a procedure, however, leads to severe
consistency problems when encompassing the full range of
densities allowed by the three-body hardcore constraint, 0
�n�2. Therefore, we first focus on the “vacuum limit” n
=0 where no spontaneous symmetry breaking is present and
where Hamiltonian �12� describes the physics of a few scat-
tering particles. The generalization to arbitrary density is per-
formed in Sec. IV C.

B. Implementation of the Holonomic constraint:
Interacting boson theory

The Holonomic constraint is now used to eliminate one of
the operators. In the limit n=0, all the amplitude resides in
the zerofold occupied state, and the mean field vacuum is
described by 	��=
it0,i

† 	vac�. We thus eliminate the operators
t0,i. The remaining two operators describe excitations on top
of this mean field vacuum and will have a natural interpre-
tation in terms of atoms and dimers. At this point, it is trans-
parent that our construction builds on the proper choice of
the qualitative features of the physical vacuum. This prereq-
uisites a certain understanding of the physics and introduces
a bias in our construction. The subsequent construction is
however exact and can be used to quantitatively calculate
properties of the system. The situation is actually similar to
the treatment of interacting Bose gases in the continuum,
where a condensation of the particles in the zero mode is
assumed to expand in the fluctuations around this mean field.

The Holonomic constraint can, in principle, be imple-
mented by the replacements

t1,i
† t0,i → t1,i

† ei�i�1 − n̂1,i − n̂2,i,

t0,i
† t1,i → �1 − n̂1,i − n̂2,ie

−i�it1,i. �13�

The Holonomic constraint is local and only restricts the am-
plitude of t0,i, therefore we introduce a phase-amplitude rep-
resentation 	t0,i	exp i�i. We first discuss the role of this phase
and then turn to the more interesting question of the ampli-
tude.

Inserting the replacement into Eq. �12�, we observe that a
local redefinition of t1 and t2 as

t1,i → t̃1,i = t1,ie
i�i, t2,i → t̃2,i = t2,ie

i�i �14�

for all i completely removes the phase from the Hamiltonian.
Therefore, we can work in this rotated frame from the outset
and simply consider the two complex valued operators t̃1;2,i.
We will drop the tilde in the following.

Now we study the amplitude. Obviously the square roots
are impracticable for any field theory calculation where one
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has to work with polynomials in the field operators. How-
ever, on our subspace, the matrix elements of both �1− n̂1,j
− n̂2,j�1/2 and �1− n̂1,j − n̂2,j� are the same: either 1 or 0. Con-
sequently, on the subspace we may replace

t1,i
† t0,i → t1,i

† Xi, t0,i
† t1,i → Xit1,i,

Xi = 1 − n̂1,i − n̂2,i. �15�

Note that the second expression could also be replaced by
�1− n̂1,i− n̂2,i�1/2t1,i→ t1,i, since the action of this operator is
nonzero only if originally there is an atom on the ith site but
when this atom is annihilated by t1,i with an empty state left,
the action of the square root is simply unity. However, for
hermeticity issues we prefer to work with the variant in Eq.
�15�.

Formally, we may justify the replacement of the square
root by a polynomial by the following formula: consider a

linear operator X̃ with the property X̃2= X̃. Then for a func-
tion f of this operator one has, using the Taylor representa-
tion

f�X̃� = �
n=0

�
f �n��0�

n!
X̃n

= f�0� + X̃�
n=1

�
f �n��0�

n!
1

= f�0��1 − X̃� + X̃�
n=0

�
f �n��0�

n!
1

= f�0��1 − X̃� + f�1�X̃ . �16�

In our case, we have X̃=1−Xi= n̂1,i+ n̂2,i for all i, and f�X̃�
=�1− X̃. Indeed, X̃2= X̃. Seen as a function of Xi=1− X̃, we
have f�Xi�=�Xi= f�0�Xi+ f�1��1−Xi�. Since also Xi

2=Xi the
latter result would have been obtained from the Taylor rep-

resentation of f�Xi� around 0. The auxiliary operator X̃ is
introduced to circumvent an expansion of the square root
around 0 but leads to the same result. No approximation has
been used here.

Having implemented the constraint, we are now going to
show that the remaining operators t1 , t2 can be treated as
standard bosonic operators. Consequently the Hamiltonian
�or the corresponding action� with the above replacements
will lend itself for a treatment with well-established field
theoretic methods. To show that we may interpret t1 , t2 as
bosonic operators, we assume a bosonic Hilbert space for
atoms t1 and dimers t2 at each site i, which reads Hi
= �	ni�	mi�� ,ni ,mi=0,1 , . . .. The complete Hilbert space is
H=
iHi. We divide the onsite Hilbert spaces into a physical
subspace Pi and an unphysical one Ui, Hi=Pi � Ui; the sub-
spaces are orthogonal by construction. The physical subspace
is spanned by the combinations

Pi = �	0i�	0i�, 	1i�	0i�, 	0i�	1i�� . �17�

In our construction of introducing atom and dimer operators,
the state with two atoms on one site is represented as one
dimer 	0i�	1i�; 	2i�	0i� instead is already part of Ui.

A first observation is that standard bosonic operators have
the same action on the physical subspace as the original op-
erators t1 , t2 defined via Eq. �7� since the bosonic �n en-
hancement �b†	n�=�n+1	n+1� for bosonic operators b†� is
either 0 or 1 on the physical subspace. The assumption of
t1 , t2 being bosons is thus consistent on the physical sub-
space.

Next we consider Hamiltonian �12� with the constraint
implemented via Eq. �15�, with the goal to show that the time
evolution generated by this Hamiltonian does not couple the
two subspaces. It reads

Hkin � �
�i,j�

Hi,j

= − J�
�i,j�

�t1,i
† XiXjt1,j + 2t2,i

† t2,jt1,j
† t1,i

+ �2�t2,i
† t1,iXjt1,j + t1,i

† Xit1,j
† t2,j�� ,

Hpot = �
i

�U − 2��n̂2,i − �n̂1,i. �18�

In the kinetic term, the first expression describes the condi-
tional hopping of single atoms, the second represents the
exchange of a dimer and an atom on neighboring sites, and
the last one describes the conditional bilocal splitting and
recombination of a dimer into atoms. It can be easily shown
that H maps physical on physical states, and unphysical on
unphysical ones, while there are no transitions between the
subspaces generated by Eq. �18�. For that purpose it is suf-
ficient to check that

Hi,j	ni�	mi�	nj�	mj� �19�

is in PiP j if the initial state is in PiP j �a simple nine-
dimensional space�. Since this means that all matrix elements
�u	Hij	p�=0, this is sufficient to conclude that starting in U
the mapping will be into U since for the Hermitian H one has
�p	Hij	u�= �u	Hij	p��=0. In consequence H can be written in
the form

H = HP � 1U + 1P � HU. �20�

In other words, P=
iPi and U=
iUi are invariants under
application of H, and thus also repeated application does not
lead out of the subspaces. Therefore, we also have

exp�− �H� = exp�− �HP� � 1U + 1P � exp�− �HU� .

�21�

The partition sum is the given by

Z = Tr exp�− �H�

= �
�p,u�

��p	,�u	��exp�− �HP� 0

0 exp�− �HU�
��	p�

	u�
�

= �
�p�

�p	exp�− �HP�	p� + �
�u�

�u	exp�− �HU�	u� . �22�

Thus we get contributions from both the physical and the
unphysical part of the Hilbert space. However, the key point
is that they do not mix; thus the answers found for the physi-
cal part will be correct and we only need to find the criterion
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to discriminate the physical from the unphysical part of the
partition sum.

This issue is addressed in the last step of the construction.
Indeed, such a setting is provided by using the effective ac-
tion to encode the physical information of the theory, as we
will now outline. First we represent the partition function as
a Euclidean functional integral, which is straightforward as
we simply have to quantize a theory with two coupled
bosonic degrees of freedom25

Z =� Dt1Dt2 exp − S�t1,t2� ,

S =� d
��
i

t1,i
† �
t1,i + t2,i

† �
t2,i + H�t1,t2�� , �23�

where H is the Hamiltonian above, however to be interpreted
in the Heisenberg picture with �imaginary� time-dependent
fields and the fields are now classical fluctuating variables. S
is the classical Euclidean action. In the next step we intro-
duce a source term in the partition function

Z�j1, j2� =� Dt1Dt2 exp − S�t1,t2�

+� d
�
i

�j1,i
† t1,i + j2,i

† t2,i + c.c.� ,

Z = Z�j1 = j2 = 0� . �24�

The source terms introduce linear terms in t1,2, which mix
the physical and the unphysical sectors. Since j1,2 is only
used in a pivotal sense to generate the correlation functions
upon functional differentiation, and set to zero at the end of
the calculation, this does not pose any conceptual problems.
The situation is analogous to the effect of the source term on
the symmetries of the theory, which are broken explicitly for
nonzero sources.

The effective action is defined as the Legendre transform
of the free energy W�j�=log Z�j� �we introduce the short-
hands �̂= �t1 , t1

† , t2 , t2
†� , j= �j1 , j1

† , j2 , j2
†� �Ref. 26��

	��� = − W�j� +� jT�, � �
�W�j�

�j
, �25�

where �= ��̂� is the field expectation value or the “classical”
field. By the Legendre transform, the active variable is
changed from j to �. The effective action has the following
representation in terms of a functional integral

exp − 	��� =� D�� exp − S�� + ��� +� jT�� ,

j =
�	���

��
, �26�

where ��� �̂−�. The last identity is the full quantum equa-
tion of motion and the equilibrium situation we are interested
in is specified by j=0 where no mixing between the physical
and the unphysical sector occurs. When fluctuations are un-

important, the integration over the �� can be dropped and the
above equation reduces to 	���=S���, i.e., the quantum ef-
fective action reduces to the classical one.

The effective action expresses the theory in terms of the
fields �. The vertex expansion generates the one-particle ir-
reducible �1PI� correlation functions

	��� = �
l

1

l!
�

x1,. . ..,xl

	i1,. . .,il
�l� �x1, . . . ,xl��i1

�x1�, . . . ,�il
�xl� .

�27�

Usually, the coupling coefficients of the expansion are only
restricted by the symmetries of the theory—the effective ac-
tion is the most general polynomial in the fields � which is
compatible with the latter. Thus, formulating the theory in
terms of physical objects—the fields �—offers the advantage
of directly leveraging the power of symmetry considerations
from the microscopic �or classical� to the full quantum level.

In complete analogy, we can make use of the restrictions
present in the microscopic Hamiltonian when computing the
quantum effective action. Since, as we have shown above, no
couplings mapping from U→P are generated, we may write
down the most general form for the effective action for the
physical sector of the theory by directly excluding couplings
which would violate this constraint. In practice, this concerns
processes which change the on-site occupation number. For
example, a process which involves creation of a dimer on
site i must be accompanied by an appropriate constraint that
the site be empty prior to the process. Thus, the operator t2

†

must always appear in the combination t2
†Xi. Furthermore

requiring hermeticity of the terms appearing in the effective
action, we conclude that the effective nearest-neighbor dimer
hopping term is of the form Jefft2,i

† XiXjt2,j. In the practical
calculation, we may restrict ourselves to the computation of
the coefficient which is simplest to extract—obviously the
quadratic one. In sum, we have obtained the following result:
the usual symmetry constraints on the quantum effective ac-
tion are now supplemented by a further fundamental prin-
ciple, namely, the restrictions present in the microscopic
theory which originate from the hardcore constraint.

C. Arbitrary density

The construction presented in the last section focused on
the zero density limit, describing the scattering of few par-
ticles in the absence of many-body effects. At a finite density,
the low-temperature physics of bosons is characterized by
the spontaneous breaking of global phase rotation symmetry
U�1�. The ground state exhibits a condensate mean field,
which has to be incorporated in the theoretical description of
the system. One customary approach is to quantize a theory

with degrees of freedom b̂=s+�b via the path integral,
where �b is the fluctuation around the classical field s. How-
ever, in our case this procedure does not work since possible
values of the mean field lie on the compact interval �0,2� and
due to the nonlinear nature of the constraint. To this end we
follow Huber et al.,27 who implement the procedure on the
mean field plus spin wave level. We will see that our treat-
ment of the constraint can be applied also in this case, such
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that we arrive at an exact formulation of the problem in the
presence of spontaneous symmetry breaking. The procedure
consists in first introducing the mean field via a unitary ro-
tation in the space of operators �Eq. �29� below� and then
quantizing this theory of operators which are free of expec-
tation values via the path integral. In this way, we can obtain
a picture which is fully consistent with general features of
many-body theories with U�1� symmetry, in particular, we
can derive Goldstone’s theorem within our framework.14

Here we concentrate on homogeneous ground states, not-
ing that the implementation of spatially dependent order
parameters—such as a charge-density wave—is straightfor-
ward. One then simply has to use rotation matrices which
vary from site to site. Such a situation will be encountered in
Ref. 14.

Our treatment of the vacuum problem at n=0 started from
the idea that in this case, all the amplitude resides in the
zerofold occupied state and that fluctuations around this state
have to be considered. The excitations on top of this “mean
field” vacuum, defined as 	��=
it0,i

† 	vac�, then turned out to
be single atoms and dimers, respectively, as expected intu-
itively, and we have formulated the corresponding quantum
field theory to describe their scattering properties.

In the many-body problem, we proceed in complete anal-
ogy by first introducing a mean field vacuum. A general ho-
mogeneous mean field vacuum may be written as28

	�� = 

i
��

�

r� exp�i���	��i�
= 


i
��

�

r� exp�i���t�,i
† �	vac�=! 


i

b0,i
† 	vac� . �28�

The introduction of b0,i
† as the new vacuum creation operator

implies the need for a redefinition of the remaining two de-
grees of freedom. Such a transformation is performed via a
two-parameter unitary rotation, whose rotation angles are
chosen such that the new operators fluctuate around the new
vacuum state and do not feature expectation values �cf. Fig.
1�

b�,i
† = �R�R����t�,i

† �29�

with the explicit form of the rotation matrices

R� = � cos �/2 0 sin �/2e2i�

0 1 0

− sin �/2e−2i� 0 cos �/2
� ,

R� = �1 0 0

0 cos �/2 − sin �/2ei�

0 sin �/2e−i� cos �/2
� . �30�

A finite ���� corresponds to a finite amplitude in 	2��	1��.
The precise relation is

r0 = cos �/2, r1 = sin �/2 sin �/2, r2 = sin �/2 cos �/2.

�31�

The strategy is to first rotate to the new mean field state by
inverting the unitary matrix in Eq. �29� and subsequently

implement the constraint. Analogous to the procedure in the
physical vacuum, we may now eliminate the operator b0
which is chosen to include the expectation value. We note
that the local rotating frame transformation, Eq. �14�, can be
applied also here, showing that the phase of b0 is irrelevant
for the Hamiltonian. Consequently we can implement the
constraint by the formal replacement

b0,i → Xi � 1 − b1,i
† b1,i − b2,i

† b2,i, b0,i
† b0,i → Xi. �32�

The second expression is simply a rearrangement of the Ho-
lonomic constraint. The resulting bosonic Hamiltonian,
which is then quantized by means of a functional integral, is
rather complex, and its explicit form and analysis are dis-
cussed in Ref. 14. However, it exhibits a simple structure

H = EGW + HSW + Hint. �33�

EGW is the Gutzwiller mean field energy and HSW describes
the quadratic spin wave theory.29 The corrections to the mean
field phase diagram, as well as nontrivial effects in the deep
infrared physics which we analyze in Ref. 14 are not cap-
tured at this quadratic level. They are all encoded in the
interaction part Hint.

At this point, let us compare our findings to the work of
Huber et al.27 We have verified explicitly that the quadratic
part of the Hamiltonian coincides with the spin wave or Bo-
goliubov theory obtained in that work, though the authors
use a different prescription for the resolution of the con-
straint for a single b0 operator. The reason is that whenever
the operator b0 appears in multiplicative combination with
another operator b1 ,b2, the replacement prescribed by the
first expression of Eq. �32� gives rise to at least cubic terms
neglected in the spin wave approximation. In contrast, when
the combination in the second expression of Eq. �32� ap-

FIG. 1. �Color online� Rotation to a new ground state: the
vacuum states n=0�2� are described by the mean field vector �red
online� pointing from the center of the sphere in positive �negative�
z direction. The fluctuations form a coordinate system �black on-
line� in which the direction collinear to the mean field vector is
eliminated via the implementation of the constraint. All mean field
vectors not in the z direction describe a homogeneous superfluid
ground state. A situation analogous to the one for the vacua is
achieved via an appropriate rotation of the coordinates for the
fluctuations.
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pears, one simply has to rearrange the constraint and no dif-
ference between the two approaches appears.

The many-body problem is completely specified only
upon indicating conditions which determine the two rotation
angles � ,�. In Ref. 14 we show that they are fixed by gap
equations which emerge as a consequence of Goldstone’s
theorem. Furthermore, the chemical potential is fixed via the
equation of state when calculations at fixed filling are in-
tended. These conditions are exact but implicit and can be
resolved approximately only. The simplest approximation re-
produces the classical or mean field solution as anticipated
above but it is possible to go beyond this simple scheme with
our setting.14

D. Relation to a spin-1 model

From the availability of only three onsite states, it is clear
that there exists a mapping of the three-body constrained
Bose-Hubbard model to a spin-1 model. Nevertheless, it
seems advantageous to us to work with the above construc-
tion of mapping to a coupled boson theory. The reason is
twofold.

First, the practical analytical analysis of spin models be-
yond the standard mean field plus noninteracting spin wave
approximation is technically very hard. Indeed, usually one
resorts to introducing an artificial smallness parameter �in-
verse number of field components 1 /N, inverse total spin
1 /S�, such that a Gaussian theory becomes exact in the limit
N ,S→�, and organizes an expansion scheme around this
noninteracting fixed point �1 /N ,1 /S expansions�. This is
then followed by a continuation of the results to the physical
system of interest, where N and S are typically small. How-
ever, in our model S=1, and most of the effects which we
discuss here and in Ref. 14—ranging from the nonperturba-
tive formation of the dimer bound state in vacuum over cor-
rections to the phase boundary to the true nature of the phase
transition—are not accessible to leading order in the above-
mentioned schemes since they are all rooted in the intrinsic
nonlinearities of the theory.

Second, typically the direct mapping of a bosonic theory
with hardcore constraint yields a rather complicated effective
microscopic spin Hamiltonian, which further complicates an
analysis in terms of spin degrees of freedom. For example, in
our case the corresponding spin model would feature cubic
and quartic bilocal spin interactions �si

zsi
+sj

−+H.c. ,
�si

zsi
+sj

−sj
z+H.c. with interaction constants of the same order

as the quadratic terms.27 These terms break the rotation sym-
metries typically present in generic Heisenberg models for
magnets. Physically, the appearance of such terms has to be
expected since none of these rotation symmetries are present
in the hardcore boson model. Clearly, mapping the con-
strained model to a theory of unconstrained coupled boson
degrees of freedom, which find a natural interpretation in
terms of single particle and bound state degrees of freedom,
is closer to the physics of the boson theory with hardcore
constraint.

Reversely however, we emphasize that the class of spin
models which can be readily encompassed within our for-
malism is made up of Heisenberg XX models in external

fields with possible extensions to XXZ models with small
anisotropy. The power of conventional field theory tech-
niques can thus be applied to such models.

V. FLUCTUATIONS IN THE VACUUM PROBLEM

In this section, we analyze the quantum field theory de-
rived above in the limits n=0,2. This provides a useful start-
ing point for the treatment of the many-body problem ad-
dressed in Ref. 14. First we focus on the two-body problem,
for which we present the exact solution within our frame-
work. The Schrödinger equation for two-particle scattering is
correctly reproduced. Clearly, for two particles, the physical
three-body constraint cannot play a role. However, a math-
ematically wrong or only approximate implementation of the
constraint will produce a wrong scattering equation as we see
explicitly. Second, we use the language of Feynman dia-
grams to explicitly calculate the two-dimer interaction
strength up to fourth order in the perturbative regime J / 	U	
�1. This provides another benchmark for our formalism.
Third, we consider hole scattering in the limit n=2 and dis-
cuss the formation of a dihole bound state, which exhibits
properties different from the dimer bound state at n=0.

Below we introduce the formalism used to do concrete
calculations, the Dyson-Schwinger equations, demonstrating
how to use the powerful methods of quantum field theory in
our problem. These equations provide an exact hierarchy of
relations between correlation functions. We find that in the
vacuum limit, where the system of equations describes few-
particle scattering, the equations for the dimer self energy
and the splitting vertex are one loop. Furthermore, the atom
self-energy is not renormalized. These three generalized cou-
plings form a closed system of equations, decoupling from
higher interaction vertices. We find the exact solution for
these equations. These ingredients lead to the exact solution
of the two-body problem, which manifests itself in the emer-
gence of the nonperturbative Schrödinger equation for the
bound state.

In order to compute higher interaction vertices, we need
to take higher loop diagrams into account and the system of
equations for these vertices is not closed. However, we can
establish a perturbative expansion of the equations in the
limit J / 	U	→0. In Ref. 14, we establish the relation of the
resulting effective theory to a spin-1/2 model in this limit.

A. Dual Feshbach model

Before embarking the calculations, let us briefly discuss
the microscopic model emerging from our quantization pre-
scription. We start with the microscopic action, obtained
from Hamiltonian �18� using Eq. �23�. The complex fields
t1,2
† , t1,2 are now fluctuating classical variables and we may

permute them at will

S�t1,t2� =� d
��
i

�t2,i
† �
���
 − 2� + U�t2,i�
� + t1,i

† �
�

���
 − ��t1,i�
�� − J�
�i,j�

�t1,i
† �
�t1,j�
�Xi�
�Xj�
�

+ 2t2,i
† �
�t2,j�
�t1,j

† �
�t1,i�
� + �2�t2,i
† �
�t1,i�
�t1,j�
�
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+ t2,i�
�t1,i
† �
�t1,j

† �
��Xj�
��� . �34�

This action has the form of a Feshbach resonance model �see
Ref. 30 for the fermion case, and Refs. 4 and 5 for the
bosonic case� on the lattice, with nonlocal interaction param-
eters: the dimer degree of freedom couples to the chemical
potential with double strength, taking care of the double
atom number in the dimer. The role of the “detuning” of the
dimer state from the atoms is played by the onsite interac-
tion. We note an interesting duality to the standard Feshbach
model in the continuum for atom and dimer degrees of free-
dom obtained from a Hubbard-Stratonovich decoupling of an
attractive �local� two-body interaction u: such a procedure
generates a detuning ��1 /u while in our case the detuning
��U. Physically, this means that the bound state formation
in our lattice scenario is a weak coupling phenomenon while
being a strong coupling �resonant� effect in the continuum.
Further note that the usual lattice construction using the
single band approximation is delicate for systems close to
Feshbach resonances31 and a realization of lattice Feshbach
models in the resonant case is therefore not a straightforward
task while it is realized in a natural way here.

The physically most important coupling is the Feshbach
or splitting vertex. It describes the formation of a dimer out
of two atoms and its reverse. In contrast to the conventional
continuum Feshbach model, the splitting vertex in our model
is bilocal, which in momentum space induces a form factor
but does not lead to complications and still allows for an
exact solution of the two-body problem. The term in the third
line describes a nonlocal interaction between atoms and
dimers.

In the loop calculations we prefer to work in frequency
and momentum space. With the definitions

t�,i�
� = �
q

eiqxit�,q, t�,i
† �
� = �

q

e−iqxit�,q
† ,

xi = �
,xi�, q = ��,q�, �
q

=� d�

2�
�
q

,

�q = J�
�=1

d

cos�qe��, �Xq,k = + �t1,q
† t1,k + t2,q

† t2,k� �35�

the Fourier transformed action reads

S�t1,t2� = �
q

�t1,q
† �i� − � − 2�q�t1,q + t2,q

† �i� − 2� + U�t2,q�

− �2�
q1,q2,q3

��q1 − q2 − q3���q2
+ �q3

�

��t2,q1

† t1,q2
t1,q3

+ H.c.� − 2�
q1,. . .,q4

���q1 − q2 + q3 − q4���q1−q4
+ �q2−q3

�

�t1,q1

† t1,q2
t2,q3

† t2,q4
+ �2�

q1,. . .,q5

��q1 − q2 − q3 + q4

− q5���q1−q2
+ �q1−q3

��t2,q1

† t1,q2
t1,q3

�Xq4,q5
+ h.c.�

+ 2�
q1,. . .,q4

��q1 − q2 + q3 − q4�

���q1
+ �q2

�t1,q1

† t1,q2
�Xq3,q4

− �
q1,. . .,q6

��q1 − q2 + q3 − q4 + q5 − q6�

���q2+q3−q4
+ �q2+q5−q6

�t1,q1

† t1,q2
�Xq3,q4

�Xq5,q6
.

�36�

B. Dyson-Schwinger equations

Dyson-Schwinger equations �DSEs� �Ref. 16� are a direct
consequence of the shift invariance of the functional integral

0 =
1

Z�j�� D���̂�
�

��̂
exp − S��̂� + jT��̂

=
1

Z�j�� D���̂��−
�S

��̂
+ j�T

exp − S��̂� + jT��̂ . �37�

Switching to the effective action, i.e., requiring j=�	 /��,
the above equation turns into

�	

��
= � �S

��̂
�	 j=�	/��. �38�

This is the DSE for the one-point function. To reveal the
structure of the DSEs for higher N-point functions, we con-
sider a general classical action with M vertices. We write the
classical action in a vertex expansion

S��̂� = S��� + �
N=1

M
1

N!
S�1,. . .,�N

�N� ��̂�1
, . . . ,��̂�N

. �39�

Here �i is a multi-index collecting field type as well as space
and timelike �or momentum and frequency� indices. S and
S�N� still depend on the classical field �. Plugging the vertex
expansion into Eq. �38� relates the field derivative of the
effective action to 1PI Green’s functions up to order M. We
can turn the DSE into a manifestly closed equation, i.e., an
equation which is expressed solely in terms of the effective
action and its functional derivatives. It reads

�	

���

= S�
�1� +

1

2!
S�1�2�

�3� G�1�2
+ �

N=4

M
1

�N − 1�!
S�1,. . .,�N−1�

�N�

��

i=3

N−1

G�i�i

�

���i

�G�1�2
. �40�

For N=4 the derivative operator in the squared brackets is
just the unit matrix. The full propagator is denoted by G and
we have the relation G��= �	�2����

−1 . The full propagator as
well as the classical vertices are functions of the classical

QUANTUM FIELD THEORY… . I. FORMAL DEVELOPMENTS PHYSICAL REVIEW B 82, 064509 �2010�

064509-9



field, S�N�=S�N���� ,G=G���, such that the DSE for the
N-point correlation function can be obtained by taking N
−1 functional derivatives on Eq. �40�. We observe that the
one-point function �	 /��� depends on correlation functions
up to order M −1. Thus, the DSE for the N-point function
features vertices up to order M +N−2. Furthermore the self-
consistency equations for the correlation functions for a
theory with classical vertices up to order M features
M −2-loop diagrams since the order M vertex has M −1 in-
ternal lines.

C. Exact solution of the two-body problem

The scattering problem is described by two coupled inte-
gral equations for the exact dimer self-energy and for the
exact Feshbach vertex, cf. Fig. 2 and Appendix for the deri-
vation. Inserting the frequency and momentum configura-
tions appropriate for two-body scattering as depicted in Fig.
2 and integrating out the frequencies, we obtain

Gd
−1�E,k� = Gd

�0�−1�E,k� +  �E,k� ,

 �E,k� = −
1
�2
� ddq

�2��d

	k�q�	k
�0��q�

E + 	k
�0��q�

,

	k�p� = 	k
�0��p� +� ddq

�2��d

	k�q��	k
�0��p� + 	k

�0��q��
E + 	k

�0��q�
�41�

with the definitions

	k
�0��q� = − 2�2��q + �q−k�, E = �2�i� − 2�� , �42�

where � is the Euclidean external frequency. The difference
between the full �Gd�E ,k�� and the bare �Gd

�0��E ,k�� Green’s
function is the dimer self-energy,  �E ,k�=Gd

−1�E ,k�
−Gd

�0�−1�E ,k�. Note carefully the appearance of both external
�p� and loop �q� momenta in the equation for the full Fesh-
bach vertex. The second equation can be solved indepen-
dently of the first one. This can be done by choosing the
following ansatz for the full vertex

	k�q� = 	k
�0��q���0��E,k� + ��1��E,k� , �43�

where the unknown ��0� is dimensionless while ��1� carries
dimension of energy. The two unknown functions depend
only on the external center-of-mass momentum k and the
energy variable E; the dependence on the relative momentum
q only appears in the coefficient of ��0�. Comparing coeffi-
cients this ansatz yields the following system of coupled
equations for the unknowns:

��0� = 1 + ��0��1 − EI� + ��1�I ,

��1� = ���1� − ��0�E��1 − EI� , �44�

where we use the abbreviation

I�E,k� =� ddq

�2��d

1

E + 	k
�0��q�

�45�

and the simplifications

� ddq

�2��d

	k
�0��q�

E + 	k
�0��q�

= 1 − EI ,

� ddq

�2��d

	k
�0��q�	k

�0��q�
E + 	k

�0��q�
= E�EI − 1� . �46�

The solution of the above equations is

��0� = 1, ��1� = E − I−1,

	k�q� = �E + 	k
�0��q�� − I−1. �47�

The exact self-energy is given by

 �E,k� =
1
�2

�I−1 − E�

= − �i� − 2��

+ �� ddq

�2��d

1

− 2��q + �q−k� + i� − 2�
�−1

�48�

such that the equation for the full inverse dimer Green’s
function becomes with Gd

�0�−1�E ,k�= i�−2�+U

Gd
−1�E,k� = U + �� ddq

�2��d

1

− 2��q + �q−k� + i� − 2�
�−1

.

�49�

The presence of a bound state is signaled by a pole in the
dimer Green’s function at zero center-of-mass momentum
and zero external frequency, Gd

−1��=0;� ,k=0�=0. The
chemical potential � in the physical vacuum can be inter-
preted as the binding energy33 after an appropriate decompo-
sition which ensures that the atom at rest has no kinetic en-
ergy, �=�b−Jz. This definition separates true kinetic from
true potential �binding� energy, and finite momentum excita-
tions have positive energy, ��q=J���1−cos qe��. Then, we
have for the binding energy Eb=2�b and we note that the
atoms are gapped out with half the binding energy since their

FIG. 2. Scattering equations in vacuum. The solid lines repre-
sent atom propagators. Full vertices are signaled with heavy blobs.
�a� Equation for the dimer self-energy. The full Feshbach vertex is
needed for its solution. �b� Renormalization of the Feshbach vertex.
External momentum configurations are chosen as needed in �a�.
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Green’s function involves −�b. Thus, the molecular degrees
of freedom are the lowest excitations since in contrast to the
atoms they are massless �pole condition�. For vanishing
binding energy we have �b=0, such that the situation is re-
versed: The atoms are the gapless excitations while the mol-
ecules are gapped. Introducing dimensionless and dimen-

sionally invariant variables Ũ=U / �Jz� , Ẽb=Eb / �Jz� the pole
condition leads to

1

	Ũ	
=� ddq

�2��d

1

− Ẽb + 2/d�
�

�1 − cos qe��
. �50�

This is precisely the Schrödinger equation for the dimer
bound state. We discuss the formation of the bound state
since it will be interesting to confront these well-known re-
sults to the formation of dihole bound states at n=2 which
shows different properties. The bound state forms at the criti-

cal Ũd in d dimensions where Eb=0. In three dimensions, the
integral evaluates to a finite value while in two dimensions a

logarithmic infrared divergence pushes Ũ2 to zero

Ũ3 
 −
4

3
, Ũ2 = 0. �51�

This has to be compared to the mean field result at zero

density, Ũmf=−2, obtained from the classical inverse dimer
Green’s function Gd

�0�−1��=0;� ,k=0�. We observe a sub-
stantial downshift in the critical interaction strength. Close to
the onset of the bound state the binding energy starts qua-
dratically �d=3�, respectively, exponentially �d=2�, due to
the square root nonanalyticity respective logarithmic diver-
gence of the fluctuation integral

d = 3:Ẽb 
 − � 	Ũ	 − 	Ũ3	

!Ũ3

�2

,

d = 2:Ẽb 
 −
"2

2
exp�−

2�

	Ũ	
� ,

Ẽb,mf = Ũmf − 	Ũ	 = 2 − 	Ũ	 �52�

with numbers !
0.42,"
5.50 determined numerically.
We have added the linear mean field result. This dimension-
ally invariant behavior is approached for large negative cou-
plings, cf. Fig. 3.

The fact that the Schrödinger equation is reproduced by
our nonperturbative calculation is an important benchmark
for our theory. Note that any deviating implementation of the
constraint, such as an expansion of the square root Eq. �13�
to leading order, would generate incorrect prefactors in the
scattering equations, and the Schrödinger equation could not
be reproduced.

D. Perturbative limit: Effective two-body hardcore dimer gas

While the perturbative limit for the two-body problem is
straightforwardly obtained to any order from the exact solu-

tion above, for higher order vertices, nonperturbative calcu-
lations are hard—the computation of the full dimer-dimer
scattering vertex would require the complete solution of the
four-body problem. However, in the limit J /U�1 a system-
atic perturbative expansion of our set of Dyson-Schwinger
Equations is available. For example, at order J2 only dia-
grams with at most two vertices have to be taken into ac-
count. We find that a loop expansion to one-loop order is
insufficient even at order J2. We may understand that quali-
tatively from the fact that on short ranges, we are dealing
with a full quantum mechanical problem with strong
fluctuations—the occupation of a site is either 0 or 1. Thus, a
loop expansion �in orders of �� cannot be expected to be
reliable.

In this section, we calculate the effective Hamiltonian for
dimers. There dimers will obviously have a two-body hard-
core constraint, as they are made up of two atoms each. The
relation to a spin-1/2 model is made in Ref. 14. There, we
also show that a symmetry enhancement from the conven-
tional U�1��SO�2� for bosons to SO�3� is taking place in
the strongly correlated limit and discuss its physical implica-
tions. This symmetry enhancement in the considered con-
straint system is in contrast to systems without a constraint,
see Ref. 32.

We will first calculate the effective Hamiltonian up to
second-order perturbation theory. We then perform a partial
calculation of the fourth order. These results are crucially
needed when discussing the many-body phases in the
strongly coupled regime in Ref. 14 as well as for the discus-
sion of the nature of the phase transition.

1. Second order

We are interested in extracting the effective action for
dimers in the perturbative limit. If restricting to second order
in J, the effective theory can only contain nearest-neighbor
terms. The most general form compatible with the constraint
and symmetry principles is given by

0 1 2 3 4 5 6
4

3

2

1

0
n = 0 n = 2Eb/Jz

U/Jz

FIG. 3. �Color online� Dimensionless binding energies of dimers
�n=0� and di holes �n=2�, as a function of the dimensionless inter-
action strength. The upper lines �black online� denote the mean field
results, the lower/middle curves �red/blue online� are the exact
binding energies in dimensions 2 and 3, respectively.
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S�t2� =� d
��
i

Zt2,i
† �
���
 − �d�t2,i�
�

− t�
�i,j�

t2,i
† �
�Xi�
�Xj�
�t2,j�
� +

v
2 �

�i,j�
n̂2,i�
�n̂2,j�
�� .

�53�

The X terms are introduced in order to satisfy the constraint
principle and there cannot be an onsite dimer interaction for
the same reason. Z is a wave-function renormalization factor.
It accounts for the energy dependence of the perturbative
expansion in x=J / 	U	. �d=2�−U+��d�0 is the effective
dimer chemical potential. t ,v are the constrained hopping
and interaction constants to be determined.

Kinetic terms. The desired information on the local and
the constrained hopping term can be extracted from the so-
lution of the two-body problem, Eq. �49�. For this purpose
we take �→−�

Gd
−1��;�,k� = i� − 2� + U −

4J2

i� − 2�
�
�

�1 + cos ke�� .

�54�

In this form it is apparent that the full inverse propagator
contains the microscopic one exactly but is now supple-
mented by a qualitatively new hopping term. To be consis-
tent at second order, in the denominator we have to insert
�=−	U	 /2. After Fourier transformation of the quadratic part
of the action with inverse Green’s function in Eq. �54�, we
obtain ��d=2J2z / 	U	 , t=2J2z / 	U	. The wave-function renor-
malization factor Z is extracted from Eq. �54� from expand-
ing in i�; there is no second-order contribution at second-
order perturbation theory, i.e., Z=1.

Dimer-dimer interaction. At short ranges, one expects a
dimer density-density repulsion due to the reduced decay and
recombination possibilities of one dimer if there is another
one sitting close by. The Dyson-Schwinger equation govern-
ing the dimer-dimer scattering in the perturbative regime is
displayed in Fig. 4. The one-particle irreducible graphs give
rise to a nearest-neighbor �second order in J� density-density
repulsion, due to the presence of the constraint, manifesting
itself via the five-point splitting vertex. As anticipated above,
it is interesting to note that the equation is two-loop even in
the leading order perturbation theory. For the derivation of
the symmetry factors and the explicit calculation we refer to
Appendix. Here we indicate the second-order result of the
momentum space calculation and discuss it

v�ki�

2
=

2J2

	U	
��k1−k2

+ �k3−k4
+ �k1

+ �k2
+ �k3

+ �k4
� . �55�

The two qualitatively different momentum dependences cor-
respond to different interaction processes in position space.
After Fourier transform we find the contribution to the effec-
tive action

2J2

	U	 � d
�
�i,j�

�n̂2,i�
�n̂2,j�
� + t2,i
† �
�t2,j�
��n̂2,i + n̂2,j�� .

�56�

The terms may be interpreted as follows. The first term is a
true dimer-dimer interaction describing the exchange of
dimers on adjacent sites and is repulsive. The second one is
the explicit manifestation of the constraint being inherited by
the effective theory of dimers—they precisely contribute the
terms linear in n̂2 which are contained in XiXj in Eq. �53�. In
summary, the effective couplings to second order read

Z = 1, ��d = t =
v
2

=
2J2

	U	
. �57�

Both effective hopping and interaction are not present in the
mean field approximation. Conceptually and practically, they
are however of high importance. The first one makes the
dimers true physical, i.e., spatially propagating degrees of
freedom, while the second one, with the positive sign, is very
important for the many-body and long-wavelength calcula-
tions carried out in Ref. 14 as it stabilizes the thermodynamic
potential for the dimer superfluid. It also gives rise to the
stiffness of the superfluid. Since the second-order contribu-
tions are due to fluctuations on a single link of nearest neigh-
bors, the results are dimension independent.

2. Fourth order

At fourth order, we obtain not only nn contributions to the
constrained hopping and interaction but also next-to-nearest
neighbor contributions. However, due to the reduced number
of pathways connecting these more distant sites, the coeffi-
cients are substantially smaller then for nn terms. In the fol-
lowing, we thus concentrate on the latter. In particular, for
later purposes we will be interested in the deviation of the
ratio of interaction vs kinetic energy �=v / �2t� from the
second-order result �=1.

A brute force diagrammatic fourth-order calculation is
rather complex. Here we present a way to perform the
fourth-order calculation of the nn coefficients for the inter-
action from a combination of geometric and diagrammatic
arguments: first we argue that based on the geometry of the
contributing processes, the repulsive part of the fourth order
contribution must equal the fourth-order hopping contribu-
tion. The latter, in turn, can be calculated straightforwardly
from the exact solution of the two-body problem. This argu-
ment can be applied for processes of arbitrary intersite dis-
tance and we will present it in its general form. Then we
refocus on nearest neighbors and identify processes contrib-
uting to the interaction which have no analog in the hopping
process. We calculate the corresponding reduced set of dia-

FIG. 4. The dimer-dimer interaction vertex to second order in
the hopping J.
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grams explicitly. They yield an attractive contribution to the
interaction strength such that �#1.

We begin with the geometric argument and consider the
hopping first. If we are interested in the energetic contribu-
tion of hopping processes at a fixed order in perturbation
theory in J / 	U	 and at a fixed distance, we can find this
contribution in principle by drawing all possible pathways
with a fixed number of hops which connect initial and final
site. We call these paths connecting initial and final state via
hopping the hopping paths. Next we consider the interaction
coefficient. The physical origin of this interaction emerges
from the constraint: if there is a dimer at site j, then another
particle cannot hop on this site. This can be calculated as the
energy difference that emerges when comparing the number
of paths through which a dimer at site i can decay and come
back to this site without a dimer sitting at j and the corre-
sponding number when there is a dimer on j. The energy
difference obviously is always positive, because the con-
straint always excludes a stet of paths, leading to a repulsive
interaction. Thus, the energy contribution can be obtained by
just counting the number of paths where at least one of the
traveling particles hits the site j. We call these paths interac-
tion paths.

Now we observe that any hopping path can be trans-
formed into an interaction path by reversing the direction of
the arrows of one of the traveling particles on the shortest
path which connects initial and final site �there may be sev-
eral of these shortest paths� for any overall length of the
paths, i.e., at any order of perturbation theory. Therefore, the
number of interaction paths is larger or equal compared to
the number of hopping paths. The reverse is also true. Thus
the number of interaction and hopping paths is equal and
therefore the so-obtained contribution to the interaction must
equal the fourth-order hopping contribution.

However, in general, there are pathways contributing to
the nn interaction which have no analog in the hopping
pathways.34 These are processes in which none of the dimers
is static and we have to calculate them diagrammatically. For
nn, the corresponding diagrams are provided in Fig. 5. We
discuss the corresponding processes �the explicit calculations
are performed in Appendix�: in the left diagrams, the process

starts with the decay of a dimer into atoms, where the sum
over nearest neighbors indicates the z=2d possibilities re-
sulting from the unconstrained splitting vertex. The splitting
is then followed by a double swap of atom and dimer. Fi-
nally, the atom on k recombines with the one on the target
site i or j into a dimer. The position indices of these pro-
cesses are fixed by the nn range of the couplings and no
further summation occurs. Performing the frequency integra-
tions for zero external frequencies, the left side of Fig. 5
evaluates to −16zJx3, with x=J / 	U	, thus providing an attrac-
tion piece to the dimer-dimer interaction. The three-loop dia-
grams on the left take care of the constraint: one decay pos-
sibility described by the unconstrained splitting vertex is not
allowed since the other dimer is located there. Indeed, the
diagrams evaluate to +16Jx3, such that the net result of the
processes in Fig. 5 is

va

2
= − 16�z − 1�Jx3. �58�

This is an attractive contribution to the nn interaction in any
dimension.

We are now in the position to provide the full fourth-order
contribution. The repulsive part to the interaction is given by
the fourth-order contribution to the nn hopping, which we
can obtain from the expansion of Eq. �49� up to fourth order
with the result

vr

2
= t = 2J�x + �12�z − 1� − 2�x3� . �59�

We thus obtain the final result for the nn hopping and inter-
action terms

t = 2J�x + 2�6�z − 1� − 1�x3� ,

v
2

=
va + vr

2
= 2J�x + 2�2�z − 1� − 1�x3� ,

� =
v
2t

=
1 + 2�2�z − 1� − 1�x2

1 + 2�6�z − 1� − 1�x2 
 1 − 8�z − 1�x2 # 1.

�60�

Finally, we discuss an additional effect at fourth order
which is associated to the wave function renormalization.
The leading term, relevant at fourth-order perturbation
theory, can be extracted from the frequency expansion of Eq.
�54� at k=0, yielding

Z = 1 + 4zx2. �61�

The correction to the dimensionless quantity Z is O�x2� and
has effects at fourth order only. For example, if we are inter-
ested in the dispersion relation, obtained from the pole con-
dition on the Green’s function for real frequencies at a finite
molecule momentum k, Gd

−1�i��k� ;�b=Eb /2,k�=0, we
find35

FIG. 5. Attractive contribution to the nearest neighbor interac-
tion at fourth order. The three-loop graphs implement the constraint,
as discussed in the text.
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��k� =
4J2

Z	U	��

�1 − cos ke�� . �62�

The wave function contributes a fourth-order term to the dis-
persion relation. In order to see the effect on the ratio of
interaction vs kinetic energy, we absorb the wave-function
renormalization factor into a redefinition of the field t2

→�Zt2 and into the remaining couplings, e.g., t→ t̃= t /Z ,v
→ ṽ=v /Z2, where the redefinition of the couplings is per-
formed in such a way as to keep the full effective action
invariant under the transformation. Since Z�1 we conclude

that �̃= ṽ / �2t̃�#�, such that the ratio of interaction vs kinetic
energy is effectively decreased additionally. We finally note
that the effects of the wave-function renormalization corre-
spond to an energy dependence of an effective Hamiltonian
obtained in a Brillouin-Wigner perturbation theory for a mi-
croscopic Hamiltonian. It is well known that these effects
occur at fourth-order perturbation theory only.

E. Relation of n=0 and n=2: Particle-hole mapping

At density n=2, the physics is expected to be similar to
the case n=0. Similar to the latter, the effect of spontaneous
symmetry breaking is absent due to the complete filling.
Moreover, due to the constraint, there is only a single micro-
scopic configuration, in full analogy to the completely empty
lattice for n=0. Importantly, therefore the n=2 state in the
constrained model must not be viewed as a Mott insulator
phase, such as, e.g., n=1 and strongly positive U, but rather
as a constraint induced band insulator: for n=1 the motion of
the particles simply costs energy �providing for the gap in the
Mott spectrum� while for n=2 this is impossible in principle.
Therefore, we may expect another “vacuum problem.” The
low-lying excitations on top of this vacuum will be holes and
doublets of holes or diholes instead of atoms and dimers, and
the complete amplitude resides in the t2 mode. From this
reasoning, we now replace

t2,i → 1 − t1,i
† t1,i − t0,i

† t0,i � Xi�. �63�

Alternatively, we could have adopted the formal point of
view, applying the procedure described in Sec. IV C for the
angles �=�=�. Here we want to stress the physical similari-
ties between n=0,2, but of course, the formal procedure
generates exactly the same result.

With the above replacement, the Hamiltonian takes the
form

Hkin = − J�
�i,j�

�2t1,i
† Xi�Xj�t1,j + t1,i

† t0,it0,j
† t1,j + �2�Xi�t1,it0,j

† t1,j

+ t1,i
† t0,it1,j

† Xj��� ,

Hpot = + ��
i

2t0,i
† t0,i + t1,i

† t1,i − U�
i

t0,i
† t0,i + t1,i

† t1,i

+ �− 2� + U�Md, �64�

where M is the number of lattice sites in each lattice direc-
tion. The potential energy term can be written as

Hpot = − ���
i

2t0,i
† t0,i + t1,i

† t1,i + U�
i

t0,i
† t0,i,

�� = − � + U . �65�

Working with the action in the following we may permute
the operators at will. In this case, the mapping of the action
for zero density to the one at n=2 is given, up to constants
�the mean field energies� by the following replacements:

t2 → t0, � → ��, U → U, gsplit � �2J → �2J ,

Jhop � J → 2J, gexchange � 2J → J . �66�

While the coupling strength of the splitting vertex remains
invariant under the transformation, the roles of K�10� and
K�21� �cf. Eqs. �12� and �18�� are exchanged, and so is the
role of the corresponding coupling constants.

Based on Eq. �66� we observe that the scattering equation
for the holes can be obtained from simple replacements in
the scattering Eqs. �41�. The equation for the hole splitting
vertex

	k�p� = 	k
�0��p� +� ddq

�2��d

	k�q�2�	k
�0��p� + 	k

�0��q��
E + 2	k

�0��q�
�67�

has the identical form to the one for dimers if we redefine the
energy variable

E = �2�i� − 2�� → E� =
�2

2
�i� − 2��� �68�

and therefore has the solution �47� with the replacement E
→E�. The bare inverse dihole propagator is Gh

�0�−1�E� ,k�
= i�+ �−2��+U�= i�− �−2�+U� and the dihole self-energy
 h=Gh

−1−Gh
�0�−1 is found to be

 h�E�,k� =
1

2

1
�2

�I−1�E�� − E��

=
1

4
�− �i� − 2���

+ �� ddq

�2��d

1

− 4��q + �q−k� + i� − 2��
�−1� .

�69�

Bound state formation. The generalized “Schrödinger equa-
tion,” governing the formation of a bound state of holes, is
given by the pole condition

Gh
−1�� = 0;��,k = 0� = 0. �70�

With definitions analogous to the zero-density limit ���
=�b�−2Jz ,Eb�=2�b�; this choice of �b� ensures the zero of
kinetic energy to appear at zero momentum�, and in dimen-
sionless variables, we find the explicit form
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1

4	Ũ	 − 12 + 3Ẽb�
=� ddq

�2��d

1

− Ẽb� + 4/d�
�

�1 − cos qe��
.

�71�

The bound state forms at the critical dimensionless interac-

tion strength defined by Ẽb�=0. Due to the different structure
of the scattering equations at n=2, we expect different re-
sults from the n=0 case. Indeed, we find the dimensionless
critical interaction strengths in three and two dimensions

Ũ3� 
 −
11

3

 − 3.66, Ũ2� = − 3 �72�

An interesting feature occurs in d=2: despite the logarithmic
infrared divergence of the fluctuation integral, the dihole
bound state formation occurs at a finite attractive interaction
strength. For the dependence of the binding energy on the
interaction strength close to the threshold we find

d = 3:Ẽb� = − 2�2�	Ũ	 − 	Ũ3�	�

!�	Ũ3�	 − 3�
�2

,

d = 2:Ẽb� 
 − "2exp�−
�

	Ũ	 − 3
� �73�

with ! ," given below Eq. �52�. In contrast, the mean field

binding energy is Ẽb=−	Ũ 	+4.
The exact results Eq. �72� for the onset of the di-hole

bound state can be compared to the mean field answer Ũmf
=−4. The shifts are substantially smaller than in the n=0
limit. From Fig. 3 we also observe that the quadratic and
exponential regimes are narrower than in the low density
limit described by �52�, We conclude that fluctuations effects
are weaker in the maximum density region n
2 than in the
low-density counterpart n
0.

The finite value in Eq. �72� in two dimensions is surpris-
ing and some comments are in order. An understanding is
obtained from the fact that the coupling constants are differ-
ent in the band insulator n=2 than in the vacuum n=0 and so
the coefficients in the effective propagators are different.
This, in particular, implies a shift in the effective interaction

strength 	U	→4	U	−12+3Ẽb�; note that the integrals are
identical in Eqs. �50� and �71� up to a coefficient 4 instead of
2 in front of the kinetic term in the integral—this reflects an
enhanced mobility of the holes compated to the atoms.
Therefore, we also have the log divergence in d=2 and n

=2 for Ẽb�→0. However, this divergence now causes 	Ũ	
→3 instead of 	U	→0 for its compensation. We emphasize
that it is not a matter of definition of the interaction strength:
U is a microscopic quantity and the shift to it in Eq. �71� is
due to the effects of the n=2 band insulator. The finite
threshold, thus, is an observable prediction of our theory. In
addition, we would like to stress that there is no strong rea-
son to expect identical critical interaction strengths at n=0

and n=2, as there is, in this regime of moderate interaction
strengths, no particle-hole symmetry suggesting such behav-
ior.

Effective dihole theory. We have already noted that the
mean field result for the binding energy is approached in the
limit U→−�. The leading correction is given by

 h�E� → �,k� → −
4J2

	U	 ��

�1 + cos ke�� . �74�

This precisely coincides with the leading perturbative self-
energy correction for the dimers �cf. Eq. �54� at �=0,−2�
= 	U	�. Furthermore, the dihole-dihole interaction is identical
to the zero density case at O�J2 / 	U	� since the splitting and
the five-point vertices entering the dimer-dimer scattering
vertex �cf. Fig. 4� have the same value, and only the atomic
onsite propagator enters at this order. Thus, to leading order
we recover precisely the effective hardcore theory given by
Eq. �53� with t2 �dimers� replaced by t0 �diholes� but identi-
cal interaction constants, though, in general, the original mi-
croscopic theories at n=0,2 feature different sets of interac-
tion constants. The simple relation of the theory at n=0 and
n=2 must be expected: when the atom-atom attraction U is
the largest scale in the problem, the integration of the high-
energy atom degrees of freedom in perturbation theory can
be performed prior to the inclusion of the effects of, e.g., a
finite density in the system. Due to the decoupling from the
atomic degrees of freedom, the theories in the perturbative
regime but at different densities must then be directly related
to a reference density, e.g., n=0, by a rotation defined by Eq.
�29�. The mapping of the theories for n=0 and n=2 may be
understood as performing the rotation with �=�=�. This is
different from the case where the atoms do not decouple
completely, such that the density might have implicit fluctua-
tion effects adding to the explicit effect of the rotation in Eq.
�29� on the dimer degrees of freedom. This hints at enhanced
symmetry properties in the perturbative limit, which are dis-
cussed in the companion paper.14

Finally, we note that the low-lying dihole excitations on
top of the n=2 band insulator state disperses quadratically, as
expected for nonrelativistic excitations. Once the density is
lowered away from n=2 and spontaneous symmetry-
breaking sets in, there will be a linearly dispersing Goldstone
mode.14

VI. CONCLUSION

In this paper, we have developed a method which allows
to exactly map a bosonic lattice model with three-body on-
site constraint to a theory for two unconstrained bosonic de-
grees of freedom with conventional polynomial interactions.
The Gutzwiller mean field theory is recovered as zero-order
contribution to the thermodynamic potential. The quadratic
fluctuations around the mean field solution reproduce pre-
cisely spin wave theory. However, due to the exact nature of
the mapping we can also systematically access the nonlin-
earities. A convenient framework for our analysis is found to
be the quantum effective action, the generating functional of
the one-particle irreducible correlation functions. We estab-
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lish that the usual symmetry principles are supplemented
with a new “constraint principle,” which depends on scale,
being important at short distances but irrelevant at long
wavelength. This setting allows to address fluctuations on
various length scales in a unified framework. The application
of the formalism to the full many-body problem is performed
in the related work,14 where we identify various quantitative
and qualitative aspects which are uniquely tied to the pres-
ence of interactions. Here, in order to demonstrate the valid-
ity of the formalism and to prepare for the many-body analy-
sis in Ref. 14, we investigate the scattering properties of few
particles in the limit of vanishing density. Furthermore, we
address the complementary problem in the limit of maximum
filling, where the low-lying excitations are holes and diholes,
and calculate the effective theory for hardcore dimers in the
strong coupling limit.

We believe that the formalism developed here has strong
potential applications beyond the particular model analyzed
here and in the related Ref. 14. We conclude by giving an
outlook on problems that may be addressed within this
framework.

A. Exactly constrained theories

Spin models with spin S. The onsite Hilbert spaces can
always be formulated in terms of 2S+1 states. Here, we trun-
cate to three states on each site �S=1� but a generalization is
straightforward. Our construction maps such problems to 2S
coupled bosonic degrees of freedom and can thus be efficient
for small total spin S. More specifically, our formalism can
be particularly useful for XXZ models in strong external
fields and a perturbative anisotropy. The mean field plus spin
wave approximation is always incorporated in our setting,
but it also offers the opportunity to systematically assess the
interaction effects. We also stress that inhomogeneous
ground states, such as, e.g., a charge-density wave or antifer-
romagnet, are straightforwardly implemented in the formal-
ism by applying site-dependent rotations of the type Eq. �29�.
Furthermore, it will be interesting to investigate if the limit
of infinite spatial dimension d→� leads to a Gaussian fixed
point of the theory, where the quadratic spin wave theory
becomes exact. This would add the possibility of a 1 /d ex-
pansion to the conventional 1 /S �number of spin compo-
nents� and 1 /N �number of field components in the corre-
sponding nonlinear sigma model� expansion used to treat
spin models.

B. Models with an approximately realized constraint

A major challenge in quantum field theory is the treatment
of strongly coupled systems where the nonlinearity provides
a larger energy scale than the scales appearing in the qua-
dratic part. Our theoretical framework is suited to address a
certain class of such strongly coupled systems, namely, the
one which is spanned by lattice models with strong local
repulsion or attraction. It is not mandatory that the onsite
repulsion �two, three, or few body� is infinitely large. Often,
only a few dominant low-energy degrees of freedom are nec-
essary to capture the essential physics and these degrees of
freedom are explicitly implemented in our approach. For ex-

ample, in the Mott phase of the Bose-Hubbard model, num-
ber fluctuations around the Mott state with given n are small
and a truncation to three Fock states n ,n$1 is sensible.17

Applying the formalism presented here, we are able to asso-
ciate these particle and hole fluctuations with explicit
bosonic degrees of freedom. In the resulting QFT, the non-
perturbative calculation of the phase boundary in the repul-
sive Bose Hubbard model becomes feasible. Similarly, a
strong but finite three-body repulsion �3 would lead to addi-
tional but massive bosonic degrees of freedom, which due to
their mass ��3 can be taken into account perturbatively.

C. Fermions

The formalism is ideally suited to study attractive fermi-
ons on the lattice. In particular, recent experiments with
three-component fermions exhibit strong loss features13 and
are therefore important candidates for the observation of
loss-induced constrained models.7 A modified scheme for the
implementation of the constraint in one dimension has al-
ready been given in Ref. 7, followed by the analysis of the
model with bosonization techniques. Our scheme, which ex-
plicitly introduces a mean field describing qualitative fea-
tures of the ground state, is promising in higher spatial di-
mensions, and its improvements compared to Gutzwiller
mean field theory may be expected to be similar to dynamic
mean field theory.36 We note that an application to the fermi-
onic repulsive Hubbard model is complicated by the choice
of the qualitative features of the ground state being debat-
able. In this case, a treatment of the constraint along the lines
of Ref. 37 may be preferable.
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APPENDIX: DYSON-SCHWINGER EQUATIONS

We calculate the DSE for the two- and three-point func-
tions exactly, and the four-point function perturbatively. In
vacuum, a tremendous simplification is provided by the fact
that density-type contributions vanish. In the loop language,
this translates to checking whether there is a subdiagram in
which the arrows form a closed tour.

1. Formalism

The most important step is to find the correct symmetry
factors for the loop contributions. For that purpose, it is suf-
ficient to consider the field index � to parameterize the field
type only; the frequency and momentum structure of the cou-
plings can then be found from the corresponding conserva-
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tion laws in a second step, reading off the couplings from the
microscopic action in Eq. �36�. Thus we consider

�� = �t1,t1
†,t2,t2

†� . �A1�

In this formalism, we find the following couplings:

S��
�2� �

�2S

�t��t�

= p1���1��2 + perm.� + p2���3��4 + perm.� ,

�A2�

where “perm.” means to permute all Greek indices while
leaving the explicit numbers in their positions. This coupling
must be inverted to give the propagators with the result

G�� =
1

p1
���1��1 + perm.� +

1

p2
���3��4 + perm.� . �A3�

The higher couplings read

S���
�3� = ���1��1��4 + ��2��2��3 + perm.� ,

S�����
�5� = s�5����1��1��4��4��3 + ��2��2��3��4��3 + perm.� .

�A4�

p1 , p2 ,s�3� ,s�5� can be read off directly from the classical ac-
tion in Eq. �36� after proper symmetrization in momentum
space. We can reduce the tensors by contracting with delta
functions. For example,

S114
�3� = s�3���1��1��4S���

�3�

= s�3���1��1���1��1 + perm.�

= 2s�3���1��1

= 2s�3�, �A5�

where doubly occurring indices are summed over. The cou-
plings are now fully symmetrized in field space and indices
may be permuted at will.

2. Two- and three-point functions

We consider the DSEs for the two- and the three-point
functions for the inverse propagators and the splitting vertex.
In the vacuum limit, these equations are one loop

	��
�2� = S��

�2� −
1

2
tr S��1�2

�3� G�1�1
G�2�2

	��1�2

�3� ,

	12
�2� � p1 = p1,0, 	34

�2� � p1 = p2,0 − 2 tr s�3� 1

p1

1

p1
��3�,

	114
�3� = S114

�3� −
1

2
tr S11�1�2

�4� G�1�1
G�2�2

	4�1�2

�3�

= 2��3� = 2s�3� − 4 tr s�4� 1

p1

1

p1
��3�. �A6�

tr indicates the frequency and momentum integrations while
the discrete index contractions are carried out explicitly. The
corresponding integral equations for specific external mo-

mentum configurations relevant for two-body scattering are
given in Eq. �41�, respectively, Fig. 2. 	114

�3� =2��3� holds un-
der the assumption that the full Feshbach vertex has the same
structure in field space as the classical one. The atom propa-
gator is not renormalized in vacuum. Note that only the atom
propagator enters the diagrams for the dimer self energy and
the splitting vertex.

3. Four-point functions

We further want to compute the fourth-order interaction
vertices. �1� Second order, momentum space calculation: if
we restrict to the order J2, we can limit ourselves to two-loop
order. We find

	����
�4� = S����

�4� −
1

2
tr�S����1�2

�5� G�1�1
G�2�2

	��1�2

�3�

+ S����1�2

�5� G�1�1
G�2�2

	��1�2

�3�

+ S����1�2

�5� G�1�1
G�2�2

	��1�2

�3�

+ 	����1�2

�5� G�1�1
G�2�2

	��1�2

�3� �

−
1

3!
tr�S���1�2�3

�5� G�1�1
G�2�2

G�3�3
	���1�2�3

�5�

+ S���1�2�3

�5� G�1�1
G�2�2

G�3�3
	���1�2�3

�5�

+ S���1�2�3

�5� G�1�1
G�2�2

G�3�3
	���1�2�3

�5� � . �A7�

Working at second order the full vertices are replaced by the
classical ones. The dimer-dimer interaction then evaluates to

	4343
�4� = 4��4�

= − 8 tr�s�5� 1

p1

1

p1
s�3� + s�3� 1

p1

1

p1
s�5��

− 8 tr s�5� 1

p1

1

p2,0

1

p1
s�5�. �A8�

The first two contributions are one loop, the last one is two
loop.

Now we insert the appropriate momentum structures. At
order J2 the J dependence of the atom propagator is to be
neglected and the dimer propagator equals the bare one

p1��� = i� − � = i� + 	U	/2,

p2��� = p2,0��� = i� − 2� + U = i� . �A9�

We then find, for zero external frequency

	4343
�4� = + 16J2��

q

1

p1���
1

p1�− ���1

2
��q3−q + �q+q3−q4

+ �q1−q

+ �q+q1−q4
���q−q4

+ �q� + �q3 ↔ q4,q1 → q2��
− �

q,q�

1

p1���
1

p1����
1

p2�− � − ���
1

2
��q2−q + �q2−q�

+ �q2 → q4��
1

2
��q1−q + �q1−q� + �q1 → q3���

QUANTUM FIELD THEORY… . I. FORMAL DEVELOPMENTS PHYSICAL REVIEW B 82, 064509 �2010�

064509-17



= 8
J2

	U	
��q1

+ �q2
+ �q3

+ �q4
+ �q1−q2

+ �q1−q4
� = 4��4�.

The contribution to the effective action then reads

�S =
2J2

	U	 �q1,. . .,q4

���q1 − q2 + q3 − q4��t2
†�q1�t2�q2�t2

†�q3�t2�q4�

���q1
+ �q2

+ �q3
+ �q4

+ �q1−q2
+ �q1−q4

�

=
2J2

	U	 ��i,j� �t2,i
† �
�t2,j�
��n2,i�
� + n2,j�
�� + n2,i�
�n2,j�
�� .

�A10�

�2� Fourth order, real space nearest neighbors: Finally, we
compute the diagrams displayed in Fig. 5. As discussed in
the text, this is not the full contribution to the interaction
vertex, which has a high diagrammatic complexity. �It could
be obtained from Eq. �A7�, to fourth order, but requires
knowledge of 	�5� to second order.� However, knowing
which diagrams we want to compute the procedure outlined
above allows to identify the correct symmetry factors and
contraction prescriptions. Since we are interested in a pro-
cess on nn sites i , j, it is more efficient to do the calculation
in frequency and real space, fixing the external legs at the
nearest-neighbor configuration, cf. Fig. 5. We find

��4�	ij;ij � − 2 tr�s�3� 1

p1
s�4� 1

p1

1

p2
s�4� 1

p1
s�3� 1

p1
� + 2 tr�s�5� 1

p1

1

p2
s�4� 1

p1

1

p2
s�4� 1

p2
s�4� 1

p1
s�3� 1

p1
�

= − 16J4z� d�

2�
� d��

2�

1

p1���
1

p1
2�− ��

1

p1����
1

p2�− � − ���

+ 16J4� d�

2�
� d��

2�
� d��

2�

1

p1�− � − ���
1

p1����
1

p2�� + �� − ���
1

p1���
1

p2����
1

p1�� + ���

= − 16�z − 1�
J4

	U	3
, �A11�

where the full vertices have been replaced by the bare counterparts and p1���= i�−�= i�+ 	U	 /2, p2���= i�, as appropriate at
this order perturbation theory. The overall factor of 2 in the first line may be interpreted in terms of the two rows in Fig. 5. The
factor of z in two-loop diagram results from the z possibilities for a dimer to decay via the bare splitting vertex. No further
summations occur in real space. The three-loop diagram corrects for the fact that one of these possibilities is not allowed due
to the presence of the other dimer.
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