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We report the magnetization, ac susceptibility, and specific heat of optically float-zoned single crystals of
Mn1−xFexSi and Mn1−xCoxSi for temperatures down to �2 K and magnetic fields up to 9 T. The suppression
of the helimagnetic transition temperature T1 above a critical composition x1, as seen in the magnetization, ac
susceptibility, and specific heat, suggests the existence of a quantum phase transition at x1. A Vollhardt
invariance at a temperature T2�T1, which may be attributed to the Dzyaloshinsky-Moriya �DM� spin-orbit
interactions, is also suppressed with increasing x and vanishes above a concentration x2, where x2�x1. When
suppressing the effects of the DM interactions in an applied magnetic field, the magnetization for sufficiently
large fields shares the signatures expected of an underlying putative ferromagnetic quantum critical point for a
critical concentration xc, where x1�xc�x2. As a function of normalized concentration x /xc, where xc

Co

�0.084 and xc
Fe�0.192, the properties of Mn1−xFexSi and Mn1−xCoxSi are essentially identical with x1 /xc

�0.78 and x2 /xc�1.17. Taken together, our study identifies Mn1−xFexSi and Mn1−xCoxSi as model systems in
which the influence of DM interactions on ferromagnetic quantum criticality may be studied.
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I. MOTIVATION

The experimental and theoretical investigations of quan-
tum phase transitions in magnetic materials attract great in-
terest as the possible origin of new types of low-lying exci-
tations of many-body systems. Quantum phase transitions
�QPTs� attract also interest as the possible origin of novel
forms of electronic order. One of the most important phe-
nomenological models that permits the identification of
anomalous behavior at QPTs is the spin-fluctuation theory of
weakly magnetic itinerant-electron compounds, also known
as self-consistent random-phase approximation �RPA� or
self-consistent renormalization �SCR� model.1,2 The SCR
model was originally developed to account for weak
itinerant-electron ferromagnets, where excellent quantitative
agreement was observed.1–4 In fact, the quantitative agree-
ment achieved in these studies inspired the experimental
search for ferromagnetic quantum criticality.5

However, all pure itinerant-electron ferromagnets studied
experimentally so far show a first-order suppression of fer-
romagnetism when being tuned with a clean nonthermal con-
trol parameter, notably pressure.6–9 Many different micro-
scopic mechanisms exist, that may actually cause the first-
order behavior observed. The most basic explanation is
connected with maxima of the single-particle density of
states in the vicinity of the Fermi level. Further, magneto-
elastic coupling and weak spin-orbit interactions may also
cause first-order behavior.10–14 Theoretical studies have even
established that pure many-body interactions may cause a
first-order transition near ferromagnetic quantum criticality.12

This suggests that ferromagnetic quantum criticality does not
occur in pure materials.

Unlike the experimental and theoretical evidence that fer-
romagnetic quantum criticality does not exist in pure mate-
rials, ferromagnetic quantum criticality seems to occur under

compositional tuning in systems such as Pd1−xNix or
Nb1−yFe2+y.

15–17 This raises the question for the origin of
quantum criticality in the presence of disorder. In particular,
ferromagnetic quantum criticality has attracted great interest
as a platform for so-called Griffiths phases and rare
regions.18

The role of disorder and defects at a QPT alludes to weak-
energy scales and how they affect the physical properties
near QPTs as a more general theme. Since QPTs by construc-
tion may be reached when strong scales in the internal en-
ergy are balanced, one might naively expect that weak inter-
actions can eventually stabilize novel behavior. A simple
example is magnetically mediated superconductivity at a fer-
romagnetic QPT, where �weak� superconductive interactions
dominate the ground state in a small parameter range.19–23

Taking together the search for quantum criticality in
itinerant-electron magnets and the question for the role of
weak interactions make it of great interest to identify systems
in which these issues may be studied in a controlled manner.

In this paper we address the question of quantum phase
transitions in the transition-metal compounds Mn1−xFexSi
and Mn1−xCoxSi. These compounds are essentially ferromag-
netic, where the ferromagnetism is subject to weak chiral
spin-orbit couplings, also known as Dzyaloshinsky-Moriya
�DM� interactions. Our investigation was inspired by exten-
sive studies of the magnetic phase diagram and the pressure
dependence of the itinerant helimagnet MnSi.

In the next section we present an extended introduction to
the properties of MnSi in order to motivate the wide range of
issues addressed in our study. This is followed by a more
detailed account of the objectives and outline of the paper. In
Sec. III we describe the single-crystal growth as well as the
experimental methods. The presentation of the results is
given in Secs. IV–VI for the magnetization, susceptibility,
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and specific heat, respectively, followed by concluding re-
marks in Sec. VII.

II. EXTENDED INTRODUCTION

In MnSi rich phase diagrams that originate in a hierarchy
of well-separated energy scales unfold in MnSi as a function
of temperature, magnetic field, and pressure. On the stron-
gest scale ferromagnetic exchange interactions favor parallel
spin alignment. This is followed by spin-orbit interactions
that are about one order of magnitude weaker. Due to the
lack of inversion symmetry of the B20 crystal structure the
spin-orbit interactions in leading order assume the rotation-
ally invariant Dzyaloshinsky-Moriya form, i.e., they are pro-
portional to M ·��M, where M is the magnetization. Thus
the spin-orbit interactions favor perpendicular spin alignment
with a unique chirality. The combination of ferromagnetic
exchange and DM interactions stabilizes long-wavelength
helical spin order, where �h�180 Å. The chirality of the
helical modulation derives from the lack of inversion sym-
metry of the crystal structure and depends on the details of
the electronic structure. The third and weakest scale in MnSi,
which determines the direction of helical modulation, are
higher order spin-orbit interaction terms, also referred to as
crystal electric field interactions. In MnSi the helical modu-
lation is pinned to the set of �111� directions.

In the following we review the status of the experimental
and theoretical understanding of MnSi. We begin with the
ambient pressure properties, where we focus at first on the
ferromagnetic limit, followed by the consequences of the
DM interactions. We then turn to the experimental studies of
the QPTs in MnSi under pressure. This sets the stage for an
introduction of the properties of Mn1−xFexSi and Mn1−xCoxSi
as reported in the literature prior to the work reported here.

A. Weak itinerant ferromagnetism in MnSi

In the 1970s and 80s the consequences of the hierarchy of
energy scales in MnSi were addressed as separate issues. The
first strand of developments concerned extensive studies of
MnSi as a material close to itinerant-electron ferromag-
netism, i.e., the helical modulation was considered to be a
small distortion of an otherwise ferromagnetic state �the vol-
ume fraction of the Brillouin zone occupied by the helical
modulation is only around 10−3�. The weak itinerant ferro-
magnets addressed in these studies are characterized by a
strong Curie-Weiss dependence in the paramagnetic regime
with a large fluctuating moment of order �B. The Curie-
Weiss moment thereby exceeds the ordered magnetic mo-
ment, which is typically not larger than a few tenths of a �B
�hence the name “weak” magnetism�. Also unusual is the
temperature dependence of the square of the ordered moment
which varies as the square of the temperature Ms

2�T�=M0
2�1

−T2 /Tc
2� where M0=Ms�T→0�. Moreover, the magnetization

is highly unsaturated and the nonlinear field dependence well
described as B /M �M2 �this is shown in so-called Arrott
plots�.

The properties of weak itinerant ferromagnets may be ac-
counted for quantitatively in a phenomenological model tak-

ing into account the spectrum of thermal spin fluctuations.1–3

Inelastic neutron scattering in MnSi established thereby for
the first time in any material, the existence of the relevant
thermal spin fluctuations over the entire Brillouin zone.24,25

For the discussion of the experimental results reported in
this paper it is helpful to review the key expressions of the
spin-fluctuation model of weak itinerant ferromagnets.1 The
model is based on a Ginzburg-Landau expansion of the free
energy, where the magnetic field B that stabilizes the magne-
tization M is given by the usual magnetic equation of state

B�M� =
1

V

�F

�M
= AM + bM3. �1�

The temperature-dependent inverse susceptibility

A = a + b�3�m�
2� + 2�m�

2 �	 �2�

takes into account the effects of thermal spin fluctuations,
where � and � denote fluctuations transverse and longitudi-
nal to the local magnetization, respectively. The effects of
zero-point fluctuations are thereby included in the parameters
a and b and only the effects of thermal contributions to the
spin fluctuations are treated explicitly,1 i.e., �m2�→0 for T
→0. Note that the thermal fluctuations in general depend
also on the magnetization M so that A=A�M ,T�. The phe-
nomenological parameters a and b represent the zero-
temperature inverse initial susceptibility and the initial
mode-mode coupling parameter. The zero-temperature or-
dered moment, ms,0, is hence given by −a /b=ms,0

2 . In our
study we exploit that a and b may be determined directly
from the magnetic field dependence of the magnetization.

The variance of the spectrum of thermal spin fluctuations
�m�

2�, where �= � or �, may be computed directly from the
dynamical susceptibility ��q ,	� by means of the fluctuation-
dissipation theorem

�m�
2� = 4



first BZ

d3q

�2��3

0

� d	

2�
n�	�Im ���q,	� , �3�

where the q integral is over the first Brillouin zone. In the
paramagnetic state the dynamical susceptibility is approxi-
mated by the double Lorentzian of an overdamped harmonic
oscillator

��
−1�q,	� = ��

−1�q��1 −
i	

��q�� , �4�

where the imaginary part of the dynamical susceptibility is
given by

Im ���q,	� = ���q�
	��q�

	2 + �
2�q�

�5�

with

��
−1�q� = ��

−1 + c�q2 + ¯ �6�

and the relaxation frequency spectrum

��q� = ��q��
−1�q� . �7�

The spin-fluctuation spectrum is hence parametrized in terms
of two phenomenological constants c� and ��. Values of c
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and � in cgs and SI units differ by a factor 4�, i.e., ccgs
=4�cSI and �cgs= �4��−1�SI. In the ferromagnetic state as
well as in the polarized state at finite magnetic field the fluc-
tuation spectrum is more complex. In particular, one has to
distinguish between a transverse part, that includes the usual
spin-wave excitations and a longitudinal part. In addition the
dynamics now also depends on the splitting of spin-up and
spin-down Fermi surfaces.

The spin-fluctuation model of weak itinerant ferromag-
netism described above accounts essentially for all of the
experimental properties listed above. In particular, it relates
the fluctuating Curie-Weiss moment to the small ordered mo-
ment and the nonlinear magnetization. Most impressively,
perhaps, as first pointed out by Lonzarich1,3 spin-fluctuation
theory allows to calculate the ferromagnetic transition tem-
perature Tc in quantitative agreement with experiment. As-
suming that c and � are isotropic Tc may be expressed in
terms of the four phenomenological parameters a, b, c, and �
�in SI units� as follows:

Tc = 2.387c− a

b
�3/4 �
��1/4

kB
�0

3/4. �8�

The factor �0
3/4 originates in the conversion from cgs to SI

units. In our study of Mn1−xFexSi and Mn1−xCoxSi we con-
sider the consistency with these expressions.

B. Helimagnetism in MnSi

The second strand of experimental studies in MnSi con-
cerned the nature of the long-wavelength helimagnetic order.
Already at the end of the 1950s Dzyaloshinsky26 and
Moriya27 had shown that spin-orbit interactions may induce a
canting of magnetic moments in antiferromagnets lacking
inversion symmetry. In a pioneering effort Dzyaloshinsky
showed theoretically that magnetic order may even get
twisted into long-period helices in crystals lacking inversion
symmetry, if the spin-orbit interactions are strong enough.28

To describe these magnetic modulations Dzyaloshinsky
considered so-called Lifshitz invariants, i.e., certain antisym-
metric terms in the Ginzburg-Landau free energy. These
terms had been ruled out at first by the founding fathers of
Landau theory as they destroy the homogeneity of
condensed-matter systems. Since then many incommensurate
ordered phases in crystalline materials have been discovered
that may be described by Lifshitz invariants.29 Thus inhomo-
geneities associated with Lifshitz invariants provide tremen-
dously rich physical phenomena in a wide range of different
systems, of which Dzyaloshinskys incommensurate magnetic
helices are a simple example. The uniqueness of the chirality
thereby distinguishes modulated magnetic states due to
Dzyaloshinsky-Moriya interactions from spin spirals due to
geometric frustration, e.g., in the magnetic rare-earth ele-
ments. Remarkably, it was only in the 1980s when the first
experimental example of a Dzyaloshinsky-Moriya spiral was
identified in a real material: the transition-metal compound
MnSi.30–34 The unique relationship between the chirality of
the crystal lattice and the helimagnetic spin order was dem-
onstrated a few years later.35,36

The magnetic phase diagram of MnSi is composed of five
different phases. At high temperatures MnSi is paramagnetic,

exhibiting a Curie-Weiss dependence with a large fluctuating
moment, mCW�2.2 �B f.u.−1. Below Tc=29.5 K MnSi or-
ders helimagnetically. The pitch of the helix is large, �h
�180 Å, as compared to the lattice constant, a=4.56 Å. In
an applied magnetic field the magnetic phase diagram is es-
sentially isotropic, i.e., there are only small differences of the
phase boundaries as a function of the direction of the applied
magnetic field.

Well below Tc the application of a magnetic field causes a
reorientation of the helical modulation for magnetic fields
exceeding Bc1�0.1 T.31,37,38 For B�Bc1 the propagation di-
rection of the helical modulation is thereby parallel to the
applied magnetic field, i.e., the moments are perpendicular to
the field as for spin-flop phases in antiferromagnets. For in-
creasing field the moments become increasingly parallel to
the applied field, thus forming a conical helix. Above Bc2
�0.6 T the helical modulation is suppressed and a weakly
spin-polarized �ferromagnetic� state survives in high mag-
netic fields.

The Ginzburg-Landau treatment can be extended straight-
forwardly to helimagnets. For simplicity, we restrict the fol-
lowing discussion to isotropic helimagnets. This includes the
Dzyaloshinsky-Moriya interaction and properly captures the
transition at Bc2. For a description of the reorientation tran-
sition at Bc1 crystal anisotropies must be included in the
theory. The Ginzburg-Landau potential of the magnetization
M for an isotropic helimagnet reads

V�M� =
a

2
M2 +

b

4
�M2�2 +

D

2
M�� � M� −

c

2
M�2M − BM

�9�

with the Dzyaloshinsky-Moriya interaction amplitude D. In
an extended regime of the phase diagram �except the A
phase� the potential can be minimized with the help of the
conical-helix Ansatz for the magnetization as a function of
position r

M�r� = MB̂ + MQ cos�Qr�ê1 + MQ sin�Qr�ê2, �10�

where Q is the pitch vector of the helix that is oriented in the

direction of the magnetic field, Q=QB̂. The unit vectors ê1
and ê2 obey

ê1 � ê2 = Q̂ . �11�

The Ginzburg-Landau potential Eq. �9� then simplifies to a
function of three parameters

V�M,MQ,Q� =
a

2
�M2 + MQ

2 � +
b

4
�M2 + MQ

2 �2 −
D

2
MQ

2 Q

+
c

2
MQ

2 Q2 − MB . �12�

Minimization leads to the three equations

�V
�M

= aM + b�M2 + MQ
2 �M − B = 0, �13�
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�V
�MQ

= aMQ + b�M2 + MQ
2 �MQ − DQMQ + cQ2MQ = 0,

�14�

�V
�Q

= −
D

2
MQ

2 + cMQ
2 Q = 0. �15�

In the presence of a finite MQ�0, it is possible to solve
Eq. �15� for the pitch of the magnetic helix

Q =
D

2c
, �16�

which is proportional to the Dzyaloshinsky-Moriya interac-
tion D. With this solution Eq. �14� simplifies to

a + b�M2 + MQ
2 � −

D2

4c
= 0. �17�

Assuming that this equation has a solution we may simplify
Eq. �13� as follows:

B

M
=

D2

4c
= cQ2. �18�

In the conical phase the magnetization increases linearly
with the field B, and the slope is given by the square of the
pitch vector Q. Inserting Eq. �18� in Eq. �17� we finally ob-
tain for MQ

MQ =
1
�b
�cQ2 − a − b B

cQ2�2

�19�

provided that the magnetic field is sufficiently small

�B� � Bc2 = cQ2�cQ2 − a

b
�20�

and a�cQ2. This determines the upper critical field Bc2 be-
low which the conical helix is stabilized. For higher fields
B�Bc2 one enters the homogeneously polarized state MQ
=0. In this regime the minimization conditions in Eqs.
�13�–�15� reduce to the equation of state �Eq. �1�	 of the
ferromagnet.

Similar as for the ferromagnet, see Eq. �2�, the helimag-
netic fluctuations renormalize the Ginzburg-Landau potential
Eq. �9� and, in particular, lead to a temperature dependence
of the parameter a→A that controls the distance to the tran-
sition. For energies larger than the spin-orbit gap of the
Fermi surface and momenta larger than the Dzyaloshinsky-
Moriya interaction D, these fluctuations have an essentially
ferromagnetic character. In the limit of small energies and
momenta, however, the fluctuation spectrum will differ from
that of an itinerant ferromagnet and the renormalizations will
reflect the particular properties of metals with spin-orbit
coupling.39 In order to analyze the dependence of the mag-
netization on magnetic field, we approximate the equation of
state for fields B�Bc2 close to Bc2 as

B

M
� A�Mc2,T� + bM2 �21�

with Bc2=cQ2Mc2 so that the Arrott plot B /M vs M2 is ap-
proximated to be linear. Using Eq. �21�, we experimentally
extract the parameters A�Mc2 ,T� and b and discuss their de-
pendences on temperature and doping.

C. Skyrmion lattice in MnSi

For temperatures just below Tc a small phase pocket, re-
ferred to as the A phase,37 was first observed in ultrasound
attenuation and magnetization studies. As a function of mag-
netic field the A phase is bounded by the transition fields
BA1�BA2. The A phase was initially interpreted as a para-
magnetic state. However, neutron scattering already in the
early 1990s established the existence of a helical modulation
perpendicular to the applied field, where just a single modu-
lation vector had been observed.40,41 In comparison to spin-
flop phases of normal antiferromagnets a single helical
modulation perpendicular to the applied field is energetically
highly unfavorable and there was no satisfactory theoretical
account for a long time.42,43

In fact, recently we managed to show that the early work
on the A phase in MnSi was incomplete. Originally inspired
by our high-pressure studies of the QPTs in pure MnSi �Ref.
44� and the search for spin-transfer torque effects at ambient
pressure45 we revisited the magnetic structure in the A phase.
Small angle neutron scattering �SANS� revealed a sixfold
scattering pattern when the incident neutron beam is parallel
to the applied magnetic field.46 This implied at least a
multi-k structure, which, however, turned out to be a new
form of magnetic order: a skyrmion lattice.

As its most remarkable feature the spin structure in the A
phase supports a nontrivial topology, notably the winding
number of the magnetic unit cell is −1. The evidence for the
skyrmion lattice was initially based on the excellent theoret-
ical account of all properties observed experimentally. Ac-
cording to the theoretical model proposed in Ref. 46 the A
phase is thereby stabilized by thermal Gaussian fluctuations.
The observation of a topological Hall signal proved the ex-
istence of the topological properties beyond doubt.47 Thus
the spin structure in the A phase corresponds to a hexagonal
lattice of antiskyrmions, which may be pictured as a hexago-
nal lattice of a kind of spin vortices parallel to the applied
field. By now the same type of magnetic order has also been
observed in the A phase of the doped semiconductor
Fe1−xCoxSi �Ref. 48� and the single crystals of Mn1−xFexSi
and Mn1−xCoxSi studied in this paper �a preliminary report
on the observed skyrmion lattices has been published in Ref.
49�. In fact, recently individual skyrmions have been ob-
served by means of Lorentz force microscopy in Fe1−xCoxSi
�x=0.5�.50,51

D. Magnetic quantum phase transition in MnSi

The self-consistent RPA of itinerant-electron ferromag-
netism is deeply rooted in Landau-Fermi-liquid theory. How-
ever, since the early days of the RPA it was appreciated that
a phase transition to itinerant-electron ferromagnetism pre-
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cisely at T=0 would imply an inconsistency with the starting
assumption of Fermi-liquid theory.52,53 The fermion quasi-
particle interactions were thereby expected to become singu-
lar resulting in a marginal breakdown of Fermi-liquid theory.
This motivated theoretical and experimental studies of zero-
temperature magnetic to nonmagnetic phase transitions.5,54,55

These first efforts have developed into the field of quantum
phase transitions, defined as phase transitions driven by
quantum fluctuations.

The controlled search for a marginal breakdown of Fermi-
liquid theory in itinerant-electron magnets began with studies
of MnSi, where hydrostatic pressure was used as a clean
tuning parameter.5,56 While the resistivity suggested a con-
tinuous suppression of the magnetic order at a pressure pc
=14.6 kbar measurements of the ac susceptibility estab-
lished soon that the associated QPT is actually first order.57

As the perhaps most puzzling property, it was further found
that the temperature dependence of the electrical resistivity
abruptly changes at the critical pressure from the quadratic
dependence of a Fermi liquid to an extended, stable T3/2

non-Fermi-liquid NFL form.58

To explore the origin of the non-Fermi-liquid resistivity
neutron-scattering studies of the helical order were carried
out, revealing that the ordered moment is not suppressed at
pc.

44 Instead, considerable scattering intensity was found to
survive above pc. However, in contrast to ambient pressure
the scattering intensity above pc is distributed everywhere
over the surface of a small sphere in reciprocal space with
broad intensity maxima for the crystallographic �110� direc-
tions. As the magnetic scattering intensity qualitatively
shares similarity with the structural scattering intensity ob-
served in liquid crystals, the magnetic state above pc is re-
ferred to as partial magnetic order.

The intensity maxima in the partially ordered state for
�110� and their temperature dependence as compared with
the normal helical order early on suggested phase separation
and that the partial order is not just composed of disordered
helices. This was, in particular, supported by the magnetic
field dependence observed in small angle neutron
scattering.59 In addition the small angle neutron scattering
established that Bc1 and Bc2 are essentially unchanged as a
function of pressure and the ordered moment in a small ap-
plied field extrapolates to zero around 40–50 kbar �see also
Ref. 60�.

In turn the observation of the partial magnetic order in-
spired various proposals of chiral spin textures with non-
trivial topology such as merons and skyrmions as the domi-
nant property of the high pressure state.61–65 To obtain
thermodynamic information on the QPT in MnSi high-
resolution measurements of the lattice constants as a function
of pressure using Larmor diffraction were carried out.66

These data established beyond doubt, that there is no quan-
tum critical point �QCP� under pressure in MnSi �we use the
expression QCP exclusively for second-order quantum phase
transition�. The same data also show the formation of phase
separation in the range p�� p� pc. The magnetoelastic con-
tribution as extrapolated to zero temperature thereby tracks
the helimagnetic volume fraction inferred from the �SR
study.67,68 The absence of quantum criticality is inferred from
the change from magnetoexpansion to magnetostriction at pc,

which takes place around T�12 K. The Larmor data
thereby show that the regime of the non-Fermi-liquid resis-
tivity is accompanied by a magnetostriction at 20 kbar of
roughly a2�4�10−5. The same magnetostriction may be
also inferred from forced magnetostriction measurements re-
ported by Miyake et al.49,69 This suggests that the non-
Fermi-liquid resistivity is an intrinsic property of a novel
metallic regime that emerges under pressure.

E. Introduction to Mn1−xFexSi and Mn1−xCoxSi

For a long time it has been known that substitutional re-
placement of Mn with Fe or Co suppresses the helimagnetic
order in MnSi. This offers a different route to obtain a mag-
netic quantum phase transition. First magnetization and
NMR studies70 in Mn1−xCoxSi showed that the magnetization
curves are qualitatively unchanged under Co doping and sug-
gested a critical concentration in polycrystalline samples of
xc

Co�0.08. This was followed by small angle neutron scat-
tering, resistivity, and magnetization measurements in
Mn1−xCoxSi, which established that the helimagnetic wave-
length decreases by a factor of two under Co doping.71 These
studies also showed a metallic state and an increasing re-
sidual resistivity characteristic of increased defect scattering.
A more comprehensive study of the magnetic order in vari-
ous B20 compounds including selected compositions of
Mn1−xFexSi and Mn1−xCoxSi established helimagnetic spin
spirals as a rather general property in these systems.72 At the
same time Mn1−xFexSi studies for large values of x showed
that Mn may be used to suppress the excitation gap in the
insulator FeSi.73

In recent years a number of experimental studies focused
on the magnetotransport properties of Mn1−xFexSi and
Mn1−xCoxSi. These studies were partly inspired by the search
for unconventional metallic properties and anomalies of the
Hall effect.74–76 Quite recently small angle neutron scattering
established that the magnetic phase diagram of Mn1−xFexSi
for x=0.06, 0.08, and 0.10 qualitatively does not change un-
der doping.77 In this study it was also concluded that the
long-range order vanishes under Fe doping for x�0.13, but
the detailed suppression of the ordered moment was not re-
ported. Moreover, it has been pointed out that the samples of
Mn1−xFexSi may be grown with both chiralities78 as may be
expected of all B20 compounds.

Recent studies of the temperature dependence of the elec-
trical resistivity revisited the question of a quantum phase
transition in Mn1−xFexSi. Even though non-Fermi-liquid be-
havior was observed at the critical concentration of
Mn1−xFexSi no detailed discussion of the possible nature of
the NFL behavior was given.79 As reported before, the re-
sidual resistivity was found to increase dramatically when
approaching the critical concentration. Hence the nature of
the possible quantum phase transition and the possible role
of chiral spin interactions were an open issue prior to our
study.

F. Objectives and outline

The high-pressure studies of MnSi raise the question for
the nature of the partial magnetic order and its possible rela-
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tionship to the non-Fermi-liquid resistivity. The recent iden-
tification of the A phase in MnSi as a skyrmion lattice estab-
lishes the existence of such spin textures with nontrivial
topology. Thus a natural question concerns the fate of these
spin textures when MnSi is tuned to a QPT. However, since
high hydrostatic pressures are extremely challenging experi-
mentally it is also interesting to consider alternative tuning
techniques to achieve a QPT.

This raises the question for thermodynamic evidence of
the QPTs in Mn1−xFexSi and Mn1−xCoxSi and whether there
exists a quantum critical point �unlike for pressure tuning�.
Moreover, how does the hierarchy of energy scales evolve
under doping and what is the fate of the various magnetic
phases? In particular, how do the QPTs in Mn1−xFexSi and
Mn1−xCoxSi compare with pure MnSi under pressure? Here
an important issue concerns the role of disorder and whether
the disorder stabilizes the existence of quantum criticality.

In this paper we report a comprehensive study of the mag-
netization, ac susceptibility and specific heat of optically
float-zoned single crystals of Mn1−xFexSi and Mn1−xCoxSi.
The magnetization data as recorded for magnetic fields that
are sufficient to suppress the helical modulations point to an
underlying ferromagnetic quantum critical point in both
Mn1−xFexSi and Mn1−xCoxSi. The ac susceptibility and spe-
cific heat consistently suggest an important role of the
Dzyaloshinsky-Moriya interactions in the noncentrosymmet-
ric crystal structure near this underlying ferromagnetic quan-
tum critical point. With increasing concentration a QPT is
related to the suppression of long-range helical order; a sec-
ond important scale is related to the suppression of a Voll-
hardt invariance80,81 in the specific heat at the onset of an
intermediate regime between paramagnetism and helical or-
der.

We have also performed comprehensive small angle neu-
tron scattering studies and magnetotransport measure-
ments.82,83 These studies will be reported elsewhere. As the
main result of our SANS studies we find that the suppression
of helimagnetic order in both Mn1−xFexSi and Mn1−xCoxSi is
accompanied by an increase in the magnetic mosaicity trans-
verse to the ordering vector. This may be due to the weak
disorder. The neutron-scattering studies further confirm the
magnetic phase diagrams inferred from the magnetization
and susceptibility. In particular, the skyrmion lattice structure
in the A phase is insensitive to the disorder and defects in-
troduced by doping. Our magnetotransport studies thereby
confirm the existence of the nontrivial topology of the spin
structures. Inelastic neutron-scattering studies are currently
under way.

The presentation of the work reported in this paper pro-
ceeds as follows. In Sec. III we describe the experimental
methods, notably the preparation of the single crystals using
optical float zoning and aspects of the specific heat and mag-
netization measurements. This is followed by sections on the
magnetization �Sec. IV�, ac susceptibility �Sec. V�, and spe-
cific heat �Sec. VI�, each composed of a section presenting
the experimental results followed by a discussion. Given the
mere volume of data the immediate discussion of the experi-
mental results allows us to bring out better the salient fea-
tures of our study. The paper concludes with a discussion of
the results in Sec. VII.

III. EXPERIMENTAL METHODS

The preparation of the single-crystal samples of
Mn1−xFexSi and Mn1−xCoxSi involved three steps: �i� the pu-
rification of the starting elements, �ii� the preparation of
polycrystalline rods, and �iii� single-crystal growth by optical
float zoning. For the growth of the single-crystal samples we
used 4N Mn, 4N Fe, 3N5 Co, and 6N Si. The Mn and Fe
were first carefully etched followed by a thorough ultrasonic
cleaning. Using a bespoke Huykin crucible with radio-
frequency heating inside an all-metal sealed furnace we cast
rods of pure Mn and Fe under purified 6N Ar gas.

The same rod-casting furnace was also used to prepare
polycrystalline rods of Mn1−xFexSi and Mn1−xCoxSi for the
optical float zoning. From the high-purity rods of Mn and Fe
and the Co and Si the starting weight of the ingots was
prepared with an accuracy around �1 mg. The Fe and Co
pieces were thereby etched to weight. The typical weight of
the ingots was �12 g. The starting elements were molten
several times, where the polycrystalline pellets were flipped
over each time after melting to ensure maximum homogene-
ity. In a final step the polycrystalline pellets were cast into
rods with a diameter of d=6 mm and a length between l
�30 and 60 mm.

The single crystals of Mn1−xFexSi and Mn1−xCoxSi were
grown in a four-mirror image furnace �Crystal Systems In-
corporation�. To provide ultrahigh vacuum compatible con-
ditions our furnace was refurbished to be all-metal sealed.84

After mounting the polycrystalline starting rods the furnace
was thoroughly pumped-down using a turbo pump, baked
out using bespoke heating jackets and filled with a 6N Ar
atmosphere that had been purified additionally by means of a
hot getter furnace �NuPure�.

For the optical float zoning two polycrystalline rods were
mounted in the image furnace. The samples were first float
zoned to a starting position close to the lower end of the
polycrystalline rods. At the beginning of the final float-
zoning passage we applied a necking of the zone to promote
single-crystal grain selection, followed by float zoning over
the entire distance with a speed vfz�5 mm h−1. During the
float zoning the feed and seed rods were counter-rotating
with f fz�10 min−1.

The float-zoned rods were first characterized by Laue
x-ray diffraction along the entire length to identify large
single-crystal grains. In addition selected sections �notably
the final zone� were cut, polished mechanically and checked
with an optical microscope. For all compositions the final
zone exhibited a convex interface with respect to the poly-
crystalline feed rod. In all samples grown we observed a very
stable growth process. We have confirmed in several ingots
that the physical properties of samples from the start and the
end of the float-zoned ingots were identical. This provided
evidence for an excellent homogeneity of the composition
along the samples �Fig. 1�.

Shown in Table I is a summary of all crystals grown and
the size of the single-crystal grains they contained. For the
various measurements single-crystal specimens were cut
from the ingots using a diamond wire saw. The samples were
oriented by means of x-ray Laue diffraction. For the bulk
measurements a �110�-oriented disc was prepared �thickness
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1 mm� from which samples were cut according to the same
layout shown in Fig. 2. The notation is as follows: �a� paral-
lelepiped 1�1�6 mm3 for magnetization and ac suscepti-
bility with B � �100�; �b� quarter of a cylindrical disc perpen-
dicular to �110� with a radius of 3 mm and thickness of 1
mm for specific-heat measurements; �c� and �d� thin platelets
0.2�1�6 mm3 and 0.2�1�3 mm3, respectively, for
electrical transport, where current is parallel to �100� and
field parallel to �110�; �e� and �f� thin platelets 0.2�1
�3 mm3 for electrical transport, where current is parallel to
�110� and field parallel to �100�; �g� cube 1�1�1 mm3 for
measurements of orientational dependences. Using the same
sample shape for the same measurements and different com-
positions allowed us to avoid systematic errors when com-
paring data.

The magnetization, ac susceptibility, and specific heat
were measured with a Quantum Design Physical Properties
Measurement System at temperatures down to �2 K and in
magnetic fields up to 9 T. The magnetization was thereby
determined with an extraction technique. The specific heat
was measured with a standard heat-pulse method, where
typical heat pulses were around 1–2 %.

In all measurements the same systematic procedure was
applied. Data as a function of temperature were always re-
corded for increasing temperature. We thereby carefully dis-
tinguished, whether the sample was initially zero-field
cooled �zfc� or field cooled �fc� at the field value for which
data were recorded. We also tested the role of high-field
cooling �hfc�, where the sample was cooled down in a field
larger than the upper critical field Bc2. In magnetic field
sweeps the sample was initially zfc to the temperature at
which data were collected followed by a standard five-point
loop.

The study we present in this paper focused on the crystal-
lographic �100� direction. We have also measured other crys-
tallographic directions for selected compositions. Typical
data are described in the text, though we have no compre-
hensive account of the orientational dependence. However,
these data are sufficient to conclude that Bc2 is unchanged as
a function of orientation, while there may be small changes
in the precise location of Bc1, BA1, and BA2.

IV. MAGNETIZATION

In this section we present the magnetization of
Mn1−xFexSi and Mn1−xCoxSi. Following a first account of the
results, we focus on the behavior in magnetic fields that are
sufficiently strong to suppress the effects of the DM interac-
tions, i.e., B�Bc2. From the field-induced ferromagnetic be-
havior we extrapolate the properties in zero magnetic field.
In particular, we compare the ferromagnetic properties with
the spin-fluctuation model of itinerant-electron ferromagnets
given above. As our main conclusion the magnetic field de-
pendence of the magnetization in both Mn1−xFexSi and
Mn1−xCoxSi for the parameter range studied are consistent
with an underlying ferromagnetic quantum critical point. The
ac susceptibility and specific heat presented below suggest
that this extrapolated ferromagnetic quantum critical point
may be masked at low fields by a quantum phase transition
due to helimagnetic order.

A. Experimental results of the magnetization

Shown in Fig. 3 is the magnetization at 4 K up to 9 T for
various concentrations x. With increasing concentration the
zero-field extrapolated ordered moment is suppressed while
the increase in the magnetization at high fields, i.e., the high-

FIG. 2. Depiction how the �110�-oriented disc was cut up �a
�110� direction was parallel to the line of sight�. This way samples
for the various bulk properties measured in our study all had the
same dimensions. See text for details of layout.FIG. 1. �Color online� Single crystals of MnSi, Mn1−xFexSi, and

Mn1−xCoxSi grown for our study. For each panel the growth direc-
tion was from the right to the left. In most crystals a necking was
applied at the beginning of the growth to promote grain selection.

TABLE I. Summary of the single crystals grown for this study.
Also shown are the extent of the necking and the size of the single-
crystalline sections.

Composition Single crystal Necking

Mn1−xFexSi x=0 20 mm Strong

x=0 40 mm Strong

x=0.04 40 mm Strong

x=0.08 4 mm �top� None

x=0.08 15 mm �top� None

x=0.12 2 grains None

x=0.12 40 mm Weak

x=0.16 60 mm Strong

x=0.19 30 mm Strong

Mn1−xCoxSi x=0.02 20 mm Intermediate

x=0.04 4 mm �top� Weak

x=0.04 25 mm Strong
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field susceptibility, remains unchanged. For detailed informa-
tion data were also recorded in magnetic fields up to 1 T for
a large number of temperatures. Shown in Fig. 4 are typical
data recorded for pure MnSi and Mn1−xCoxSi. The related
magnetization of Mn1−xFexSi is presented in Fig. 5.

For all samples studied the magnetic field dependence of
the magnetization is nearly linear at high temperatures. With
decreasing temperature, the magnetic field dependence of the
magnetization becomes strongly nonlinear in the vicinity of
Tc. At 2 K, the lowest temperatures studied, we observed a
clear kink at the upper critical field Bc2. For fields B�Bc2 the
magnetization is dominated by an increase that is essentially
linear as expected from Eq. �18�, followed by a very weak
magnetic field dependence for B�Bc2. Even for the lowest
temperatures investigated the magnetization of all samples
studied is clearly unsaturated up to the highest fields mea-
sured �cf. Fig. 3�. For all samples studied the behavior is
consistent with pure MnSi as reported in the literature.85,86

For sufficiently large magnetic fields the magnetization in
Mn1−xFexSi and Mn1−xCoxSi may be described rather well
with a cubic magnetic equation of state �B /M �M2�. In com-
parison to Mn1−xFexSi and Mn1−xCoxSi, the nonlinear mag-
netization of pure MnSi clearly deviates from a cubic mag-
netic equation of state. This has been known for quite
sometime. A recent controversy in the literature87–89 there-
fore seems somewhat surprising. Clearly, the precise descrip-
tion in the standard Ginzburg Landau scenario must be in-
complete for pure MnSi.

To obtain the inverse linear susceptibility A and the low-
est order mode-mode coupling parameter b from the magne-
tization, we have plotted B /M versus M2 as shown in Figs. 4
and 5. The experimental data were only fitted for sufficiently
high magnetic fields, where the helical modulation is sup-

pressed and a linear relationship B /M �M2 is observed, cf.
Eq. �21�. We find that the data deviate from such a propor-
tionality for fields less than a few tenths of a tesla. Using the
data at sufficiently high fields we inferred an ordered mag-
netic moment ms as a function of temperature from the inter-
cept of a linear extrapolation through the x axis, i.e., the
value of M2 for B /M→0.

The temperature dependence of the extrapolated value of
ms is shown in Fig. 6�a�. With increasing temperature the
ordered moment decreases monotonically and vanishes con-
tinuously at the transition temperature Tc. In other words,
when suppressing the effects of the helical modulation in a
small magnetic field the extrapolated ferromagnetic moment
shows a second-order phase transition for all x studied. As
described below the transition temperature Tc defined this
way resides between two transition temperatures T1 and T2
inferred from the ac susceptibility and the specific heat,
which reflect the DM interactions.

We find it remarkable that the temperature dependence of
ms is well described as ms

2=ms,0
2 �1−T2 /Tc

2� for all doped
samples we studied as shown in Fig. 6�b�. As mentioned in
the introduction this is the typical behavior observed in weak
itinerant ferromagnets �see, e.g., Ref. 6�. In contrast, as
shown in the inset of Fig. 6�b� the temperature dependence
of ms in pure MnSi inferred from M�B� does not follow this
temperature dependence. This is also denoted by the dashed
line in Fig. 6�a�.

With increasing concentration x the extrapolated transi-
tion temperature Tc, inferred from the onset of ms, decreases
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sublinear as shown in Fig. 7�a�. This strongly contrasts typi-
cal pressure dependences of magnetic transition tempera-
tures, which tend to be superlinear. In fact, the variation in Tc
with x even raises the question, if Tc is suppressed altogether.
However, we find purely empirically that the suppression of
Tc is best accounted for by a square-root dependence, Tc

=Tc�x=0��1−�x /xc� �Fig. 7�b�	. The rather unusual concen-
tration dependence of Tc suggests consistently the existence
of a critical concentration under Co and Fe doping of xc

Co

�0.084 and xc
Fe�0.192, respectively. It is interesting to note

that the critical concentrations differ by a factor of two, con-
sistent with the different numbers of valence electrons of Fe
and Co as compared to Mn.

As a function of increasing concentration x the extrapo-
lated ordered moment ms also decreases monotonically as

shown in Fig. 8. The critical concentrations xc inferred from
ms→0, xc

Fe�0.19 and xc
Co�0.09, are perfectly consistent

with the critical concentrations determined from the mag-
netic ordering temperature. Shown in Fig. 8 is the suppres-
sion of ms as a function of normalized concentration, show-
ing the qualitative similarity of the effects of Fe and Co
doping. In order to test whether the Fe and Co atoms support
any magnetic polarization at all �FeSi and CoSi do not order
magnetically�, we additionally distinguish in Fig. 8 the or-
dered moment per formula unit as compared with the ordered
moment per Mn atom. However, as the differences are small
it is not possible to reach any conclusion on this issue. We
also note that the critical concentrations under Fe and Co
doping observed in our study are consistent with those re-
ported in Refs. 70 and 75 while they differ from Ref. 77.

Since the variation in Tc and ms with x seem highly un-
usual it is instructive to check for consistency with the gen-
eral predictions of spin-fluctuation theory �cf. Eq. �8�	, nota-
bly the relationship of the zero-temperature ordered moment
ms�T→0�=ms,0 versus Tc. For the observed dependence ms

2

=ms,0
2 �1−T2 /Tc

2� �Fig. 6� one might expect Tc�ms,0. Plotting
Tc versus ms

3/2 we find instead that Tc�ms
3/2 over a remark-

ably wide range as suggested by Eq. �8� and shown in Fig. 9.
To resolve this seeming contradiction between Figs. 6�b� and
9 we expect that careful consideration of transverse and lon-
gitudinal components of the spin-fluctuation spectra will be
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necessary. For comparison we also show in Fig. 9 the rela-
tionship of Tc versus ms

3/2 of pure MnSi under pressure �here
Tc was taken from Ref. 57 and ms from Refs. 90 and 91; see
also Ref. 59�. It is thereby interesting to note that the point of
inflection of the data shown in Fig. 9 coincides with the
tricritical point at p��12 kbar and T��12 K inferred from
the onset of itinerant metamagnetism.57,92

We note that both the transition temperature and the or-
dered moment vary by over 80% in our doping studies. The
relationship Tc�ms

3/2 hence covers a remarkably wide range
and seems not just fortuitous. In contrasts, as a function of
pressure the ordered moment ms in MnSi vary by several ten
percent up to the critical pressure pc, where Tc vanishes.
Keeping in mind that the quantities we discuss here have
been inferred from the ferromagnetic regime of the Arrott
plots, the relationship we observe experimentally suggests
strongly, that the ferromagnetic exchange, representing the
strongest energy scale in both Mn1−xCoxSi and Mn1−xFexSi,
leads to an underlying ferromagnetic quantum critical point.
In turn this raises the question for modifications of ferromag-
netic quantum criticality due to the much weaker energy
scales of the DM interactions. We return to this question in
Sec. V.

B. Discussion of the magnetization

The temperature, magnetic field, and concentration depen-
dences of the magnetization in Mn1−xFexSi and Mn1−xCoxSi
suggest the existence of an underlying ferromagnetic quan-
tum critical point as described by the spin-fluctuation theory
of itinerant electron ferromagnets. It is therefore instructive
to consider the evolution of the phenomenological param-
eters A and b of this model defined in Eq. �1� when ap-
proaching the critical concentration. This also allows to dis-
cuss the possible concentration dependence of c and �
defined in Eq. �7� to be expected in future inelastic neutron
scattering experiments.

Shown in Fig. 10 is the temperature dependence of the
phenomenological parameters A and b derived from the fer-
romagnetic regime of the Arrott plots. The parameter A,
which represents the inverse susceptibility, is negative below
Tc and essentially linear as a function of temperature �Fig.
10�a�	. This is perfectly consistent with the behavior ob-
served in weak itinerant ferromagnets such as ZrZn2,6,93

Ni3Al, or Pd1−xNix.
94
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Before turning to the variation in b with x it is helpful to
discuss b inferred from pressure studies in MnSi. A negative
value of b implies a first-order transition. A change from
positive to negative is indeed implied in pure MnSi, when
the helimagnetic transition changes from second order to first
order for increasing pressure around p�=12 kbar. As the
simplest explanation, LDA band-structure calculations in
MnSi suggest that the change of sign of b is due to a local
minimum in the single-particle density of states near the
Fermi level. However, there have been several proposals of
more complex mechanisms driving b negative and the origin
of the first-order transition under pressure has not been re-
solved yet.10,11,13,14

In addition, there has been a discussion for many years,
whether pure MnSi displays a very weak first-order transi-
tion at ambient pressure �see, e.g., Refs. 95–97� alongside
the strong evidence for first-order behavior in high-purity
single crystals for pressures above p� inferred from the ob-
servation of itinerant-electron metamagnetism. Most likely
any faint features of first-order behavior at low pressures
�which probe the domain populations of the helical state� and
the tricritical point at high pressures are of different origin,
the former being related to domain populations and the latter
being related to overall features of the single-particle density
of states. In fact, the first theoretical account of the helimag-
netic order already predicted this transition to be first
order.33,34

For Mn1−xFexSi and Mn1−xCoxSi we find that b is always
positive. However, instead of being temperature independent
b decreases with increasing temperature. Interestingly, when
extrapolating the temperature dependence of b from low to
high temperatures the parameter b appears to change sign at
a temperature Tb that is always larger than Tc �Fig. 10�b�	.
This suggests that the extrapolated transition at Tc stays sec-
ond order for all compositions. In fact, we have observed
similar temperature dependences of b in real weak itinerant

ferromagnets such as ZrZn2, Ni3Al, or Pd1−xNix, though, to
the best of our knowledge, they have not been discussed in
the literature.

In spin-fluctuation theory the vicinity to a quantum criti-
cal point is typically controlled in terms of the zero-
temperature value of the parameter A�T→0�=a while all the
other phenomenological parameters �b, c, and �� are as-
sumed to be essentially unchanged in the zero-temperature
limit. Shown in Figs. 10�c� and 10�d� are the zero-
temperature variation in a and b as a function of normalized
concentration x /xc. Following a rather strong initial increase
in a between pure MnSi and the lowest doping levels, a
increases linearly and extrapolates to zero for the critical
concentration. This is consistent with a quantum critical
point. Moreover, the mode-coupling parameter, b, is positive
for all x and varies only relatively slowly �Fig. 10�d�	. This
supports the possible existence of a quantum critical point at
xc.

Shown in Fig. 11�b� is the ordered moment calculated
from the extrapolated zero-temperature values of A and b
given as ms,0,ab=�−a /b. Thus, even though the variation in
Tc and ms with x, shown in Figs. 7 and 8, seems unusual it is
nevertheless consistent with the dependence of a and b on x
and the concentration dependence of ms,0. The evidence for
an underlying ferromagnetic quantum critical point is also
corroborated by the concentration dependence of Tb shown
in Fig. 11�a�. As mentioned above, for all concentrations
studied Tb�Tc suggesting that the extrapolated transition at
Tc remains second order for x→xc.
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FIG. 10. �Color online� �a� Temperature dependence of the pa-
rameter A, the inverse susceptibility, inferred from the magnetiza-
tion for various compositions of Mn1−xFexSi and Mn1−xCoxSi. �b�
Temperature dependence of the mode-coupling parameter b. �c� Ex-
trapolated zero-temperature value of A as a function of normalized
concentration x /xc. �d� Extrapolated zero-temperature value of the
mode-coupling parameter b as a function of normalized concentra-
tion x /xc. The dashed lines are guides to the eyes.
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Several experimental studies of quantum critical points in
complex f-electron compounds have suggested that a reduc-
tion in effective dimensionality of the spin excitations are at
the heart of certain non-Fermi-liquid anomalies. The reduced
dimensionality is thereby described in terms of anisotropies
of the spin-fluctuation stiffness c. Without detailed micro-
scopic measurements of the spin excitations it is not possible
to clarify if the quantum critical spin fluctuations are aniso-
tropic in Mn1−xFexSi and Mn1−xCoxSi.

It is nevertheless interesting to speculate about the ex-
pected concentration dependence of the parameters c and 
�
used to describe the spin-fluctuation spectra. As shown in the
introduction, Eq. �18�, the inverse linear susceptibility in the
conical state, which increases linearly with increasing con-
centration, is given by cQ2 �see Fig. 12�. Small angle neutron
scattering77,82 at the same time shows that Q increases lin-
early with concentration. Shown in Fig. 13 are c and 
� as a
function of the normalized concentration inferred from Eqs.
�8� and �18� and the modulus of the magnetic ordering wave
vector measured in neutron scattering �cf. Ref. 82�.

Based on these considerations we expect a twofold de-
crease in the fluctuation stiffness c as shown in Fig. 13�a�.
The relaxation frequency spectrum �q� should hence dis-
play a more linear momentum dependence. Making use of
Eq. �8� we also expect simultaneously an over tenfold in-
crease in the energy spread 
� as shown in Fig. 13�b�. This
strong increase originates in the implicit dependence of Tc on

� to the fourth power. Note, however, that the validity of
Eq. �8� can be questioned because ms,0

2 −ms
2�T2 close to Tc,

see Fig. 6, instead of the T4/3 dependence expected for a
critical ferromagnet. Nevertheless, Fig. 13�b� suggests a
much stiffer relaxation frequency spectrum near the QPT. At
a given temperature the spin fluctuations extend over a much
smaller range of wave vectors.

We find both predictions surprising, since it is normally
assumed that the parameters c and 
� remain unchanged
when approaching a QPT. Detailed inelastic neutron-
scattering studies are now needed to clarify whether the spin-
fluctuation spectra near xc are consistent with this prediction
of spin-fluctuation theory and to what extent these param-
eters change with concentration x.

V. AC SUSCEPTIBILITY

The magnetization so far provided foremost information
on the ferromagnetic limit of the magnetic properties. De-
tailed information on modulated spin structures induced by
the DM interactions may be inferred from the ac susceptibil-
ity. In particular, using the ac susceptibility we track in the
following the evolution of the magnetic phase diagram as a
function of composition.

A. Experimental results of the ac susceptibility

The temperature dependence of the ac susceptibility at
various magnetic fields is shown in Fig. 14 for all composi-
tions studied. In the paramagnetic state at high temperatures
we observe for all x a pronounced Curie-Weiss dependence
of the susceptibility characteristic of a large fluctuating mo-
ment mCW �cf. Fig. 15�b�	. This high-temperature paramag-
netic state provides the setting in which the low-temperature
physics emerges. We return to a more detailed description of
the high-temperature state further below.

At low temperatures the susceptibility displays a series of
pronounced features characteristic of the helical phase, the
conical phase, the A phase, and an intermediate regime �IM�.
Shown in Fig. 14�a� is the temperature dependence of the
susceptibility of MnSi, which is in perfect agreement with
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FIG. 12. �Color online� B /M as inferred from the Arrott plots in
the conical phase. This quantity is equivalent to cQ2, i.e., the prod-
uct of spin-fluctuation stiffness with the square of the helimagnetic
wave vector Q, see Eq. �18�.
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previous studies.57,92 For B=0 the Curie-Weiss dependence
is obeyed until close to the magnetic ordering temperature.
We thereby define Tc1 at the point of inflection of the sus-
ceptibility at low temperatures �see also Fig. 16�, where we
denote the zero-field limit as T1=Tc1�B→0�.

We further define a characteristic temperature Tc2 at the
point of inflection of the susceptibility at the border to para-
magnetism, where Tc2�Tc1, i.e., above Tc2 the susceptibility
displays the Curie-Weiss dependence. Again we denote the
zero-field limit as T2=Tc2�B→0�. We note that the transition
temperature Tc, which was extrapolated from the magnetiza-
tion in the ferromagnetic regime, is located between T1 and
T2 for all compositions studied �green arrows in Figs. 21 and
22�. Moreover, as will be shown below the temperatures T1

and T2 correspond to features in the specific heat, notably a
sharp maximum and a Vollhardt invariance. This means that
there are clear thermodynamic signatures associated with
these characteristic temperatures. As a final feature, for suit-
ably chosen magnetic fields the susceptibility is slightly re-
duced in the temperature range of the A phase, where TA1 and
TA2 are defined as lower and upper transition temperatures.
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For sufficiently large fields the susceptibility displays a
broad maximum at the crossover between the field-polarized
�ferromagnetic� state at low temperatures and high fields and
the essentially paramagnetic state at high temperatures and
low fields. A closeup view of this maximum in the suscepti-
bility is shown for Mn1−xFexSi and x=0.04 in Fig. 15�a�. For
fields B�Bc2 and decreasing temperature the maximum at
Tm is followed by an abrupt increase when entering the coni-
cal phase. We return to the doping dependence of Tm below.

As a function of increasing Fe or Co content all features
related to the helimagnetic state are shifted to lower tempera-
tures and the Curie-Weiss dependence extents also to lower
temperatures �Fig. 14�. The total magnitude of the suscepti-
bility thereby decreases and the quantitative changes in the
susceptibility at the transition become less pronounced.

Differences of the temperature dependence of the ac sus-
ceptibility between zfc, fc, and hfc for pure MnSi are shown
in Fig. 16. With decreasing temperature the susceptibility at
zero magnetic field displays a sharp spike and drops to a
reduced value �Fig. 16�a�	. With increasing field the suscep-
tibility below Tc1 increases and there is a small amount of
hysteresis between fc and zfc visible at 0.05 and 0.1 T. For
B=0.2 T a dip in the susceptibility is characteristic of the A
phase.

Typical differences of the ac susceptibility as a function of
temperature between zfc and hfc observed in Mn1−xFexSi and
Mn1−xCoxSi are illustrated in Fig. 17, where the data shown
were recorded for Mn1−xFexSi and x=0.04. Overall the main
features under doping are highly reminiscent of pure MnSi.
In contrast with pure MnSi we find for all doped samples
�x�0� quite strong hysteresis for magnetic fields below 0.2
T. Moreover, the characteristic temperature below which the
hysteresis occurs is also strongly field dependent and de-
creases rapidly with increasing temperature �see also phase
diagrams shown in Figs. 21 and 22�.

The magnetic field dependence of the ac susceptibility of
pure MnSi and Mn1−xFexSi for x=0.08 are shown in Figs. 18

and 19 for different field directions and selected tempera-
tures. As mentioned above our samples had the same cubic
shape so that any demagnetizing effects for both samples and
directions were the same. For each temperature data after
initially zero-field-cooling and field-cooling are compared
with a field sweep �FS� with decreasing field strength. Where
available the data correspond very well with previous
reports.92,98 The characteristic fields are defined in strict cor-
respondence with previous work in MnSi. Notably the point
of inflection at Bc1 marks the transition from the helical state
to the conical state, where we find a small amount of hyster-
esis. We denote the zero-temperature limit as B1=Bc1�T
→0�. The upper critical field Bc2 is defined at the point of
inflection of the decreasing susceptibility, where B2=Bc2�T
→0�. The transition fields BA1 and BA2 of the A phase are
defined at the boundaries of the regime of reduced suscepti-
bility.

As a function of orientation the salient features in pure
MnSi are twofold. First, the field value of the reorientation
Bc1 decreases as a function of orientation in the order �100�,
�110�, and �111� �Figs. 18�a�–18�c�	. For the zfc state the
helical state at B=0 is more pronounced than for fc. Second,
the size of the signal reduction and the extent in the B versus
T diagram of the A phase decreases as a function of orienta-
tion in the order �100�, �110�, and �111� �Figs. 19�d�–19�f�	.
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Under doping these salient features change in the following
manner. For zfc the field value of the reorientation at Bc1 is
essentially unchanged for �100�, �110�, and �111�. However,
for fc the helical order at B=0 is essentially no longer recov-
ered.

The data of MnSi reflect the magnetic anisotropy, i.e.,
differences of pinning potential for the helical order. For field
parallel to �111�, which is the easy axis, the spin-flop transi-
tion into the conical state occurs at the lowest value of Bc1
while the value of Bc1 is largest for �100�, which is the hard
axis. In the same way differences of the A phase are consis-
tent with the magnetic anisotropy, where the extent of the A
phase is largest for the hard axis. The differences in field
range of the A phase are strongly reduced or even lost in
Mn1−xFexSi �x=0.08� as opposed to the temperature range
which is still largest for a �100� direction. Thus a dominant
effect of the doping must be the reduction in the magnetic
anisotropy. At the same time Bc1,zfc remains high, i.e., there is
no reduction in the magnetic anisotropy with increasing con-
centration.

As a second trend there is increasing hysteresis between
zfc and fc. This is especially reflected in the temperature
dependence of Bc1, which is much higher and decreases lin-
early with increasing temperature in doped samples �cf. Figs.
21 and 22�. Likewise the changes in the susceptibility in the
fc data suggest that the helical state may even get not recov-

ered for B�Bc1. This behavior is strongly reminiscent of the
phase diagrams observed in Fe1−xCoxSi.48 The hysteresis
may be readily explained with local minima of a glassy en-
ergy landscape due to disorder introduced by the doping that
competes with the magnetic anisotropy. The size of these
local minima must be similar to the magnetic anisotropy. For
increasing temperature thermal excitations assist the mag-
netic order in a zfc state to return to the direction favored by
the magnetic field direction. In contrast, for a fc state the
pinning is strong enough to stay in the field direction, so that
the magnetic anisotropy is not sufficient to reorient the mag-
netic order.

Typical magnetic field dependences of the ac susceptibil-
ity for all concentrations studied are summarized in Fig. 20.
For clarity the data have been shifted vertically. The data
shown here have been recorded in field cycles from B=
−1 T to B=+1 T and back to B=−1 T. This complements
the zero-field-cooled data shown in Fig. 14. Representative
examples for the features that define the transition fields are
marked by arrows. The reduction in the susceptibility in the
A phase persists under doping and may be traced almost all
the way to the critical concentration. With increasing concen-
tration x the signatures of the helical state and the A phase
become less pronounced, notably the size of the reduction in
the susceptibility in the helical and A phase as compared
with the conical phase decreases. In fact, for Mn1−xFexSi
with x=0.12 the evidence for the A phase is extremely shal-
low, raising the question if an A phase forms at all. We can
no longer identify a feature that would suggest the existence
of an A phase for Mn1−xFexSi and x=0.16 down to lowest
temperature measured of �1.8 K.

The magnetic phase diagrams of MnSi, Mn1−xCoxSi, and
Mn1−xFexSi after zero-field cooling and field cooling are
shown in Figs. 21 and 22, respectively. In the following we
distinguish six regimes as conveniently identified in pure
MnSi, where the magnetic structure is known from neutron
scattering: �i� the paramagnetic state at high temperatures
and low fields �no shading�; �ii� the spontaneously ordered
helimagnetic phase �blue shading�; �iii� the conical phase in
which the propagation vector of the helical modulation is
aligned parallel to the applied magnetic field �gray shading�;
�iv� the A phase just below Tc which was recently identified
as a skyrmion lattice �red shading�; �v� an intermediate re-
gime �purple shading�, and �vi� the field-polarized ferromag-
netic phase at low temperatures and high fields.

The phase boundaries of the various phases are defined as
follows. Data points at the boundary of the helical order are
denoted as Tc1 and Bc1. Data points separating the paramag-
netic and field-polarized ferromagnetic states �no shading�
from the modulated phases at low temperatures and low
fields are denoted as Tc2 and Bc2, where Tm marks the cross-
over between the paramagnetic and the field-polarized �fer-
romagnetic� regime. The A phase is bounded by TA1, TA2,
BA1, and BA2, respectively. These definitions of the phase
boundaries are supported by the specific heat as discussed
below. In particular, with decreasing temperature we find a
Vollhardt invariance at the onset of the intermediate regime
at T2 and a spike in the specific heat at the onset of the
helimagnetic order at T1. This spike in the specific heat also
denotes the line separating the intermediate regime from the
conical and A phase.
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FIG. 19. �Color online� Magnetic field dependence of the sus-
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The magnetic phase diagrams after zero-field cooling and
field cooling actually agree remarkably well, except for the
phase boundary of the zero-field-cooled helimagnetic state in
the doped samples. In particular, the strongly temperature-
dependent transition line of the helimagnetic state after zero-
field cooling for all x�0 agrees qualitatively very well with
the magnetic phase diagram we recently observed in
Fe1−xCoxSi.48

As a final remark in this section we note that it is surpris-
ing to find T1�Tc. Based on the hierarchy of energy scales
one would expect that T1 is always larger than the underlying
ferromagnetic transition temperature Tc as the transition to
the helical state at T1 preempts the ferromagnetic transition.
As we find T1�Tc for all concentrations, this relation seems

to be systematic for Tc as inferred from the Arrott plots. In
contrast, the expected relation Tm�T1 is satisfied by the
crossover temperature Tm after extrapolation to zero mag-
netic field. We discuss these findings in more detail below.

B. Discussion of the ac susceptibility

In the following we return at first to a discussion of the
ferromagnetic regime of the magnetization and the informa-
tion we inferred from the magnetization data. We thereby
compare the ac susceptibility with the properties expected in
the spin-fluctuation theory of weak itinerant ferromagnetism.
This is followed by a discussion of the zero-field temperature
versus concentration phase diagram in the presence of the
DM interactions.

In spin-fluctuation theory of three-dimensional itinerant-
electron ferromagnets the vicinity to a QCP is determined by
the inverse initial �T=0� susceptibility given by the param-
eter a0. The other three parameters of the model �b, c, and ��
are assumed to remain unchanged. Consequently the fluctu-
ating Curie-Weiss moment at high temperatures is expected
to remain unchanged when approaching a quantum critical
point. In Sec. IV we have shown that the magnetization pro-
vides strong evidence of an underlying ferromagnetic quan-

0.2

0.4

χ

Bc2

B || <100>, fc Mn1-xFexSi
x = 0.16

1.8K

g

0.2

0.4

χ

MnSiB || <100>, fca
BA1BA2Bc2 Bc1

31K

26.5K

-0.4 -0.2 0.0 0.2 0.4

0.2

0.4

B+c1
BA1BA2

c B || <100>, fc Mn1-xCoxSi
x = 0.04

χ

B (T)
0

Bc2 B-c1

7K

2K

0.2

0.4

B-c1BA1BA2
Bc2

b B || <100>, fc Mn1-xCoxSi
x = 0.02

χ

B+c1
11K

15K

B+c1BA1BA2

dB || <100>, fc Mn1-xFexSi
x = 0.04Bc2 B-c1

17K

12K

eB || <100>, fc
BA2
BA1

Mn1-xFexSi
x = 0.08Bc2

B-c1
5K B+c1

BA1BA2

fMn1-xFexSi
x = 0.12

B || <100>, fc

Bc2 Bc1 2K

-0.4 -0.2 0.0 0.2 0.4

0.2

0.4

h

χ

B (T)

1.8K

Mn1-xFexSi
x = 0.19

B || <100>, fc

1.8K

3K
0

FIG. 20. �Color online� Magnetic field dependence of the ac
susceptibility of MnSi, Mn1−xCoxSi, and Mn1−xFexSi at selected
temperatures. Data have been recorded in field cycles from −1 T to
+1 T and back, thus reflecting the properties of the field-cooled
state.

0.0

0.2

0.4

0.6 MnSi

conical

helical

FM

PM

IM

A-phase

B || <100>, zfc
a

B
(T
)

dMnSi

conical

helical

FM

PM

IM

A-phase

B || <100>, fc

e

fc
B || <100>

Mn1-xCoxSi
x = 0.02

FM

PM

A-phase

conical

helical
IM

0.0

0.2

0.4

0.6

zfc
B || <100>

Mn1-xCoxSi
x = 0.02

FM

PM

helical

A-phase

conical

IM

b

B
(T
)

0 10 20 30

f

fc
B || <100>

Mn1-xCoxSi
x = 0.04

T (K)

FM

PM

A-phase

conical

helical
IM

0 10 20 30
0.0

0.2

0.4

0.6

zfc
B || <100>

Mn1-xCoxSi
x = 0.04

T (K)

FM

PM

A-phase

conical

helical
IM

c

B
(T
)

FIG. 21. �Color online� Magnetic phase diagram of MnSi and
Mn1−xCoxSi after zero-field cooling and field cooling. We distin-
guish six regimes: �i� paramagnetism at high temperatures and low
fields, �ii� spontaneous helimagnetism �blue shading�, �iii� the coni-
cal phase �gray shading�, �iv� the A phase �red shading�, �v� an
intermediate regime �purple shading�, and �vi� the field-polarized
ferromagnetic regime. The shading is extended down to zero tem-
perature, where the lowest temperature studied was �1.8 K. The
green arrows mark the location of the extrapolated ferromagnetic
transition temperature Tc. The dashed line marks the location of Tm.

BAUER et al. PHYSICAL REVIEW B 82, 064404 �2010�

064404-16



tum critical point under Fe or Co doping of MnSi. It is there-
fore interesting to consider at first the evolution of the Curie-
Weiss dependence in Mn1−xFexSi and Mn1−xCoxSi

As shown in Fig. 23�a� the Curie-Weiss moment of
Mn1−xFexSi and Mn1−xCoxSi decreases as a function of nor-
malized composition x /xc by about �30% at xc �see also Fig.
15�b�	. Even though this decrease is quite weak, it is clearly
outside standard spin-fluctuation theory. In order to explore
if the reduction originates in the reduction in the number of
Mn atoms in the composition we have also calculated the
effective Curie-Weiss moment per Mn atom, i.e., the fluctu-
ating Curie-Weiss moments are entirely attributed to the Mn
atoms. The effective moment inferred this way nevertheless
decreases linearly as a function of composition, even though
not as fast as the average moment. This suggests that the
Curie-Weiss moment originates also in the Fe and Co ions

and the spin fluctuations are itinerant as for pure MnSi.
Further, a hallmark of weak itinerant ferromagnetism is

the strongly reduced ordered moment as compared with the
fluctuating Curie-Weiss moment. Since the Curie-Weiss mo-
ment decreases somewhat with increasing x we have also
considered the ratio of Curie-Weiss moment to the extrapo-
lated ordered moment shown in Fig. 23�b�. For increasing x
this ratio increases and appears to diverge as expected. Of
course this divergence is dominantly the result of the reduc-
tion in ms,0, which must be faster than the reduction in the
effective Curie-Weiss moment.

Next the Curie-Weiss dependence of the susceptibility in
the paramagnetic regime may be used to obtain an alternative
estimate of the initial susceptibility as a function of normal-
ized concentration shown in Fig. 24. This figure may be
compared with the initial susceptibility inferred from the
magnetization shown in Fig. 10�c� depicted as black dashed
line in Fig. 24. Interestingly the initial susceptibility inferred
from the ac susceptibility in the paramagnetic regime is lin-
ear over the entire range of compositions, i.e., the value for
x=0 is consistent with all compositions. Further, consistent
with Fig. 10�c� the inverse initial susceptibility extrapolates
to zero for x /xc→1. However, as an unresolved issue the
initial susceptibility inferred from the Curie-Weiss suscepti-
bility in the paramagnetic regime is quantitatively roughly
30% smaller than that inferred from the magnetization at low
temperatures. This type of inconsistency is not uncommon
amongst weakly ferromagnetic materials. Its resolution
awaits fresh theoretical input.

Shown in Fig. 25 are the characteristic transition fields as
a function of the normalized composition inferred from the
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susceptibility measurements. Toward the critical concentra-
tion the zero-temperature values of the upper critical fields
B2 decreases substantially. As explained in the introduction,
Eq. �20�, the upper critical field may be calculated from the
measured linear susceptibility in the conical phase �giving
cQ2, see Eq. �18�	 and the parameters a and b of the
Ginzburg-Landau potential. Using for the latter the values
extracted from the Arrott plots, see Eq. �21�, we calculate
values for B2 �open symbols in Fig. 25� that are in remark-
able agreement with the ones measured directly in the ac
susceptibility. Similarly, we expect a temperature depen-
dence of

Bc2 = cQ2�cQ2 − a

b
�22�

that is essentially given by the extrapolated magnetic mo-
ment ms

2=−a /b. This is borne out in Fig. 26 where it is
demonstrated that Bc2

2 inherits the T2 temperature depen-
dence of ms

2, see Fig. 6.
Concerning the lower critical field we distinguish B1 as

measured in zfc conditions from that measured in fc condi-
tions, see Fig. 25. In comparison to B2 both lower critical
fields, B1,zfc and B1,fc, decrease only weakly under Co and Fe
doping, where B1,fc might extrapolate to zero for x→xc.
However, B1,zfc reflects the magnetic anisotropy while B1,fc
results from the combination of disorder and magnetic aniso-
tropy. Hence our study suggests that the strength of the mag-
netic anisotropy is only affected weakly by Co and Fe doping
when approaching the critical concentration. Thus, unlike
earlier reports, notably Ref. 77, the QPT in Mn1−xFexSi and
Mn1−xCoxSi may not be driven by an unpinning of the helical
order �note that B1,zfc could only be determined up to x /xc
�0.5�. The same conclusion was reached in the small angle
neutron-scattering study of the pressure-induced suppression
of helical order in pure MnSi, cf. Ref. 59, where B1 was
found to be essentially unchanged under pressure.

It is finally interesting to note that the upper critical field
of the A phase, BA2, increases as shown in Fig. 25 �it is not
possible to obtain an estimate of BA1 suitable for Fig. 25�.
This suggests that the A phase becomes more extended when
moving toward the quantum critical point. The simultaneous
loss of the signature of the A phase in the ac susceptibility
additionally suggests that the various magnetic phases cannot
be distinguished any longer. This conjecture is supported by
our small angle neutron scattering studies to be reported
elsewhere.82

We next return to the temperature and magnetic field de-
pendences of the maximum in the susceptibility at Tm shown
in Fig. 27. Empirically it is clear that Tm separates the field-
polarized ferromagnetic regime at low temperatures and high
fields from the paramagnetic regime at high temperatures
and low fields. It is possible to compare the doping depen-
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dence of Tm with the predictions of spin-fluctuation theory.
The crossover between the two regimes is captured by the

equation of state Eq. �1� with positive coefficient A�T��0.
Whereas in the field-polarized regime the magnetization de-
pends nonanalytically on the magnetic field, M ��B /b�1/3, its
dependence is linear in the paramagnetic regime, M �B /A.
The crossover occurs for magnetic fields of order B
�A�Tm�3/2 /�b. When plotting B2/3 versus Tm

4/3 we find a lin-
ear relationship for all concentrations as shown in Fig. 27�b�.
Such a behavior is expected for renormalizations by critical
ferromagnetic fluctuations that yield a T4/3 temperature de-
pendence for A�T�. However, as a consequence of this argu-
ment one expects that Tm �B→0→0 for x→xc. In comparison,
the experimentally observed values of Tm �B→0 decrease faster
and vanish already for doping concentrations x�xc that are
smaller than the critical concentrations, xc, extracted from
extrapolations of the Arrott plots, see Fig. 6.

A summary of the transition temperatures inferred from
the ac susceptibility and the magnetization versus normalized
composition x /xc is shown in Fig. 28�a�. Both T1 and T2
decrease monotonically and appear to vanish above x1 and
x2, respectively. For T1→0 this results in a putative QPT
between helimagnetic order and the spin state of the interme-
diate regime. For increasing composition this is followed by
T2→0, which represents a zero-temperature crossover be-

tween the spin state of the intermediate regime and the para-
magnetic state. The critical concentrations for Fe doping are
roughly x1

Fe�0.151 and x2
Fe�0.225 and for Co doping

roughly x1
Co�0.066 and x2

Co�0.099. As a function of nor-
malized concentration x /xc this corresponds under Fe and Co
doping to the same normalized values x1 /xc�0.78 and
x2 /xc�1.17. Taken together these data suggest the possible
existence of a quantum phase transitions, where the regime
for x�x1 is separated further by the Vollhardt invariance.
This is supported further by the difference �TIM=T2−T1 as
shown for increasing x /xc in Fig. 28�b�.

Our data on the various crossover and transition tempera-
tures have some apparently puzzling implications. For all
concentrations the extrapolated ferromagnetic transition tem-
perature Tc, inferred from the magnetization resides between
T1 and T2, i.e., the critical concentration of the underlying
ferromagnetic quantum critical point is located between the
putative QPT at T1 of the helimagnetic order and the point of
suppression of the intermediate regime at T2, T1�Tc�T2.
This is surprising as one would expect T1 to be smaller than
a ferromagnetic transition temperature as the transition into
the helical phase preempts ferromagnetism. The crossover
temperature Tm extrapolated to zero magnetic fields, on the
other hand, obeys Tm�T1 as expected.

One might be tempted to attribute the relation T1�Tc to a
systematic error in the analysis of the Arrott plots, for ex-
ample, due to the residual dependence of the A parameter in
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Eq. �21� on the Dzyaloshinsky-Moriya interaction via the
magnetization Mc2. However, whereas this residual depen-
dence becomes negligible in the low-temperature limit, the
relation T1�Tc is consistently observed up to high doping
values where both transition temperatures vanish at doping
concentrations x1 and xc, respectively, with x1�xc. Neverthe-
less, we suggest that this discrepancy might be resolved by
taking into account the strong fluctuations that accompany
the transition into the helical phase. An analysis of the Gold-
stone spectrum99 shows that d=3 is the lower critical dimen-
sion for an isotropic helical magnet so that helical order, in
fact, cannot exist at finite temperatures without anisotropies.
The helical phase observed is thus only stabilized by small
anisotropy energies resulting in a suppression of the helical
transition temperature T1 as compared to its mean-field esti-
mate. This may explain the observed relation T1�Tc.

Our experimental results suggest a rather interesting new
scenario, in which two weak energy scales, notably the mag-
netic anisotropy of the helimagnetic order �as affected by
disorder� and the DM interaction causing the helical modu-
lation, surround an underlying ferromagnetic quantum criti-
cal point which seems to drive the QPTs of these weak
scales. In contrast, for pure MnSi it has been suggested that
pressure causes a consecutive collapse of the three hierarchi-
cal energy scales. In other words, for increasing pressure
there are quantum phase transitions starting with the weakest
scale �the magnetic anisotropy� at lowest pressure and finish-
ing with the strongest scale �the ferromagnetic stiffness� at
the highest pressure.59,60

VI. SPECIFIC HEAT

The specific heat further qualifies the magnetic phase dia-
grams derived from the magnetization and susceptibility. We
will first address the thermodynamic evidence of the transi-
tions at T1 and the crossover at T2, and the consistency of the
electronic contributions of the specific heat with quantum
criticality. In the discussion we then turn to the entropy as a
function of composition.

A. Experimental results of the specific heat

Shown in Figs. 29�a� and 29�d� is the temperature depen-
dence of the specific heat of pure MnSi up to 35 K for vari-
ous magnetic fields. The paramagnetic to helimagnetic tran-
sition is accompanied by a pronounced anomaly. Detailed
inspection of this anomaly reveals additional structure. With
decreasing temperature at first a shoulder emerges, followed
by a sharp spike. These data are in excellent agreement with
previous studies.96,100,101 In fact, the observation of this fea-
ture, first reported in Ref. 101, inspired theoretical work con-
cerning the question of a spontaneous skyrmion ground
states in chiral magnets61 �see also discussion in online sup-
porting material of Ref. 61�. The proposal of a spontaneous
skyrmion phase has recently been studied in spin-echo neu-
tron scattering,102 where the same authors come to differing
conclusions of their data,103 strongly suggesting that the situ-
ation at present is inconclusive.

Two characteristic temperatures may be defined in the
specific heat of MnSi. First, the sharp spike in the specific

heat corresponds very well with T1 defined in the ac suscep-
tibility. It further turns out that the point of inflection in the
specific heat corresponds very well with the temperature T2
determined in the ac susceptibility. We will see below, that
these definitions actually also apply in Mn1−xFexSi and
Mn1−xCoxSi.

The magnetic field dependence provides key information
as to the nature of the features at T1 and T2, respectively. The
spike in the specific heat at T1 is characteristic of the latent
heat of a weak first-order transition �the slight broadening
may be due to defects in the sample and the heat-pulse
method used in the measurements�. As a function of mag-
netic field the feature at T1 rapidly broadens, shifts to lower
temperatures and vanishes above around 0.4 T.

For magnetic fields up to �0.5 T the inflection point of
all specific-heat curves at T2 coincide at the same value of
C=2.3 J mol−1 K−1, i.e., �C�T� /�B=0. This is the character-
istic of a Vollhardt invariance.80,81 The parameter range over
which the Vollhardt invariance may be observed provides
evidence of characteristic energy scales of the system. In
MnSi the invariant crossing in the specific heat indeed coin-
cides with the turning point in the susceptibility at T2.100

Thus, the shoulder in C is the consequence of an important
intrinsic energy scale of the system. The magnetic field range
over which the Vollhardt invariance is observed identifies
this energy scale as the DM interactions.

It is now helpful to locate the magnetic field dependence
of Tc1 and Tc2 in the magnetic phase diagram. In the zero-
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field limit T2 and the upper critical field Bc2, as inferred from
the point of inflection in the magnetic field dependence in the
susceptibility, emerge from the same line. This is not surpris-
ing, since T2 and Bc2 are both due to the DM interactions.
The maximum in the specific heat at T1, on the other hand,
increases very steeply under field and eventually merges with
the Bc2.

It is instructive to compare the specific heat of pure MnSi
with the properties observed in Mn1−xCoxSi for x=0.02
shown in Figs. 29�b� and 29�e�. For decreasing temperature
in zero magnetic field the transition is still characterized by a
broad shoulder followed by a tiny spike. In comparison to
pure MnSi the shoulder is broadened while the peak is very
small. Under applied magnetic fields the point of inflection
of the specific heat is again unchanged, representing a Voll-
hardt invariance up to 0.5 T. The small spike at T1 broadens
and turns into a cusp, which eventually merges with the up-
per critical field Bc2. Taken together, this behavior is strongly
reminiscent of pure MnSi. For Mn1−xCoxSi with x=0.04,
shown in Figs. 29�c� and 29�f�, only the shoulder remains,
but the narrow spike has completely vanished. Under mag-
netic field the point of inflection at T2 is again invariant up to
0.5 T.

Shown in Fig. 30 is the specific heat of Mn1−xFexSi for Fe
concentrations of x=0.04, 0.08, 0.12, 0.16, and 0.19. The
Fe-doped system exhibits the same key features as observed
in the Co-doped system, notably a spike at T1 at low Fe
concentrations that becomes smaller and a Vollhardt invari-
ance at a temperature T2 for magnetic fields up to 0.5 T. For
high Fe concentrations the feature at T1 vanishes and the
specific heat is dominated by the broad maximum. As men-
tioned above, in the magnetic phase diagram we define the
separation line between the intermediated regime �IM� and
conical phase or A phase at the spike in the specific heat.

We have analyzed the temperature dependence of the spe-
cific heat further, estimating the lattice contribution at high
temperatures in the framework of a standard Debye model.
The estimate is illustrated in Fig. 31, where the specific heat
shown is that of Mn1−xFexSi for x=0.04. Also shown is the
full Debye dependence �green� and the approximate cubic
temperature dependence of the Debye dependence at low
temperatures �red�. The Debye dependence is thereby deter-
mined at high temperatures by fixing the Debye temperature
as the only fit parameter; for x=0.04 we find �=512 K. As
shown in Figs. 31�a� and 31�c� the full Debye dependence up
to �50 K differs by not more than a few percent from the
approximate cubic low-temperature form. The lattice sub-
traction used here finds further support in the temperature
dependence of the specific heat above T2, where a cubic
temperature dependence as expected for the Debye model is
observed �Figs. 31�b� and 31�d�	. We have therefore sub-
tracted in the following lattice contributions using the cubic
approximation.

Across the series of Fe- and Co-doped compounds the
Debye temperature is essentially unchanged as shown in Fig.
32. In particular, the Debye temperature is unchanged as
compared with pure MnSi, where the temperature range in
which the magnetic properties dominate is less than 10% of
�. This is consistent with the cubic approximation of the
lattice contributions. In the following we assumed that the

Debye temperature is not magnetic field dependent. This is
supported by systematic measurements at 1.5, 3, and 9 T �not
shown�. Further, the rather high value of the Debye tempera-
ture and its invariance as a function of composition suggests
that the crystal lattice is not dominantly involved in the sup-
pression of the magnetic order. This supports the existence of
a putative ferromagnetic quantum critical point masked by a
quantum phase transitions at x1 and the suppression of a
Vollhardt invariance at x2.

A canonical signature of quantum criticality is normally
found in the electronic contribution to the specific heat. In a
normal metal the specific heat is well described in Landau
Fermi-liquid theory, where Cel /T represents a measure of the
effective quasiparticle mass. A divergence of Cel /T due to
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quantum critical fluctuations hence suggests a divergence of
the effective mass, which, in turn, implies a breakdown of
Fermi-liquid theory.

The electronic contribution to the specific heat divided by
temperature, Cel /T, after subtraction of the lattice contribu-
tion �approximated by the cubic temperature dependence� is
shown in Fig. 33 for MnSi, Mn1−xFexSi, and Mn1−xCoxSi.
Data are shown for zero magnetic field and typical field val-
ues up to 9 T. At high temperatures essentially the same
value of Cel /T�0.02 J mol−1 K−2 is observed. For increas-
ing magnetic fields this value slightly increases, as expected
for a field-induced shift of magnetic entropy to high tempera-
tures. For low doping concentrations and decreasing tem-
perature Cel /T displays an increase with a pronounced maxi-
mum at the transition temperature, followed by an essentially
temperature-independent specific heat at low temperatures.
The contribution �̃fl is remarkably large as compared with

normal Fermi liquids. At low temperatures the electronic
contributions are thereby additionally enhanced as compared
with the specific heat at high temperatures.

Toward the highest doping concentrations Cel /T increases
monotonically with decreasing temperature. Magnetic field
causes a suppression at low temperatures, where we find a
linear increase with decreasing temperature for intermediate
fields and the highest Co and Fe concentration studied. This
clearly establishes that the increase in Cel /T is magnetic in
origin.

The increase in Cel /T is unusual both quantitatively and
qualitatively. Quantitatively the size of the electronic contri-
bution is amongst the largest observed in any d-electron sys-
tem so far, reaching in excess of 80 mJ mol−1 K−2. Qualita-
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tively, as the critical concentration under Co or Fe doping is
approached there is an increasingly wide range of an essen-
tially logarithmic increase �Fig. 34�. In fact, for Mn1−xFexSi
with x=0.19 this logarithmic increase extents over nearly an
order of magnitude down to the lowest temperatures mea-
sured. Even though these data are recorded in zero field this
is perfectly consistent with ferromagnetic quantum critical-
ity. However, as concerns the nature of the quantum critical
fluctuations one might expect them to be dominated by a
ferromagnetic part, while the effects of the DM interactions
assume a rather small spectral weight.

It is also instructive to plot the extrapolated zero-
temperature contribution of the electronic specific heat as a
function of normalized composition. As shown in Fig. 35 the
extrapolated full electronic part, denoted as �̃0 increases to-
ward the critical concentration. Extrapolating the electronic
contribution seen at high temperatures, which is independent
of temperature and denoted as �̃fl, only decreases slightly.

Here a few words of caution are in place. First, experi-
mentally nearly all quantum critical systems display data that
can be fitted by a logarithmic divergence of Cel /T over at
least a small temperature range, i.e., the specific heat tends to
be insensitive to the precise nature of the quantum critical
point. Second, the data presented here have not been mea-
sured sufficiently low in temperature to be conclusive be-
yond doubt. Future studies down to millikelvin temperatures
will have to establish, if this logarithmic divergence indeed
continues down to the lowest temperatures as we suggest. In
summary our specific-heat data clearly support the formation
of an underlying ferromagnetic quantum critical point as the
magnetic transition temperature collapses to zero for x→xc.

B. Discussion of the specific heat

While conventional �thermal� phase transitions are driven
by a reduction in entropy, this is not the case for quantum
phase transitions. It is therefore interesting to consider the
temperature versus entropy landscape when approaching the
critical concentration xc.

We have used the measured electronic contribution to the
specific heat to obtain an estimate of the electronic part of
the entropy Sel�T�=�0

TCel /T�dT�. For the integration the tem-
perature dependence of Cel /T was extrapolated linearly to
zero, where we find the entropy to be insensitive to the pre-
cise extrapolation chosen. Shown in Fig. 36�a� is the elec-
tronic contribution to the specific heat �red data points�. Sub-
tracting the contribution at high temperatures �horizontal line
above �30 K� the contribution to Cel /T associated with the
magnetic order may be obtained �purple data points�. Shown
in Fig. 36�b� is the associated entropy of the various contri-
butions versus temperature, where the red and purple curves
correspond to the total electronic and magnetic contributions,
respectively.

For increasing temperature the full electronic contribution
to the entropy increases monotonically and reaches a value
around �30% of R ln 2 at 50 K. In comparison, the mag-
netic entropy is essentially constant above �30 K with a
value of 12% R ln 2. This rather small entropy release and
the tiny signature at the magnetic phase transition is a key
characteristic of weak itinerant-electron magnetism, that re-
flects an abundance of soft spin fluctuations.

We have applied the same analysis to all Mn1−xFexSi and
Mn1−xCoxSi compositions studied in this paper as shown in
Fig. 37. Overall there is essentially no �dramatic� change in
behavior for x→xc. In passing we note that the slight reduc-
tion in the entropy at high temperatures with increasing com-
position originates in the slight reduction in the high-
temperature part of Cel /T �cf. �̃fl in Fig. 35�. When
approaching the critical concentration the entropy is already
released at lower temperatures. This is summarized in Fig.
38 where isothermal lines of entropy are shown as a function
of normalized composition. The contour lines suggest that
quantum critical behavior emerges gradually over a wide
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range of x, rather than being confined to the immediate vi-
cinity of x /xc. This suggests that the specific heat may be
rather insensitive to differences between x1 and x2, which are
both close to xc.

For each concentration magnetic field suppresses the elec-
tronic entropy at low temperatures thereby shifting the re-
lease of entropy to high temperatures �Fig. 39�. At the high-
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est fields and lowest temperatures studied the electronic
contribution to the entropy starts out with a linear tempera-
ture dependence over a wide range which turns into a super-
linear temperature dependence for x→xc. This superlinear
dependence reflects the increase in Cel /T with decreasing
temperature shown in Fig. 33.

VII. CONCLUSIONS

Our studies of the magnetization, ac susceptibility, and
specific heat of single-crystal Mn1−xFexSi and Mn1−xCoxSi
show that the properties of both compounds are essentially
identical on a normalized composition scale x /xc. The criti-
cal concentrations xc

Fe=0.192 and xc
Co=0.084 of Mn1−xFexSi

and Mn1−xCoxSi, respectively, differ by nearly a factor of
two. A simple explanation for this difference may be sought
in the difference of valence electrons of Fe and Co as com-
pared with Mn, which will affect the density of states accord-
ingly �Fig. 40�.

In zero magnetic field both compounds consistently sug-
gest the existence of a putative quantum phase transition at a
concentration x1 associated with the suppression of the heli-
cal transition at T1 followed by the suppression of the Voll-
hardt invariance at T2 above x2�x1. Determination of the
critical exponents of the temperature dependence of the ac
susceptibility and specific heat at precisely x1 and x2 requires
studies down to millikelvin temperatures planned for the fu-
ture. For the parameter range studied so far we cannot dis-
tinguish differences of critical exponents at x1 and x2.

In an applied magnetic field the ferromagnetic properties
of Mn1−xFexSi and Mn1−xCoxSi inferred from the magnetiza-
tion are characteristic of an underlying ferromagnetic quan-
tum critical point at x1�xc�x2. Quite likely the thermody-
namic properties reported here are dominated by these
ferromagnetic quantum critical fluctuations even for B=0. It
may hence be difficult to establish any characteristics unam-
biguously of the zero-field QPTs. As we consider doped
compounds an interesting aspect concerns thereby the role of
quenched disorder, which is expected theoretically to stabi-
lize ferromagnetic quantum criticality.12

The evidence for quantum criticality in Mn1−xFexSi and
Mn1−xCoxSi reported in this paper contrasts high-pressure
studies in pure MnSi, where no quantum critical points have
been found. Understanding the difference between pressure
and compositional tuning of the magnetic properties of MnSi
will, no doubt, provide important insights in the long-
standing puzzle of the non-Fermi-liquid resistivity in MnSi
at high pressures, as well as spin textures with nontrivial
topology.
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