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Interacting bosons in one dimension and the applicability of Luttinger-liquid theory as revealed
by path-integral quantum Monte Carlo calculations
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Harmonically trapped ultracold atoms and “He in nanopores provide different experimental realizations of
bosons in one dimension, motivating the search for a more complete theoretical understanding of their low-
energy properties. Worm algorithm path-integral quantum Monte Carlo results for interacting bosons restricted
to the one dimensional continuum are compared to the finite temperature and system size predictions of
Luttinger-liquid theory. For large system sizes at low temperature, excellent agreement is obtained after in-
cluding the leading irrelevant interactions in the Hamiltonian which are determined explicitly.
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Luttinger-liquid (LL) theory' provides a universal de-
scription of interacting fermions or bosons at sufficiently low
energies in one dimension (1D). Recently, exciting possibili-
ties for experimental realizations of Luttinger liquids have
appeared, involving ultracold atoms in cigar-shaped traps,’
screw dislocations in solid “He (Ref. 3), and helium-4 con-
fined to flow in nanopores.* While the latter experiment ex-
amines a system that is highly out of equilibrium, future
iterations® could be well described by a translationally in-
variant model of interacting bosons. There have been numer-
ous numerical studies of 1D fermion models on lattices using
exact diagonalization, Monte Carlo, and density matrix
renormalization-group methods, but numerical results on free
space interacting bosons at nonzero temperature, 7, are much
rarer. Exact studies in the continuum may provide insights,
specifically on issues of dimensional crossover in
nanopores.® Zero-temperature variational Monte Carlo calcu-
lations for the 1D case were reported in Ref. 7 and finite T
worm algorithm path-integral Monte Carlo (WA-PIMC)
simulations for a screw dislocation® have claimed the obser-
vation of LL behavior. In order to systematically explore the
regime of energies and pore lengths, where LL behavior may
occur we have performed WA-PIMC simulations on the
N-particle Hamiltonian
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in 1D with periodic boundary conditions on an interval of
length L in angstroms and we will work in units where
h=kg=1. The WA-PIMC method, recently introduced by
Boninsegni et al.® extends the original PIMC algorithm of
Ceperley’ to include configurations of the single-particle
Matsubara Green’s function, allowing for intermediate par-
ticle trajectories which are not periodic in imaginary time.
The inclusion of such trajectories yield an efficient and ro-
bust grand canonical quantum Monte Carlo (QMC) tech-
nique that accurately incorporate complete quantum statistics
and provides exact and unbiased estimations of many physi-
cal observables at finite temperature. In the WA-PIMC simu-
lations performed here, the short-range repulsive interaction
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V(r)=(g/\ma)e™"*" is chosen for convenience to be Gauss-
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ian with integrated strength 2g and spatial extent a. The nu-
merical values of all microscopic parameters were optimized
to ensure an experimentally relevant and efficient simulation
at low energies, where the temperature is much smaller than
both the kinetic (Ex/N) and potential (E\/N) energy per par-
ticle. To obtain Ex/N~Ey/N~5 K we have fixed the
chemical potential at ©=24 K with 2g=20 K and the inter-
action width =0.03 A to be much less than the resulting
interparticle separation, 1/p,=0.67 A for particles of mass
m=0.25 A2 K~! (near that of “He in these units).

Luttinger-liquid theory uses a low-energy effective har-
monic Hamiltonian to capture the quantum hydrodynamics
of a microscopic 1D system in terms of two bosonic fields,
0(x) and ¢(x) representing the density and phase oscillations
of a particle field operator
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where the velocities v; and vy are fixed by the microscopic
details of the underlying high-energy model. If the system
exhibits Galilean invariance, v,;=mpy/m and v N:l/(wpgk),
where p, and « are the density and adiabatic compressibility
in the limit L—o0, T—0.!

In this study we find that that the mean number of par-
ticles at finite temperature (N) exhibits corrections to scaling
that are not captured by Eq. (2). Instead, through a detailed
analysis of the super- and normal-fluid components of the
one dimensional repulsive Bose gas, we argue that the ob-
served deviations from scaling result from higher order “ir-
relevant” operators that should be included in the low-energy
effective Hamiltonian.

Although the QMC performed here allows access to a
large number of properties of the microscopic system, in
order to study the applicability of the effective model in Eq.
(2) it will be enough to focus on the probability distributions
for number and phase fluctuations in the grand canonical
ensemble. Within the LL theory, these are most easily de-
rived by performing a mode expansion of #(x) and ¢(x) for
periodic boundary conditions indexed by wave vector
q=2mn/L (see Ref. 1). The grand partition function
Z=Tr exp[—(H;;—uN)/T] is found to be
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FIG. 1. (Color online) QMC data (symbols) combined with
Luttinger-liquid predictions (solid lines) for the particle number
probability distribution at fixed system size (upper left inset), scal-
ing of the particle number probability distribution (main panel), and
the temperature dependence of the mean number of particles (upper
right inset) measured with respect to the ground-state value
No=poL.
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where Ny=poL, J is an even integer indexing topological
excitations (winding) of the phase field ¢, g, is the nonuni-
versal ground-state Gibbs free-energy per unit length, and v
is the phonon velocity given by the algebraic mean of v, and
vy:V=\v,vy. LL theory is unable to predict the nonuniversal
wm dependence of the density in the thermodynamic limit. By
tracing out winding and phonon modes, which cannot affect
the density, we immediately arrive at an expression for the
particle number probability distribution

o~ MN/2LT(N - No)?
0,0, ™)

where 65(z,q) is a Jacoby Theta function of the third kind.

An immediate consequence of Eq. (4) is that LL theory
predicts that the average number of particles exhibits essen-
tially no dependence on T (Ref. 10) and it is on the validity
of this prediction that we focus our attention below. An
equivalent expression for P(J) can be derived in the same
manner. However, it will be more useful to work with a dual
coordinate for J known as the winding number W, which is
easily measured in the QMC (Ref. 11) through the wrapping
of imaginary time particle trajectories around the physical
boundaries of the sample

P(N) = (4)

o~ TLTI20,W?

P(W) = 0,(0,¢"™720)

(5)

The strange inverse Boltzmann form of this distribution
can be understood by noting that in one dimension, the super
fluid density is proportional to the second moment of the
winding number distribution!! and it is only when fluctua-
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FIG. 2. (Color online) QMC data (symbols) combined with
Luttinger-liquid predictions (solid lines) for the winding number
probability distribution at fixed system size (upper left inset), scal-
ing of the winding number probability distribution (main panel),
and the superfluid fraction as a function of the dimensionless scal-
ing variable LT/v; (upper right inset).

tions of the phase field ¢ are suppressed (phase coherence
with (J)~0) that the system will acquire a finite superfluid
response. As a consequence of Eq. (5), the superfluid fraction
will be a pure scaling function of v,/LT given by'?
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where 6/(z,q)=d.0,(z.q).

The above theoretical predictions can be verified by in-
vestigating the particle and winding number probability dis-
tributions measured in the QMC for a range of temperatures
and system sizes. It is crucial to recognize that the param-
eters of LL theory v, ,, have no temperature or finite-size
dependence and depend only on the microscopic details of
the high energy theory in Eq. (1). Both P(N) and P(W) are
scaling functions of LT/v, y, and fits of numerical data for an
individual system size at fixed temperature must produce val-
ues of v; and vy that work equally well at all L and T pro-
vided the system is in a regime where the LL theory of Eq.
(2) is applicable. Figures 1 and 2 present a summary of our
QMC data for L=25-202 A and 7=0.2-0.5 K. The insets
in the upper left-hand corner of these figures show the result
of fitting to Eqs. (4) and (5) yielding v,=18.88(2) A K and
vy=7.7(2) A K, which combine to give a Luttinger param-
eter of K=\vy/v,;=0.64(4), where the number in brackets
gives the uncertainty in the final digit. The presence of Gal-
ilean invariance relates v; and p, and we find the zero-
temperature equilibrium density to be py=1.5028(1) A~'.
The main panel in both plots exhibits data collapse that ap-
pears to be consistent with the scaling predictions of LL
theory. However, a closer look at the average number of
particles as a function of temperature for L=202 A (Fig. 1
upper right inset) clearly shows that as the temperature is
increased at fixed chemical potential, the mean particle num-
ber is decreasing, in stark contradiction with the prediction
of Eq. (4). Conversely, scaling in the winding number sector
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shows no such deviations and the computed superfluid frac-
tion p,/p plotted as a function of the dimensionless scaling
variable LT /v, (Fig. 2 upper right inset) is indistinguishable
from the LL prediction of Eq. (6).

At sufficiently low T and large L, corrections to scaling
should be described by the leading irrelevant interactions
added to the Hamiltonian of Eq. (2). Recently, such correc-
tions were shown to lead to qualitative modifications of the
spectral function for fermions.'> Assuming that all interac-
tions are short range, correcting terms come from an expan-
sion of the kinetic energy in Eq. (1) and are related to band
curvature effects. The lowest order correction to the LL
Hamiltonian containing three derivatives, consists of two op-
erators

L
H'= 277]2’)0 fo dxv,(0,4)°0,0+ Non(:0)°), (7)

where the coefficient of the first term is constrained by Gal-
ilean invariance. The form of H’ could also have been in-
ferred on phenomenological grounds alone, as these two
terms are the only dimension three operators that are allowed
by parity under which 6— -6, ¢— ¢, and x— —x. Higher
fourth-order operators can also be included and are formally
required for stability but are suppressed by an additional
power of system size. Equation (7) is sufficient to predict the
lowest order corrections to physical quantities which will
manifest as scaling functions of LT/v,, times an inverse
factor of Ny, which we assume is large. The dimensionless
factor N in the second coefficient can be determined'* by
noting that in the ground state, if we shift the chemical po-
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tential by an infinitesimal amount u— w+ oy there will be a
corresponding shift in the density p,— pg+ dp, governed by
the thermodynamic relation Spy= pékﬁu. Keeping terms to
O(6u) in an expansion of the ground-state Gibbs free energy
for Hy  +H' we find N=(mpy/3)d,vy= (p0/3)8ﬂ(pgf<)‘l.

The influence of the corrections on thermodynamic quan-
tities can be most easily understood by again performing a
mode expansion of the bosonic fields 6 and ¢. Gradients of
are related to fluctuations of the particle number away from
its mean value d,6~N—-N, and thus the addition of linear
and cubic terms will cause both a shift and skew in the par-
ticle number probability distribution P(N) in Eq. (4) without
changing its width. On the other hand, the only corrections at
this order to the winding number distribution P(W) would
have to come from the first term in Eq. (7), but due to the
linear power of 4,6, which accompanies it as a multiplicative
factor, any trace over the number of particles when comput-
ing the grand partition function would cause its effects to
average to zero. This is exactly the qualitative behavior we
observed from the analysis of our numerical results.

In order to quantify these arguments, we may calculate
the deviation in the mean number of particles (N—N,) in a
perturbative expansion of Hy; +H' in the inverse system size
1/L."> This is accomplished by correcting the number prob-
ability distribution P(N) in Eq. (4) to order 1/L and comput-
ing the relevant average with result

1 LT LT
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is a universal scaling function with 7(ix) the Dedekind eta
function. This expression has a simple asymptotic form in
the thermodynamic limit where LT /v y—

LT LT K LT\?
®N<—Hw,—ﬂw,h)ﬂ—(3k+l)(—) (10)
UnN Uy 12 Un

and K=\vy/v, is the LL parameter. It is now immediately
clear that when Eq. (10) is combined with Eq. (8) a
temperature-dependent correction to the mean density of par-
ticles will persist, even in the thermodynamic limit

K S(BN+ DT (11)

(p=po) — =
12pgvy

Indeed, from simple thermodynamic arguments one expects
p=-(1/L)d,G, where G, the Gibbs free energy, can be

calculated for a harmonic LL from Eq. (3) to be
G=goL—(wL/6v)T? in the limit LT/v — . Performing the
partial derivative of G with respect to the chemical-potential
recovers the asymptotic value in Eq. (11).

We may now test how well the extended Luttinger-liquid
Hamiltonian Hy;+H' captures these effects by comparing
the scaling function ®, with our numerical data. The result
is shown in Fig. 3, where we have extracted the value of
N=0.19(4) by refitting a perturbatively corrected number
probability distribution to the QMC results using the
previously extracted v, y. The agreement between the nu-
merical QMC data (symbols) and the prediction of Eq. (9)
(solid line) is found to have a reduced maximum-likelihood
estimator of x*=0.85. Seemingly large uncertainties in
Fig. 3 are misleading as ®, is a correction related to the
difference of two large and nearly equal numbers with indi-
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FIG. 3. (Color online) QMC data (symbols) combined with pre-
dictions from the harmonic (dotted line) and corrected anharmonic
(solid line) Luttinger-liquid theory for the universal scaling function
®,. The dashed line shows the asymptotic result in the thermody-
namic limit from Eq. (10).

vidually small stochastic errors (<0.01%) resulting from
over 100 K CPU hours. Poorer agreement at low tempera-
tures is a reflection of the difficulty of performing ergodic
simulations of nearly integrable systems.'® Further evidence
of the statistical significance is garnered by examining the
goodness of fit of the QMC data to ®y=0 predicted by har-
monic LL theory, yielding an extremely unlikely value of
X>=62.

A nonzero @y is just one of many scaling functions that
could be investigated for evidence of nonharmonic LL be-
havior. For example, if the QMC was confined to the canoni-
cal ensemble via importance sampling, a parallel analysis
could be carried out for (u— o)~ (1/No)® ,(LT/vy,LT/v;)
via a numerical investigation of dyF at fixed L, where F is
the Helmholtz free energy.

It is well known that an analytical solution of the delta-
function interacting Bose gas can be obtained via Bethe An-
satz (BA) (Ref. 17) where the phonon velocity v can be
extracted from an analysis of the linear coefficient of the
long-wavelength dispersion relation.!® It seems prudent to
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place our numerical data in this context and for the mass,
interaction strength, and chemical potential used in the
simulations, the T— 0,L— solution gives a Luttinger pa-
rameter of Kp,=0.6299 and cubic operator coefficient
Nga=0.1272. The numbers extracted here of K=0.64(4) and
A=0.19(4) agree relatively well within error bars but their
systematically larger values are related to the finite interac-
tion width a employed in the QMC. This trend can be quan-
tified by performing the simulation for increasingly long-
range interactions (although still requiring that apy<<1) and
for ap,=0.06 we find K=0.75(2) pushing us toward a re-
gime with enhanced charge-density wave order.

In addition to allowing for the study of finite-range inter-
actions, Monte Carlo methods can also provide details on
correlation functions that are not accessible via Bethe
Ansatz.” Unbiased measurements of the pair-correlation
function and single-body density matrix computed in the
Monte Carlo are fully consistent with the predictions of LL
theory and will be reported on elsewhere.'?

In conclusion, we have performed large-scale grand ca-
nonical worm algorithm path-integral Monte Carlo simula-
tions of one-dimensional repulsive soft-core bosons in the
continuum at fixed chemical potential. We have shown that
the finite-size and temperature-scaling behavior of the super-
fluid density can be fully understood in terms of the low-
energy effective harmonic Luttinger-liquid theory provided
the temperature is sufficiently small when compared to both
the kinetic and potential energy per particle and the system is
large enough to overcome the effects of any finite-size gaps.
However, we have argued that the temperature dependence
of the mean particle density, a quantity that can be easily
measured in experiments on low-dimensional bosonic sys-
tems, exhibits corrections to scaling that can only be ad-
equately accounted for by extending the theory to include
leading order irrelevant operators.
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