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A phenomenological model is developed for systematic study of the universal features in metal-insulator
transition and magnetoresistivity of mixed-phase manganites. The approach is based on utilization of some
hypothesis appropriate to the Preisach picture of the magnetization process for half-metallic ferromagnets and
an assumption that in doped manganites a Griffiths-type phase exists just above the magnetic-ordering tem-
perature. Within the model, the system is considered as a random three-dimensional resistor network where a
self-consistent formation of paths with metal and polaron types of conductivity is not only due to magnetic
field variation but also due to temperature changes, as well. Both mechanisms of intrinsic percolation transition
are considered on one basis. The theory is able to replicate the basic regularities found experimentally for
doped manganites resistivity dependence on temperature and magnetic field without the need for empirical
input from the magnetoresistive data. Within the approach a natural basis has arisen for a qualitative classifi-
cation of magnetoresistive materials into those, such as Laj;Sry3MnO3, showing modest magnetoresistivity,

and those, such as Laj;Cay3MnOj3, showing large magnetoresistivity.

DOLI: 10.1103/PhysRevB.82.064419

I. INTRODUCTION

The intrinsic transport properties of doped manganites
with the general formula Ln;_ B,MnO; (where Ln is a lan-
thanide and B is a divalent alkaline earth) having the effect
of “colossal magnetoresistance” (CMR)—an abnormal de-
crease in resistivity when a magnetic field is applied—are far
from trivial, and, in fact, have proven to be a challenge to
describe.'"* While the parent compound LnMnOj is known
to be an antiferromagnetic insulator, the doped compounds in
the optimal regime (LnSZB(z,E)Man behave as paramagnetic
(PM) with polaron type of conductivity at high temperatures
and ferromagnetic (FM) metals below the Curie temperature
T¢, near which the magnetoresistance peaks. The FM order-
ing has been attributed to the double-exchange interaction
between the valence electronic states of Mn**-O%-Mn**.> The
double-exchange mechanism is also believed to be respon-
sible for the occurrence of CMR in conjunction with the
effects of lattice distortion.® A direct consequence of the
double-exchange and the lattice distortion is a large spin
splitting of the conduction band into majority and minority
subbands in the FM state.!* These subbands are separated
by the on-site Hund’s rule energy, which is about several
electron volts, depending on the A-site doping. The large
spin splitting yields the half-metallic properties of the mate-
rial, namely, at the Fermi level only the states of charge
carriers with one spin direction are present whereas there is a
gap in the density of states for the carriers with the another
spin direction.

Within the double-exchange interaction model, the itiner-
ant charge carriers provide both the magnetic interaction be-
tween nearest Mn>*-Mn** ions and the system’s electrical
conductivity. Due to the short mean free path, that is typi-
cally the distance of about a lattice parameter, the charge
carrier probes the magnetization on a very short length scale.
So, as a specific prediction of the double-exchange model is
that the onset of metallicity reflects the establishment of an
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infinite (percolating) pathway of metallic bonds and simulta-
neously the establishment of an infinite ferromagnetic clus-
ter. As a result, a strong interplay between magnetic order
and macroscopic electrical resistance is expected.

Indeed, in hole-doped manganites the insulator-to-metal
transition is observed just after the ferromagnetic
ordering;'* magnetoresistive experiments often exhibit an
intricate interplay with magnetization and with the role of
field history in the preparation of the system; often a scaling
p/ po=—C(M/Mjy)? is found between the reduced resistivity,
p/ py, magnetization, (M/Myg),>*710 etc.

There are also numerous evidences proving the spatial
variations in the local electronic properties on a nanometer
scale and demonstrating the coexistence of metallic, insulat-
ing, as well as semiconducting regions, even in state-of-art
materials.'~*!! While these regions have typical sizes of tens
nanometer, they can also form clusters of several hundred
nanometers. As was documented in noise measurements,!?
muon spin relaxation'> and in  neutron-scattering
experiments,'* this phase separation is dynamic, but much
slower than it is typical for critical fluctuations. By applying
magnetic field, a considerable fraction of semiconducting re-
gions can be converted into metallic regions, resulting in
metallic percolation paths throughout the sample. Despite the
fact that, with increasing magnetization, the system becomes
increasingly metallic, some regions remain insulating/
semiconducting even in a high applied field.!" Data obtained
from high-quality single crystals show almost exclusively
semiconducting (polaronic) behavior at temperature far
above the Curie temperature. On lowering the temperature,
the system becomes more metallic on average, however,
there are always regions that remain insulating down to low
temperatures far into the bulk ferromagnetic state.

Typically, the zero-field resistivity p(7) increases substan-
tially upon cooling, reaches the maximum and then sharply
decreases upon further cooling. The temperature at which
p(T) achieves maximum commonly is considered as
insulator-to-metal transition temperature 7,,. It was de-
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FIG. 1. Presumptive 7-p diagram for a dilute ferromagnetic
Ising model (Ref. 26); here p is the probability for the existence of
a ferromagnetic bond, solid curve is a probable behavior of the
Curie temperature T(p) of a dilute ferromagnet. A conjectured po-
sition of Lay;Sry3MnO3 with T(p) =370 K and Lay,Cag;MnO5
with T¢(p)=220 K on T-p diagram is shown.

tected, that as the average ionic size of A-site atoms de-
creases toward that of La, the transition temperature T, (and
the Curie temperature T-) decreases and the exponential in-
crease in resistivity with temperature makes the drop to me-
tallic resistivity more dramatic.'>-'8 Exemplarily, magnetore-
sistive manganites with high T (e.g., Lay;Sry3sMnO; with
T=350-370 K) show modest magnetoresistivity and con-
ventional critical behavior whereas those with low T (e.g.,
Lay;CaysMnO; with T-~220 K) show larger magnetore-
sistivity and unconventional critical behavior. Because the
double-exchange model alone is not sufficient to explain the
extraordinary ~ magnitude of  magnetoresistance  in
manganites,'~* researchers are forced to look for other sce-
narios of the metal-insulator transition in manganites.

Recently, a considerable influence of quenched disorder
on the phase complexity in manganite systems and the ap-
pearance of phenomena such as CMR has been unraveled
both experimentally'"!'°->3 and theoretically.’*?> Within the
context of quenched disorder scenarios, the existence of a
Griffiths-type® temperature T, above the magnetic-ordering
temperature T has been predicted and linked to CMR.!%:20:25
Below T, the disordered system is in between the com-
pletely disordered PM high-temperature regime and the mag-
netically ordered state. This phase regime is usually referred
to as the Griffiths phase,’>?3?>?7 based on Griffiths’ treat-
ment of the effects of quenched randomness on the magne-
tization of a dilute ferromagnet.?® Griffiths phase is micro-
scopically characterized by a clusterlike system induced by
disorder. Griffiths showed that essential singularities would
develop in a temperature region T(p) <T<Tg, where p de-
notes the disorder parameter, T(p) is the disorder-dependent
FM ordering temperature, and 7 is a new temperature scale
corresponding to the Curie temperature of the undiluted sys-
tem (see Fig. 1).

Almost all the reports considering the Griffiths model are
devoted to the singular behavior of thermodynamic or dy-
namic properties of the system.!%20:22:23.28 To our best knowl-
edge, there were no reports addressing “conventional” (non-
singular) characteristics of the system with Griffiths phase.
On the other hand, as far as the disorder effects are an intrin-
sic part of the physics of manganites, the model considering
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magnetoresistive properties of these materials in ferromag-
netic and Griffiths phases on a single footing is very desir-
able.

The present study attempts to address these questions by
generalizing the effective medium approach®® assuming the
existence of a Griffiths-type phase and temperature scale T;
above the magnetic-ordering temperature. We will show that
with an inclusion of the necessary temperature effects the
model® is able to replicate a broad spectrum of behavior
observed experimentally in the field-temperature depen-
dences of the conductivity response of magnetoresistive
manganites. In particular, a qualitative classification of mag-
netoresistive manganites has appeared. Namely, depending
on some system parameter, which describes the response of a
magnetic system on thermal effects, magnetoresistance will
be large, the temperature of insulator-to-metal transition is
far below T, and the effect of magnetic field is dramatic. Or,
oppositely, magnetoresistance will be low, T, is not far be-
low T, and the effect of magnetic field is moderate. We
stress that we will not discuss any specific regimes or a class
of effects from the diversity of phenomena in doped manga-
nites (reviews'™ give a good idea of these), but try to focus
on common behavior and basic characteristics of metal-
insulator transition and magnetoresistive properties of these
materials. The list of universal regularities found for doped
manganites includes, in particular, the following: (i) a system
with the largest Curie temperature demonstrates modest
magnetoresistivity whereas a system with the lowest Curie
temperature shows the largest magnetoresistivity; (ii) ap-
proximately an inverse relationship between MR effect mag-
nitude and T (or T},,) is observed; and (iii) above the Curie
temperature there is an exponential resistivity-magnetization
relation p(M)/p(0) ~exp[-C(M/Mg)*]. The discussion of
these basic characteristics is the main purpose of the report.
The analysis necessarily involves phenomenological consid-
eration since aforementioned features, most probably, cannot
be discussed within one microscopic model framework.
Also, any microscopic theory to be classic should contain
everything what is “required” and nothing what is “excess.”
A correct phenomenological theory helps to sort out what is
required and what is excess.

The paper is organized as follows. In Sec. II, to make the
report self-contained, we briefly discuss the Preisach model
of magnetization, which includes the effects of the critical
ordering temperature and thermal fluctuations. Section III
describes the modeling of the metal-insulator transition and
magnetoresistivity in half-metallic ferromagnets (HMFs)
based on the Preisach-approach philosophy. In Sec. IV, the
model’s predictions of HMF electrical resistivity response on
temperature and magnetic field are illustrated by numerical
simulations. The results are compared with the experimental
data. The next section is devoted to a comprehensive discus-
sion of the approximations made and possible generaliza-
tions of the model. We end with the summary.

II. PREISACH-BASED DESCRIPTION OF THE
MAGNETIZATION PROCESS

As was already mentioned, systematic studies on the
resistivity-magnetization relation in doped manganites below
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and above the Curie temperature reveal a surprisingly strong
interplay between transport and magnetism in this system. A
model which predicts direct relationships between magneti-
zation M(H,T) and magnetoresistivity R(H,T) was recently
proposed in Ref. 29. The model is based on utilization of
some hypothesis appropriate to the Preisach picture of mag-
netization process which we briefly discuss in this section.

The classical Preisach model’*3! assumes that the system
consists of a large number of elementary interacting units.
Each unit is described by an elementary rectangular hyster-
esis loop, which has two field parameters, i.e., switching
fields, hy and hp, hy = hp. A probability distribution function
P(hy,hp) of the elementary units with switching fields hy, hy
is assumed to be known. Under varying external magnetic
field H, the unit will switch its magnetization to the “up”
state, if external field increases to H=h,; the unit will switch
to the “down” state, if external field decreases to H=hyg.
However, the magnetization will depend on the previous his-
tory of changes, if external magnetic field is in the region:
h,=H=hpg. The magnetization may be calculated knowing
the history of variation in the magnetic field, which generates
a partition of the Preisach plane (h4,hp) into two regions
with only up or down hysterons state

M(H) = va J( )P(hA,hB)dhAth
S+

—/,Lsf f( P(hA,hB)dhAth,
-)

where all elementary units in the region S*) have the mag-
netization “+u,,” all units in the region $©) have the magne-
tization “—pu,.” It is convenient to introduce the new field
coordinates h,=(hy—hg)/2 and h,=(hy+hg)/2, and rewrite
this expression in the form

o b(h,)
M(H) = 2,usf dhcf dh,P(h.h,),
0 0

where the (non-negative) Preisach distribution function
P(h,,h,) has been suitably renormalized to include all unim-
portant numerical factors. The boundary line b(h,) represents
the staircase boundary between the S and S regions and
comprises a given external field history.

One of the remarkable features of the Preisach-based ap-
proach is that it yields joint description of hysteresis and
thermal-fluctuation effects.>'=33 Indeed, transitions between
the two states of hysteron may also be induced by thermal
fluctuations if the system is at a finite temperature 7. For an
experiment with a characteristic time parameter 7, thermal
transitions are bounded to those barriers which are less or
equal to the effective thermal-fluctuation energy Wy (T)
=kpT In(leyy/ 79).3'** Here kp is Boltzmann’s constant; 7 is a
typical attempt time on the order of 107°—107!° s. The time
parameter In(z.,,/7)=25 is typical for static experimental
measurements.

As was demonstrated by Song et al.’? (see also Ref. 33),
the field and thermal excitation conditions can be represented
graphically in the Preisach plane, in which each hysteron is
located with respect to its characteristic fields (%,,h,). Figure
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FIG. 2. (Color online) The Preisach plane in a positive applied
field H>0 at finite temperature 7. The region of superparamagnetic
response is hatched; in this region hysterons can potentially occupy
either of = u(7) state. In the region IV the response is history de-
pendent (see text for details).

2 shows the Preisach plane in a positive applied field H>0
at finite temperature 7. The quadrant enclosed between the
boundaries h,=H+h, and h,=H-h,. contains the bistable
subsystems, which can potentially occupy either state
+u(T). For a given temperature T, there are two thermal-
excitation boundaries; one of which—hy ,,;,—identifies
those subsystems whose lower energy barrier matches
WoT)=pu(h.~|h,+H]), and the other one—hy ,,,,—is the
location of subsystems whose higher barrier matches
Woi(T)= u(h +|h,+H|). Subsystems which lie to the left or
above the hy ,,;, boundaries have a thermally active lower
barrier and a thermally inactive higher barrier, and conse-
quently occupy their lower energy state exclusively, while
those subsystems within the shaded region in Fig. 2 have two
thermally active barriers, equilibrium Boltzmann level popu-
lations and a superparamagnetic response function
tgp(H, T) = p(T)tanh[ w(T)(H—h,) / kgT]. Now the magneti-
zation is obtained by evaluating the weighting state
o(H,T,h.,h,) of each hysteron by the Preisach function
P(h,,h,) and integrating over the entire Preisach plane

M(H,T) = on dhcfm [dhup(hcvhu)QD(H»T’hc’hu)] (1)
0 o

with

o(H,T,h.h,) ={+ w(T),— w(T), u(T)
Xtanh[ w(T)(H - h,)/kgT], = u(T)}

for the regions I, II, III, and IV in the Preisach plane, respec-
tively (see Fig. 2). In the region IV, where hysterons can
potentially occupy either of = wu(7) state, the response is his-
tory dependent and is determined by the line b(h,).

According to the Preisach-approach paradigm the distri-
bution function P(h,,h,) is an inherent property of the sys-
tem which is prescribed in advance. Typically3! it is assumed
that there is no interference between local coercivity and
interaction effects and the Preisach distribution function may
be split into the product of factors. A Gaussian-Gaussian dis-
tribution of the form
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(hc - hc())2
2A?

h2
Xexp| — —5 ()

Pl 7 2a2
is often a good approximation. Here h., A, and A, are
distribution parameters. Temperature dependence of the hys-
terons energy barriers is described by introducing tempera-
ture dependences into the Preisach function parameters (ex-

act relationships will be introduced below, also see Ref. 32
for details).

III. CORRELATION BETWEEN RESISTIVE AND
MAGNETIC STATES IN HALF-METALLIC
FERROMAGNETS

Consider now the system under study as a system of mag-
netic hysterons distributed in real space.”® Let us decompose
a total current through the sample into two spin-polarized
currents (two-fluids model) j,,,;=j;+Jj;, where, due to half-
metallic properties of the material, j; can be considered as a
current through one type (+) of the Preisach hysterons (units)
while j as a current through another (-) type of the units. At
zero temperature, the electron-spin direction is parallel to the
magnetic moment of the initial hysteron and may be parallel
or antiparallel to the direction of the magnetic moment of the
nearest-neighbor hysterons. If parallel, the electron experi-
ences weak scattering and hence that is a “metallic path.” If
antiparallel, the electron experiences strong scattering and
hence high resistance occurs (a “resistive path”). Therefore,
the system can be represented as three-dimensional resistor
networks. When the hysteresis is rate independent, the sys-
tem’s conductivity is obtained by weighting the conductivity
of each resistor network path by the Preisach conductivity
function, P(hyu;,hp;s ... >haiksPpivk). As a result, we obtain
the following expression for an irreversible conductivity:?’

O'irr(H)zzz f J dhyidhg;. .. f f dhyidhpisi
k=1 b(h,) b(h,)

XP(hpphgs - s Pgjaps M)
Xo(H;haphps - i Ppivi) s (3)

where b(h,) is the Preisach memory function, the same as for
magnetic hysteresis. The correlation between magnetic and
resistivity responses has now become a correlation between
the Preisach magnetic function, P(hy,hg), and the Preisach
COnduCtiVity funCtiOn, P(hAi’hBi’ . 9hAi+k’hBi+k)'

For hole-doped manganites, due to the short spin scatter-
ing length, the charge carrier probes the magnetization on a
very short (atomic) length scale. So, as a good approximation
we can assume that there are no mutual interference of
neighboring hysterons on their switching fields, /&y
and hp. That is, the Preisach conductivity function
P(hpj hpgi, ... hyiers hpie) may be represented as a multiple
function of the probability P(h,,hz) of magnetic hysteron
being involved in a conducting path

P(hAi’hBi>hAi+1»hBi+l) :clP(hAi»hBi)P(hAHl’hBHl)’
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P(haishpishaisi,hicishaiso, higiso)
= oP(hai hp) P(hyisr,hpi ) Pl hpina) . (4)

and so on. For the given current trajectory, any mutual per-
mutations of the hysterons are physically indistinguishable
and have to be taken into account once, i.e., c,=const/k!,
where “const” is determined by the distribution of the hys-
terons in a given sample. It may be considered as the prob-
ability of two hysterons with switching fields (/4;,hp;) and
(hjs1-hpiet) to be the nearest neighbors in real space®’and
reflects the character of a quenched disorder in the given
sample. It is reasonable to assume that this probability does
not depend on temperature and magnetic field and is an in-
herent property of the system.

We are now in a position to generalize the results of Ref.
29 by including the temperature effects. First of all, we
should determine the temperature dependence of the hyster-
ons energy barriers and the Preisach function parameters.
Following the picture of the quenched disorder and the exis-
tence of a Griffiths-type temperature scale Tg,'!"1%212324 we
will suggest the ratio 7/ T as a natural scale for the tempera-
ture dependence of the system parameters. Within a qualita-
tive approach (see also the Sec. V), power-law temperature
dependences has been considered

T \ 7 T \ 7%
th(T) = th - 4 AC(T) = AL‘O - ’ Au(T)
e e
T \7u T \"™
Al 1=-—] , w@=pl1-—]", 5
uO( TG) m(T) M( TG) (5)

where v, V., Y. and 7,, are critical exponents and pu, is
magnetization of hysteron at zero temperature (note, that the
notations used here differ slightly from those introduced by
Song et al.?? to avoid confusion).

For later purposes, it is also convenient to introduce char-
acteristic energies, which form a natural basis for a qualita-
tive classification of magnetic system response on thermal
effects. One of these characteristic energies is the critical
thermal-fluctuation energy Wepn=kpTg In(fex,/ ), Which de-
fines the highest energy barrier which can be thermally acti-
vated for a hypothetical “pure”) system with “Curie tempera-
ture” Tz The other one is the mean zero-temperature
anisotropy barrier W,(0)= .o, which fixes an upper limit
on the height to which the barriers of a given system can
grow. The relation of these two characteristic energies, 7
=W,(0)/Wcy, determines the ability of a system to resist
thermal-fluctuations effects. For the system with 7<<1, ther-
mal energy is sufficient to activate almost all of the barriers,
so this system will mainly exhibit a reversible superparamag-
netic response. Following3? we will refer to such a system as
the fluctuation-dominated system. Oppositely, the system
with #7>1 will mainly exhibit an irreversible response and
the superparamagnetic behavior will be narrow. We will refer
to such a system as the anisotropy-dominated system. As will
be shown below, a ratio of the characteristic energies W,(0)
and Wy is a natural parameter for classification of HMF
systems in terms of their magnetoresistive properties. The
main idea introduced here is that certain fundamental char-
acteristic energies which play a primary role in the metal-to-
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FIG. 3. An example of magnetic hysterons distribution in real
space at finite temperature. Here the squares of different colors
represent the hysterons in spin up (black), spin down (white), or
superparamagnetic (gray) state. The picture imitates a local varia-
tion in the electronic properties of mixed-phase manganites.

insulator transition and magnetoresistive properties of the
system are determined by the energy barriers alike to those
that are for a hypothetical system with the Curie temperature
TG.

As was stated before, three-dimensional resistor networks
were introduced to describe the transport properties. At finite
temperature, however, these networks are composed of hys-
terons which can potentially occupy three states. Figure 3
schematically illustrates a system of magnetic hysterons dis-
tributed in real space at finite temperature. Here the squares
of different color represent hysterons with the magnetization
up (black), magnetization down (white), and hysterons in
superparamagnetic state (gray). The main concept introduced
is that the percolation process is not only due to magnetic
field variation but also due to temperature changes as well.
Our approach implies that (i) the metallic state reached from
the insulator with magnetic field increase is not homogenous
but must have a substantial fraction of insulating clusters and
(ii) the metallic clusters exist in the range Ty, =T=Tg. Ac-
cordingly, this also suggests that the metallic state reached
from the insulator with temperature decrease is not homoge-
neous and even below T, there is a substantial fraction of
the insulating (paramagnetic) clusters. The metal-to-insulator
transition is associated with the formation of a metallic clus-
ter that spans the entire sample. Further increase in conduc-
tivity is likewise understood as the growth of such a cluster.

The physics sketched in Fig. 3 gives possibility to model
the real situation observed experimentally for mixed-phase
ferromagnetic manganites (cf. with Fig. 3 in Ref. 11). As
documented in different experiments, even in perfect single
crystals there is local variation in the electronic properties
and spatial coexistence of metallic, insulating, and semicon-
ducting regions—the so-called phase separation. Taking into
account the data, one can consider the sample as an ensemble
of physically small but finite (e.g., a few nanometers in size)
“particles” (hysterons). Then each point of the Preisach plane
represents the average behavior of a certain group of real
particles in the medium. Conductivity between two neighbor-
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ing hysterons depends on many factors. In order to clarify
how magnetic percolation determines the transport properties
of the system, the dependence of charge-carrier transport on
the relative orientation (parallel, antiparallel, or superpara-
magnetic) of magnetic moments of the neighboring hyster-
ons will be considered. Following the description presented
above for zero temperature, if overall orientations are paral-
lel then the electron will be in a “conductive state” (metal-
lic). If antiparallel, the electron will be in a “resistive state”
(insulating). Intermediate case for conductivity will be if one
or two of the neighboring hysterons are in the superparamag-
netic state (such cases will be called polaron). Finally, as in
the case for zero temperature, the system’s conductivity is
obtained by weighting the conductivity of each resistor net-
work path by the Preisach conductivity function,
P(hyj hpis ... haier,Ppi) With temperature dependence. As
was already noted, this approach is very reasonable for
doped manganites, where it is known that electron scattering
drastically depends on electron-spin direction.

The irreversible part of the conductivity is obtained by
evaluating the weighting state of the conductivity of hysteron
pairs in Eq. (3), which is now temperature-dependent func-
tion o(H,T;ha;,hp;s -« hajek> M), by the Preisach conduc-
tivity function with temperature-dependent parameters, and
integrating over the entire Preisach plane. In the general
case, all possible current trajectories through magnetic hys-
terons should be taken into account [for 7=0 see Eq. (3) in
Ref. 29]. However, the analysis shows that even the first
approximation of a single pair of adjacent domains (hyster-
ons) is a good approximation to the main part of experimen-
tal data. The physical background for this may be a random
potential arising in doped manganites from chemical disorder
in the conventional random alloying on the perovskites
A-site with rare-earth and alkaline-earth ions (see, e.g., Ref.
21 for more details), which suppresses the respective long-
range hysterons correlations. Different lattice distortions also
provide an additional natural mechanism for short-range cor-
relation in the material.>> Leaving the general case for future
consideration, here we consider the first nontrivial approxi-
mation, i.e., the magnetoresistance is mainly associated with
the mutual orientation of magnetization of neighboring hys-
terons. Then Eq. (3) can be transformed into

Uirr(H’T)=ff dhcidhuiff dhci+ldhui+l
b(h,) b(h,.)

XP(hci’hui)P(hciH’hui+1)
XO-(H’T;hci’hui7hci+1’hui+l)' (6)

Here we used the relation Eq. (4) and rewrote the result in
field coordinates h. and h, and introduced temperature de-
pendence in Preisach function and conductivity. Equation
(6), in the limiting case of ignoring the temperature effects
and using Eq. (1), reproduces the results of Refs. 7, 8, and 29
2

O-irr(H)/O-O -~ |:j f dhcdhup(hc’hu) @(H;hc’hu)
b(h,)

~[M(H)/M,], (7)

where oy is a conductivity at 7=0.

064419-5



KRIVORUCHKO, MARCHENKO, AND MELIKHOV

By decomposing the integrals in Eq. (6) into integrals
over regions I, I, II1, and IV in the Preisach plane (see Fig.
2), we can present the conductivity o, (H,T) as a sum of
partial conductivities through the paths with the given type
of hysteron pairs resistivity state

v
o (HT) =2 o, (VI (HT) (8)

ij=I

which, after combining terms with the same meaning, can be
rewritten as

0 (H,T) = 0,(DVDH,T) + 0, (VD (H.T) + o)V
X (H,T), ©))

where fof)(H ,T) stands for the volume fraction of a metallic
conductivity path, Vgﬁ)(H ,T) is the volume fraction of the
sample with a polaron-type conductivity (due to superpara-
magnetic region on the Preisach plane), and V§R)(H ,T) cor-
responds to volume fraction of hysteron pairs with mutual
antiparallel magnetization orientations, and H dependence
represents dependence of history of magnetic field variation.
Each volume fraction is just proportional to that of region on
the entire Preisach plane. The o, 5(7) is the conductivity
of a metallic (polaron, insulating) conductivity path, respec-
tively. We assume that none of these parameters and param-
eter a,,,(T) (see below) depends on magnetic field. A con-
ductivity of the adjacent hysterons which form an
“insulating” path will equal zero o,(T)=0. These are cer-
tainly simplifications but we will show below that even such
a simplified model is still able to give a good qualitative
description of the main experimental facts for temperature—
field-resistivity behavior of doped manganites.

For comparison with real systems it is necessary to
supplement irreversible response by a purely reversible term
0,0,(T) which represents processes independent of magnetic
state of the system, i.e., a,,,(H,T)=0,.,,(T)+0,,(H,T). [The
0,.,(T) characterizes a high-temperature asymptotic of the
conductivity.] We will assume, again for simplicity, that the
reversible term is due to a polaron mechanism of conductiv-
ity, too, and that the characteristic parameters of the polaron
transport do not change, i.e., 0,.,(T)=0,,(T).*® The total
conductivity is given then by the expression

0o(H,T) = 0, (DVP(H,T) + o, (D1 - VP(H,T)],
(10)

where the volume fraction with metallic type transport is just
proportional to that of region on the entire Preisach plane.
Namely,

o by(h,) 2
VRH,T) = | W), f dh, f dh,P(heh,)
0 —00

o % 2
+ l— ,LL(T)/,LLSJ dhcf dhuP(hC,hu):| ,
0 by(h,)
(1)

where the boundary b,(h,) (line H-a-d-e in Fig. 2) separates
the region where hysterons occupy state +u(7) while the
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boundary b,(h,) (line H-c-d-e in Fig. 2) separates the region
were hysterons occupy state —u(T).

To proceed further, we need to specify for the dependence
of the conductivities a,,(T) and o,(7T) on temperature. These
dependences on temperature are determined by the micro-
scopic mechanisms of charge-carriers scattering specific for
a system and are the matter of a microscopic theory consid-
eration. Within our phenomenological approach, we will use
here the known experimental results. In a metallic regime,
for such HMFs as manganites electrical resistivity is found to
obey the following relation (see, e.g., Ref. 37):

Pac(T) = po+ PocT* + pouT”? = 05 (1 + T + yT7%) = 07, (1),
(12)

where py=p,;.(T=0, H=0)=1/0, is the residual resistivity
arising from temperature-independent processes such as im-
purities, vacancies, etc. The term ~T2 represents the
electron-electron scattering whereas the term ~7°2 stands
for the two-magnon scattering process in ferromagnetic
phase.?® (Note that for HMFs the one-magnon scattering pro-
cess in ferromagnetic phase is forbidden.) Numerous experi-
ments show that at low temperature the metallic region’s
resistivity of manganites is mainly governed by the electron-
electron scattering while the contribution of the two-magnon
scattering process is more important at high temperatures.

A number of experimental results including transport
measurements,”>° isotope effects,*> and microscopic
techniques*' have provided strong evidence to the (small or
large) polaron-type conductivity in the paramagnetic region.
In the framework of the hopping of small polarons model the
electrical resistivity can be expressed as:i*? p(T)
=poT" exp(E,/ kgT), where E, is the sum of the activation
energy required for the creation and activation of the hop-
ping of the carries (for manganites, typically
~2kgTy—3kgTyy), n is 1 for adiabatic and 1.5 for nonadia-
batic processes. Experimental data exhibit an independence
of the activation energy E, on magnetic field in paramagnetic
region. Within a comparative approach (see also Sec. V), we
will approximate the conductivity of neighboring hysterons
which are both in the superparamagnetic state, as well as if
only one of the neighboring hysterons is in the superpara-
magnetic state, by the form

0., (T) = 0oT " exp(- E,/kgT). (13)

Expressions in Egs. (2), (5), and (10)—(13) are the basis for
modeling of the magnetotransport properties of the material
for all experimental protocols. In obtaining these expres-
sions, a key assumption was that the system effectively is a
three-dimensional resistor network of conductivity hysterons
and the transport of this effective medium is characterized by
a mixing of band-type and polaron-type conductivities. As
will be shown in the next section, the model is able to cor-
rectly replicate the main universal findings for doped man-
ganites’ resistivity on temperature and magnetic field depen-
dencies.
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FIG. 4. (Color online) Temperature profiles of resistivity for
systems with different 7=W,(0)/W¢y at H=0.

IV. RESULTS OF SIMULATION

In this section we present the results of numerical simu-
lations of magnetotransport properties of phase-separated
manganites. The parameters used are: y.=v,=7v,=0.3, ¥y
=0.2, ')’M=0.5, CY=5, ACO=AMO=O'35? U'Q=1, and Ep/TG
=2.5 Oe/emu K. Magnetic field, resistivity, and magnetiza-
tion are normalized on A, py, and My, respectively. We also
choose kp/ u,=0.08, 0.053, 0.04, 0.027, 0.02, 0.013, and 0.01
to model the systems with 7=W,(0)/W;=0.5, 0.75, 1.0,
1.5, 2.0, 3.0, and 4.0, respectively.

Figure 4 shows the temperature profiles of the resistivity
p(T) for samples with varying 7. T, is manifested as peak
in the (dp/dT)/ py curve or as the temperature where (dp/dT)
changes its sign. As it is apparent, the transition becomes
more gradual with increasing #. If magnetic field is applied,
the resistivity on temperature dependence is typically mea-
sured by the standard field-cooling (FC) protocol. The simu-
lation of field-cooling from a high temperature on the Prei-
sach plane (Fig. 2) corresponds to translation of the vertex
h.=hy inward along the line h,=H starting from h.=h;=%,
where the entire bistable quadrant is superparamagnetic. Fig-
ure 5 illustrates representative results obtained by such pro-
tocol for the fluctuation-dominated 7=0.5 [Fig. 5(a)] and

80 F T
201 plp,

o 70t
£

< 60f 15| —®—H=0
—e—H=0.1
—e—H=02
10} —@—H=0.3
——H-05
—e—H=07

501
40+
30t
20}
10}
0 ‘ : 0

w
T

FIG. 5. (Color online) Resistivity data as function of tempera-
ture at different applied magnetic fields: (a) fluctuation-dominated
system; (b) anisotropy-dominated system. (Here and in Figs. 6, 7,
and 9 an external magnetic field is normalized on A,g.)
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FIG. 6. The variation in the magnetoresistivity, Eq. (14) at H
=0.5, as function of the ratio T,/ Tg.

anisotropy-dominated 7=1.5 [Fig. 5(b)] systems.

As it follows from Fig. 5, for both systems at low tem-
peratures the resistivity is metallic, rising sharply while ap-
proaching to metal-insulator transition and showing activated
(polaron-type) behavior above T);;. Under the effect of mag-
netic field the T),; is shifted to upper temperature and the
magnitude of the resistivity at 7,; is decreased. The magne-
toresistance is maximal near the metal-insulator transition
leading to a peak in the magnetoresistance (MR) ratio

Ap __ P(Ty H) = p(Ty1,0)
p(H) p(Ty. H)

Still, there are some important differences between these two
systems. For fluctuation-dominated system [Fig. 5(a)], the
resistivity decreases suddenly both below and above T, the
magnitude of this decrease is large, and the temperature T,
is far below T: T);;<<T. For anisotropy-dominated systems
[Fig. 5(b)], the resistivity decreases much more smoothly
both below and above T, the magnitude of this decrease is
weaker, the effect of magnetic field is moderate, and the T,
is not far below 7.

The data in Figs. 4 and 5 are in remarkable agreement
with the experimental findings for colossal magnetoresistive
manganites. It is generally observed that in the doped man-
ganites the transition becomes more smooth and the height of
MR peak decreases with increasing the metal-to-insulator
transition temperature T, The colossal magnetoresistance
can be found in compounds with low-T),; temperature; the
Laj,Cay3MnOs is the representative of such a system. For
the compound with the highest T),; temperature of mangan-
ites family, the MR ratio is an order lower; the
La, ;Sry3MnOs is the representative of such a system.

Figure 6 shows the results of calculations for the peak of
MR, Eq. (14), versus T,/ T for a variety of systems with
the parameter 7 ranging from 0.5 to 4.0 at field H=0.5. An
inverse relationship between T),;; and the peak MR is quite
visible. The maximum magnetoresistance at a given field ap-
pears to be a universal function of the ratio T,/ T;. Taking
into account that in real samples of phase-separated manga-
nites the tunneling percolation mechanism*® also gives addi-
tional contribution into magnetoresistivity, we believe that
there is a good qualitative agreement between the prediction

(14)
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FIG. 7. (Color online) The variation in the normalized resistivity
p(H)/p(0) ~exp(—kH?) as a function of the square of magnetic
field at temperature immediately above Ty (T=1.1Ty).

of our simplified model (Fig. 6) and experimental results for
the peak MR versus T for a variety of Ln;_ B ,MnO;_s ma-
terials at fields ranging from 5 to 12 T (see the data in Fig. 3
of Ref. 16 or in Fig. 47 of Ref. 1).

Figure 7 illustrates the normalized resistivity p(H)/p(0)
as a function of the square of magnetic field in the tempera-
ture region immediately above T, (T=1.1T,;;). This depen-
dence was analyzed by using in a paramagnetic state the
relation p(H)/p(0) ~exp[-C(M/Mj)*]~ exp(—kH?) [here «
=C(x/My)? and y is dc susceptibility]. As indicated by the
broken lines, this empirical formula reproduces well the MR
behavior over a fairly large H region. The variation in the
coefficient k with 7 is shown in inset of Fig. 7. The « value
demonstrates a distinct decrease with increasing the ability
of the system to resist thermal fluctuations, i.e., the param-
eter W,(0)/ Wy

The empirical relation p(H)/p(0) ~ exp[—C(M/Mg)*] was
originally proposed assuming that the resistivity in a ferro-
magnetic semiconductor above T, obeys the thermal-
activation-type law, and that the activation energy is reduced
in proportion to M?. Particularly, in Ref. 44 this formula was
applied to the MR of low-doped manganites assuming that
the mobility edge present within the conduction band shows
the energy shift in proportion to M>. In Ref. 45, the coeffi-
cient C is connected with barriers due to magnetic disorder.
In Ref. 18, the coefficient C is further related with Curie
temperature 7. Comparing the data in Fig. 7 with those in
Fig. 4 of Ref. 18, one can find a remarkable correspondence
between the theoretical calculations and experiments.

Generalizing the results in Figs. 4-7, we arrive to the
conclusion that the model proposed gives a natural parameter
for a qualitative classification of the magnetoresistive man-
ganites. This parameter is the ratio of characteristic energies
W4(0)/ W¢y, which are the upper limit on zero-temperature
anisotropy barrier W,(0)=u,h. and the highest energy bar-
rier which can be thermally activated W =kpT g In(tey,/ 7).
To clarify the physical content of the ratio W,(0)/ Wy, in
Fig. 8 the variation in T, at H=0 with 7=W,(0)/W¢y, is
shown. We see that the ratio T;,/T is increased as 7 in-
creases. Comparing the 7),/T; behavior with those sug-
gested for the dependence of T¢(p) on the disorder parameter
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FIG. 8. The variation in Ty, /T; at H=0 with parameter 7
=W,4(0)/ Wy, which characterizes the ability of the system to resist
thermal fluctuations. (cf. with Fig. 1).

p (Fig. 1), one can conclude that the parameter W4(0)/ Wy
realizes function similar to the disorder parameter of the
Griffiths model. Following the classification, the model pre-
dicts that for the anisotropy-dominated system
(W4(0)/ Wy > 1) the Griffiths-type behavior will be detected
in a very narrow region T;;<T<Tj; this system will dem-
onstrate modest magnetoresistivity and conventional critical
behavior. Oppositely, for the system with dominated tem-
perature fluctuation behavior (W,(0)/ W, <<1) the Griffiths
region is very broad, and for such a system one can expect
large magnetoresistivity and unconventional critical behav-
ior. These qualitative classification is also in a remarkable
agreement with the experimental results (see, e.g., Table II in
Ref. 20 and Table I in Ref. 28).

Leaving for a forthcoming publication detailed analysis of
magnetic reversible/irreversible characteristics of a system
with the Griffiths phase, let us conclude this section with a
brief discussion of those magnetic properties which are di-
rectly concerned with the questions under consideration. Fig-
ure 9 shows a comparison of the temperature dependence of
the FC and zero-field-cooling (ZFC) magnetization response

FIG. 9. (Color online) The temperature dependence of the FC
and ZFC magnetization responses for a half-metal ferromagnet with
the Griffiths phase in an applied field H=0.05.
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TABLE I. The blocking temperature T, the metal-to-insulator transition temperature 7);;, and the Curie
temperature T for systems with different values of the parameter 7=W,(0)/ Wy

7 0.5 0.75 1.0 1.5 2.0 3.0 4.0
Ty 0.43 0.54 0.62 0.72 0.78 0.85 0.89
Ty 0.48 0.59 0.66 0.75 0.81 0.88 0.91
Tc 0.48 0.59 0.66 0.76 0.82 0.88 0.91
V(nf) (H,7T) conductivity between two neighbor grains (hysterons)

m(H,T) = M(H,T) (15)

V®(H,T=0)

of the fluctuation-dominated (7<1) and anisotropy-
dominated (%> 1) systems, in an applied field H=0.05. (We
take into account that only metallic part of the medium pos-
sesses ferromagnetic properties.) From these data one can
restore the actual Curie temperature 7 and the so-called
blocking temperature 7. The later is the temperature below
which the FC and ZFC moments follow different branches,
with the FC moment always lying above the ZFC moment,
and above which the two branches merge into a single su-
perparamagnetic tail which extends up to 7. The data for
Tc, Ty, as well as T),;; are summarized in Table 1. From the
data in the table, one can find the relation Tp=T,,;=T is
fulfilled between the temperatures. We will discuss the physi-
cal content of the characteristic temperatures relation in the
next section.

V. DISCUSSION

Let us now discuss the approximations made and possible
generalizations of the model. First of all, we note that our
model should be distinguished from those used for describ-
ing magnetotransport properties of granular ferromagnetic
systems and polycrystalline manganites (see, e.g., Ref. 43
and references therein). The granular system typically is
modeled within the tunneling percolation scenario, that is
each contact between a pair of grains i and j is represented
by a resistor with conductance o;; proportional to the tunnel-
ing probability o;;=0(6;;)exp(-&r;;), where o(6;) is a con-
stant of conductivity which is a function of the relative ori-
entation angle 6; between the magnetic moments of the
grains, r;; is the distance between the ith and jth grains, and
¢ is a coefficient. Looking for intrinsic transport properties of
phase-separated manganites we suggested that for an ideal-
ized system (e.g., a prefect single crystal) the contribution of
a tunneling mechanism into magnetoresistivity does not prin-
cipally change the results discussed here. This suggestion is
closely related to the other one, namely, the idea to use a
scalar Preisach model. Note, that there are vector versions of
the Preisach model (see, e.g., Ref. 46 and references therein),
which one can use if further refinements in the approach are
needed. But taking into account a good correspondence be-
tween the theoretical calculations and experimental data, a
posteriori, we conclude that vector character of magnetiza-
tion, as well as angular dependence of the conductivity
o(6; j), are not crucial for the results under consideration. In
reality, there is physical justification for these. Indeed, due to
the half-metallic nature of electrical transport in the system,

strongly depends on the angle between the magnetic mo-
ments of the hysterons; specifically, o(6,) is very low if the
angle 6;; is not near zero value.¥ As already mentioned in
Sec. I, in manganites the itinerant charge carriers provide
both the magnetic interaction between nearest Mn**-Mn**
ions (the so-called double-exchange interaction) and the sys-
tem’s electrical conductivity. That is, the charge carrier
probes the ions magnetization orientation on a lattice-
parameter distance. If the Mn®* and Mn** core moments are
not ferromagnetically ordered the double-exchange interac-
tion is strongly suppressed.’ Hence, we believe that ignoring
an angular dependence of o(6;;) and the scalar version of our
model are not fundamental for the results discussed here.

In our approach, the value of metal and polaron paths is
determined by the Preisach distribution function which is the
same as for the magnetization. A probability function
P(h,,h,) is a given characteristic of the sample, which is
attributed to the sample solely. The P(h,,h,) function can be
independently restored from magnetization measurements for
some definite protocols. For example, following the way as
described in Ref. 47, see also Eq. (1), we have

P(h.,h,) =- M(hh,), (16)

oh.dh

c u

where h.>h, (see Ref. 47 for more details). That is, all
magnetic parameters of the system, including their tempera-
ture dependences could be restored from the magnetization
measurements only. With the probability function P(h,,h,)
in hands one can then restore the p(T,H) dependencies and
compare the theoretical curves with those experimentally de-
tected for the given sample. By choosing a power-law tem-
perature dependencies into the Preisach probability function,
Eq. (5), we certainly simplify the picture accounting only
that the system free-energy barriers should collapse as T
— TG'

An effective medium approximation of metallic regions
within a polaronic background having activated electrical
conductivity was also intensively discussed earlier (see, e.g.,
Refs. 10, 39, 48, and 49). However, in those models the
temperature- and field-dependent metallic-bond concentra-
tion was extracted from the resistivity data. In our approach,
the magnitude of this mixing (value of the metal and polaron
paths) is determined by the Preisach distribution function
without the need for empirical input from the magnetoresis-
tive data. Particularly, there is no need to introduce any sec-
ondary order parameter (see, e.g., Ref. 48) to reproduce the
qualitative features of the experimental data.
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As is mentioned in Sec. III, our approach implies that
metallicity accompanies the establishment of an infinite per-
colating pathway, i.e., ferromagnetism precedes metallicity.
The calculations confirm the percolation mechanism of con-
ductivity. As is apparent form the data in Table I, the metal-
to-insulator transition temperature 7T),; is not larger than T
but not less than Tz. The system blocking temperature lies
between the two limits Ty, and Tyy, corresponding to
excitation/blocking the lowest and the highest anisotropy
barriers, respectively. Once the highest barrier hysterons
freeze they are capable to keep static local magnetic order.
But only when a static percolating ferromagnetic cluster is
formed the metallicity establishes. However even below this
temperature, the hysterons with lowest anisotropy energy,
i.e., those with Tp; <Tgy, are in a superparamagnetic state
and are not capable to keep static magnetic order and thus to
support metallicity, as well. As far as for any system T,
<Tp<Tgy>? and the relation Ty=T,,;<T. (see Table I)
found, an immediate corollary is the percolating mechanism
of metallicity. Still, at this stage of investigation, we cannot
give definite answer to the question whether the Curie tem-
perature coincides with the metal-to-insulator transition tem-
perature or whether these two points are distinct.

Let us now consider the types of conductivity we attrib-
uted to hysterons. Theoretical predictions® state that in insu-
lating phase (dp/dT<0) electrons are bound by a surround-
ing lattice forming polaronic quasiparticles. Polaron hopping
is the dominant transport mechanism here and give rise to
the thermally activated resistivity. On cooling below T),;; spin
order leads to electron delocalization and transition to metal-
lic (dp/dT>0) behavior.® Many experiments have provided
compelling evidence for the existence of polaronic charge
carriers in the paramagnetic state of manganites.'~* However,
the electric transport mechanism below T, is still poorly
understood. Although some experimental data are consistent
with a polaron collapse at Ty, other reports (see, e.g., Ref.
50 and references therein) provide evidence for the presence
of polarons in the ferromagnetic metallic phase, as well.
Within the framework of the phenomenological model pro-
posed in this work, it is reasonable to attribute a polaronic
type of conductivity to superparamagnetic hysterons. Then
the existence of polarons below T, is naturally due to hys-
terons which remain in superparamagnetic state down to low
temperatures far into the bulk ferromagnetic state. The pre-
scription of the very same activation energy to polaronic
quasiparticles above and below T),; is definitely simplifica-
tion which may be easily overcome. To avoid confusion, also
note that keeping on the same magnitude of parameters in
Eqgs. (12) and (13) for systems with different W,(0)/ Wy
ratio is a simplification, too.

As a final remark, note that there are a few features which
should be kept in mind concerning the Griffiths-type phase in
doped manganites. In the classic Griffiths model®® exchange
interaction is distributed randomly, but once distributed, it is
fixed. This is not the case for doped manganites, where
double-exchange coupling between Mn**-O>-Mn** ions is

PHYSICAL REVIEW B 82, 064419 (2010)

due to electron hops between the ions and depends on mutual
orientation of their core spins. As a consequence, as spins
order locally, the ferromagnetic clusters are also more metal-
lic, and the joint effect is to reinforce and stabilize the for-
mation of large ferromagnetic clusters. Also, there is consen-
sus between researchers that some fraction of ferromagnetic
coupling between Mn ions is a superexchange type and so is
in a nonmetallic regime. Hence, the situation in the doped
manganites does not follow an ideal Griffiths phase precisely
(see also discussion in Ref. 20). In this context, the ratio of
characteristic energies W,(0)/ Wy, should not be precisely
considered as “the probability for the existence of a ferro-
magnetic bond.” The parameter W,(0)/ W, merely imple-
ments a role similar to the disorder parameter of the Griffiths
model.

VI. SUMMARY

In the report, an effective medium approach is developed
for clarifying the universal features in metal-insulator transi-
tion of the mixed-phase manganites. The formalism is based
on generalization of the Preisach model of hysteresis for
half-metallic ferromagnet and the assumption of the exis-
tence of Griffiths-type phase and temperature scale 7; above
the magnetic-ordering temperature. Respectively, the funda-
mental characteristic energies which play a primary role in
the metal-to-insulator transition and magnetoresistive prop-
erties of the system are determined by the energy barriers of
similar to those of a hypothetical medium with the Curie
temperature 7. Within the model, the system is considered
as three-dimensional random resistor network were the in-
trinsic thermodynamic percolation effects are not only due to
magnetic field variation but also due to temperature changes,
as well. The approach implies that the metallic state reached
from the insulator with magnetic field increase is not homog-
enous but has a substantial fraction of semiconducting/
insulating clusters, and the metallic clusters exist in the range
Tyi=T=Tg. Accordingly, this also suggested that the me-
tallic state reached from the insulator with temperature de-
crease is not homogeneous and even below T, there is a
substantial fraction of the nonmetallic/paramagnetic clusters.
Both mechanisms of percolation transition are considered on
one basis. Within the approach, a natural parameter, that is,
the ratio of two characteristic energies—the critical thermal-
fluctuation energy and the zero-temperature anisotropy
barrier—has been introduced for a qualitative classification
of system magnetotransport properties. The model is able to
describe the main experimental facts for doped manganites’
resistivity on temperature and magnetic field dependencies
without the need for empirical input from the magnetoresis-
tive data.
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