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Magnetoelectric properties were investigated for an S=1 /2 chain antiferromagnet CuCl2, which turns out to
be the first example of nonchalcogen based spiral-spin induced multiferroics. Upon the onset of helimagnetic
order propagating along the b axis under zero magnetic field �H�, we found emergence of ferroelectric polar-
ization along the c axis. Application of H along the b axis leads to spin-flop transition coupled with drastic
suppression of ferroelectricity and rotation of H around the b axis induces the rotation of spin-spiral plane and
associated polarization direction. These behaviors are explained well within the framework of the inverse
Dzyaloshinskii-Moriya model, suggesting the robustness of this magnetoelectric coupling mechanism even
under the strong quantum fluctuation.
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I. INTRODUCTION

Multiferroics, materials with both magnetic and dielectric
orders, have attracted revived interest.1 While the coupling
between these orders are weak in general, recent discovery of
spin-driven ferroelectricity in frustrated helimagnets has en-
abled unprecedentedly large magnetoelectric �ME� effects
such as flop,2–4 reversal,5 or rotation6 of electric polarization
�P� under applied magnetic field �H�. Here, the key problem
is the coupling mechanism between ferroelectricity and heli-
magnetism. The most successful scheme to explain such ME
coupling is the inverse Dzyaloshinskii-Moriya �IDM�
model,7 which describes the local polarization p� ij produced
between two magnetic moments S� i and S� j as

p� ij = Ae�ij � �S� i � S� j� , �1�

where e�ij is an unit vector connecting two magnetic sites and
A is a coupling coefficient related to the spin-orbit interac-
tion. Since the vector spin chirality �S� i�S� j� is perpendicular
to the spin-spiral plane, this model predicts that the
H-induced tilt of spin-spiral plane leads to directional change
of P. Ferroelectric �FE� and ME natures in several classical
helimagnets such as RMnO3,2,3 Ni3V2O8,8 and MnWO4 �Ref.
4� are successfully explained by this IDM scheme.

In contrast, still in controversy is the ME coupling mecha-
nism in S=1 /2 chain magnets, where strong quantum fluc-
tuation is believed to have some profound effects on their
ME response.9,10 Typical examples are LiCu2O2 and
LiCuVO4, both of which are characterized by edge-shared
CuO2 chains. While their simple crystal structures and re-
ported helimagnetism are seemingly typical of the IDM
scheme, the experimentally observed P direction or ME re-
sponse for applied H appears to contradict with its predic-
tion. For example, LiCu2O2 hosts P �c in the helimagnetic
ground state11 but its proposed magnetic structures are con-
tradictory among several experiments.12–15 Even if we sim-

ply assume bc-spin spiral consistent with the IDM model, P
behaviors under applied H contradict with its naive
prediction.11 In case of LiCuVO4, P �a is found in ab-spiral
spin phase at 0 T, consistent with the IDM model.16,17 How-
ever, the observation of P �c, assigned to the bc-spiral spin
phase,18 was not reproduced by another group.19 Since both
compounds frequently contains Li-Cu intersubstitution due
to their close ionic radii, Moskvin et al.20–22 have claimed
that the observed FE and ME natures stem purely from ex-
change striction and crystallographic defects, not from the
spin-orbit interaction �or the IDM scheme�. Furthermore,
some recent theoretical study predicted that quantum fluctua-
tion may largely reduce the effective magnitude of P induced
via the spin-orbit interaction.10 To testify the validity of the
IDM model in quantum chain magnets, it is crucial to check
the ME response in other S=1 /2 compounds with similar
edge-shared chain structures.

Our target compound, anhydrous cupric chloride CuCl2
crystallizes into distorted CdI2 form with monoclinic C2 /m
space group and �=122°.23 While original CdI2 structure
consists of the stacking of triangular lattices along the z
axis,24 they are extended along the a axis due to Jahn-Teller
active Cu2+ ions �Fig. 1�a��. As a result, CuCl2 can be re-
garded as the aggregate of edge-shared chains running along
the b axis with CuCl4 square plaquettes lying in the bc plane
�Fig. 1�b��. Magnetism is dominated by the intrachain cou-
pling between Cu2+ �S=1 /2� ions, and competition between
ferromagnetic nearest-neighbor interaction and antiferromag-
netic next-nearest-neighbor interaction stabilizes the heli-
magnetic ground state below 24 K.25–27 Recent powder neu-
tron scattering study suggested the cycloidal magnetic order
propagating along the b axis with spin spiral confined in the
bc plane �Fig. 1�b�� and propagation vector q
��1,0.226,0.5�.27 While no dielectric measurements have
been reported, the latest calculation based on density-
functional theory �DFT� predicts emergence of ferroelectric-
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ity along the c axis.27 In this paper, we report the experimen-
tal discovery of FE and ME natures in CuCl2, and prove
that the IDM mechanism is still robust even under the
strong quantum fluctuation. CuCl2 is a rare example of
nonchalcogen-based spiral-spin-induced multiferroics, which
promises further discovery of unique ME function in many
MX2-type compounds and other forms of halide compounds.

II. EXPERIMENT

Single crystals of CuCl2 were grown by a Bridgman
method. They were cleaved along planes perpendicular to the
z axis and cut into a rectangular shape with additional faces
perpendicular to the a or b axis. Silver paste was painted on
end surfaces as electrodes. Due to its moisture sensitivity, the
specimen was handled in an Ar-filled glove box. To deduce
P, we measured the polarization current with constant rates
of temperature �T� sweep �5–20 K /min�, H sweep �100 Oe/
sec�, or H rotation �2° /sec�, and integrated it with time. To
enlarge the population of specific P domain, the poling elec-
tric field �E=150–400 kV /m� was applied in the cooling
process and removed just prior to the measurements of po-
larization current. Dielectric constant � was measured at 1

MHz using LCR meter. Magnetization M was measured with
a superconducting quantum interference device magnetome-
ter. Electron spin resonance �ESR� signal was measured by
JEOL JES-FA200 at X-band frequency ��9.0 GHz�.

III. RESULTS AND DISCUSSIONS

As suggested in Ref. 27, the ac-twin domains are ex-
pected to readily occur. To check this possibility, we first
performed ESR measurements under various directions of H
confined within the ac plane �Fig. 1�d��. Hereafter, we define
�H as the angle between the a axis and H direction. Each
observed profile can be fitted well with a single Lorentzian
resonance for all �H, indicating our crystal grown by the
Bridgman method has no crystallographic twinning. The de-
duced g factor shows sinusoidal �H dependence �Fig. 1�e��,
whose maximum and minimum values agree well with those
previously reported for a twinned crystal.27

Next, we measured T dependence of magnetic suscepti-
bility �, �, and P �Figs. 2�a�–2�c��. � suddenly drops at TN
�24 K, which signals the transition into a spiral magnetic
phase. Simultaneously, z component of � ��z� shows a sharp
anomaly, and a and z components of P �Pa and Pz� begin to
develop. The direction of Pz can be reversed with reversal of
applied E, producing the typical P-E hysteresis curve �Fig.
3�, while no Pb component could be confirmed. These results
imply strong correlation between helimagnetic and FE orders
in CuCl2. Based on the bc-plane helimagnetic structure sug-
gested in Ref. 27, the IDM model as well as the DFT
calculation27 predicts �Pa / Pz��0.64 �i.e., P �c�. This roughly
agrees with the observed �Pa / Pz��0.70.
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FIG. 1. �Color online� ��a�–�c�� Crystal structure of CuCl2, and
P direction observed at the ground state. The bc-cycloidal spin
order suggested by Banks et al. �Ref. 27� is illustrated in �b� and
also in �c� with solid rounded square representing spin-spiral plane.
Dashed rounded square indicates the possible tilting of spin-spiral
plane as revealed in this study �see text�. �d� ESR signal taken at
room temperature under various directions of H confined within the
ac plane. �H is defined as the angle between the a axis and H
direction. Each dashed line represents a fitted curve with a single
Lorentzian resonance. �e� Angle dependence of g factor.
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FIG. 2. �Color online� Temperature dependence of �a� magnetic
susceptibility �, �b� dielectric constant �, and �c� electric polariza-
tion P. In �d� and �e�, H dependences of magnetization M, �, and P
under H �b are indicated. Large and small arrows denote corre-
sponding ordinate scale of physical quantity and direction of field
scans, respectively. �f� H-T phase diagram for H �b. Circles,
squares, triangles are the data points obtained from M, �, and P
profiles, respectively. Open �closed� symbols are taken from T- �H�
increasing runs.
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Figures 2�d� and 2�e� indicate H dependence of M, �, and
P for H �b. At 4 T, M profile shows a clear step as already
reported.27,28 Concomitantly, �z shows a sharp peak and both
Pa and Pz are drastically suppressed. Since antiferromagnetic
spins favor to lie within a plane perpendicular to H, this
transition should correspond to a spin flop into the ac-spiral
spin state. The ac-spiral spin structure belongs to a magnetic
form called proper screw, where spin-spiral plane is perpen-
dicular to the modulation vector along the b axis. The IDM
model predicts P=0 for this type of spin order due to the
relationship �S� i�S� j��e�ij�b, which is consistent with the ob-
served suppression of P. Figure 2�f� summarizes the ob-
tained H-T phase diagram for H �b. The boundary of the FE
phase always coincides with that for magnetic phases, which
proves the interplay between FE and helimagnetic natures.

We further investigated the properties under H�b. Here,
we adopt the same definition of �H as used for ESR measure-
ments. Figure 4�a� indicates H dependence of M measured at
various �H. While no magnetic transition has been reported
for H�b,28 we found a clear signature of spin-flop at HSF
�4 T most pronounced around �H=100°. �H dependence of
��=M /H� was also measured �Fig. 4�b��, and � sinusoidally
changes with minimum at �H�100° below HSF. In general,
the sharpest transition of spin flop as well as the minimum
value of � should be observed when H is applied parallel to
the magnetic easy plane. These results imply the magnetic
easy plane, i.e. spin-spiral plane at the ground state, is tilted
from the originally suggested bc plane toward the bz plane
by about 20° �Fig. 1�c��. Above HSF, � still modulates sinu-
soidally but with different �-minimum position at �H
�122° �i.e., H �c�. With H�HSF, the gain of Zeeman energy
exceeds the energy loss due to magnetic anisotropy, and con-
tinuous rotation of spin-spiral plane is expected. In this case,
�H dependence of � rather reflects the anisotropy of g
value,29 whose minimum is also confirmed to appear at H �c
�Fig. 1�e��.

To investigate the behavior of P under H rotating around
the b axis, we simultaneously measured Pz and Pa using two
pairs of electrodes. Thus, both P and H can be expressed as
vectors within the ac plane. We also define �P as the angle
between the a axis and observed P direction �Fig. 5�d��.
Figures 4�d� and 4�e� indicate �H dependences of Pz and Pa
measured at 5 T. When H is rotated by 180°, P direction is
always found to be reversed. To see the behavior of P more

straightforwardly, the trace of P is plotted in the Pa-Pz plane
�Fig. 5�a��. It forms a shape like elongated ellipse. In Figs.
5�b� and 5�c�, �H dependences of �P� �magnitude of P� � and
�P are indicated. �P takes almost constant value around �P
=120° or 300°, suggesting the major axis of observed P
ellipse is pointing at the c axis. If we assume that H is always
perpendicular to the spin-spiral plane, i.e., H� � �S� i�S� j�, the
IDM model predicts P� = P� 1 �c for H� �c �Fig. 5�e�� and P�

= P� 2�c for H� �c �Fig. 5�f��. For general �H, P� is given as

P� = P� 1 sin�122 ° − �H� + P� 2 cos�122 ° − �H� , �2�

which forms an ellipse-shaped trace with P� 1 and P� 2 as the
major and minor axes, respectively. From the �P� profile, we
deduced �P� 1��31 �C /m2 and �P� 2��2 �C /m2.

In Figs. 4�d� and 4�e�, the P behavior expected from Eq.
�2� is plotted as dashed lines. While the calculated P profile
roughly agrees with the observed one, small gap still exists
between them. This deviation reverses its sign at �H�100°,
where H becomes parallel to the magnetic easy plane. Cor-
respondingly, � also shows small anomaly at �H�100° �Fig.
4�c��. These behaviors can be well explained by assuming
that the spin-spiral plane is tilted from the originally ex-
pected H� � �S� i�S� j� position toward the magnetic easy plane.
A similar effect of magnetic-anisotropy drag on P has also
been observed in the H-rotating experiment on
Eu1−xYxMnO3.6
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FIG. 3. �Color online� P-E hysteresis loop for CuCl2 measured
with E � z. Electric field was swept at the rate of 13 kV /m sec.
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Thus, we conclude that the IDM scheme can well repro-
duce the observed FE and ME natures, even for CuCl2 with
S=1 /2 quantum spin chains. Note that P �c relationship ob-
served at 0 T can be justified even with a slight revision of
the originally suggested bc-spiral spin structure since de-
duced ratio �P� 1� / �P� 2��15 is quite large. Notably, when H
and spin-spiral plane is rotated counterclockwise, P is found
to rotate clockwise �Fig. 5�a��. This is in contrast with the
case for Eu1−xYxMnO3,6 where both H and P rotate in the
same direction. The observed manner of P rotation and large
�P� 1� / �P� 2� ratio are in accord with the recent DFT calculation
for edge-shared CuO2 chain compounds,30 and these features
would reflect the anisotropy and sign of coupling coefficient
A in Eq. �1�.

CuCl2 is also the first example of nonchalcogen-based
spiral-spin-induced multiferroics. While observed �P� 1�
�31 �C /m2 is somewhat smaller than the calculation

��P� 1��84 �C /m2�,27 it is comparable with the case for other
helimagnetic oxides �2000–5 �C /m2�. Interestingly, a re-
cent theoretical study suggested the choice of anion may
largely affect the value of induced P through the different
strength of metal-ligand hybridization and spin-orbit
coupling.31 This means that the ME response can be en-
hanced if we choose appropriate anion as the ligand. Until
now, the study of ferroelectric helimagnets is almost limited
to oxides, partly because their isostructural chalcogen rela-
tives with larger anions �i.e., sulfides or selenides� are often
electrically too leaky to perform dielectric
measurements.32–34 Since halogens have larger electronega-
tivity than chalcogens, halides are better insulating and en-
able the investigation of ME properties for a wider variety of
anions. For example, most of MX2-type halides with X=Cl,
Br, and I consist of stacking of undistorted triangular lattices,
which realizes various types of spiral spin orders.35–37 The
systematic investigation of FE properties of whole MX2 sys-
tem will offer a good opportunity to clarify the anion depen-
dence of magnetically induced ferroelectricity, which may
contribute to a general strategy to obtain larger ME re-
sponses.

IV. CONCLUSIONS

In summary, we have experimentally revealed magneti-
cally driven ferroelectricity in an S=1 /2 chain helimagnet
CuCl2. Observed P behaviors under applied H can be repro-
duced well within the framework of the inverse
Dzyaloshinskii-Moriya model, suggesting the robustness of
this ME coupling mechanism even under the effect of
strong quantum fluctuation. CuCl2 is a rare example of
nonchalcogen-based spiral-spin-induced multiferroics, which
promises further discovery of unique magnetoelectric func-
tion in many MX2-type compounds and other forms of halide
compounds.
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