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Antiferromagnetic �AFM� �or spin-density wave� quantum critical fluctuation enhanced just below Hc2�0�
have been often observed in d-wave superconductors with a strong Pauli paramagnetic depairing �PD� includ-
ing CeCoIn5. It is shown here that such a tendency of field-induced AFM ordering is a consequence of strong
PD and should appear particularly in superconductors with a gap node along the AFM modulation. Two
phenomena seen in CeCoIn5, the AFM order in the Fulde-Ferrell-Larkin-Ovchinnikov �FFLO� state and the
anomalous vortex lattice form factor in the high-field range below the FFLO state, are explained based on this
peculiar PD effect.
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Recently, the heavy-fermion d-wave paired supercon-
ductor CeCoIn5 with strong paramagnetic depairing �PD� has
been thoroughly studied from the viewpoint of identifying its
high-field and low-temperature �HFLT� phase near the zero-
temperature depairing field Hc2�0� with a possible Fulde-
Ferrell-Larkin-Ovchinnikov �FFLO� state.1,2 On the other
hand, this material also shows an antiferromagnetic �AFM�
or equivalently, a spin-density wave ordering3 in the HFLT
phase and transport phenomena suggestive of an AFM quan-
tum critical point �QCP� lying near Hc2�0�.4,5 A similar AFM
fluctuation enhanced near Hc2�0� has also been detected in
other heavy-fermion superconductors6,7 and cuprates,8 all of
which seem to have strong PD and a d-wave pairing. A con-
ventional wisdom on this issue will be that, in zero field, the
nonvanishing superconducting �SC� energy gap suppresses
AFM ordering and thus that the field-induced reduction in
the gap leads to a recovery of AFM fluctuation. However, it
is difficult to explain, based on this picture, why an apparent
QCP is realized not above but only just below Hc2�0� �Refs.
4 and 5� in those materials. Rather, the fact that the field-
induced AFM ordering or QCP close to Hc2�0� is commonly
seen in superconductors with a d-wave pairing and strong PD
suggests a common mechanism peculiar to superconductivity
in finite fields and independent of electronic details of those
materials such as the band structure.

In this Rapid Communication, we point out that, in nodal
d-wave superconductors, a field-induced enhancement of PD
tends to induce an AFM ordering just below Hc2�0�. Al-
though relatively weak PD tends to be suppressed by the
quasiparticle damping effect brought by the AFM fluctuation,
strong PD rather favor coexistence of a d-wave superconduc-
tivity and an AFM order. Detailed mechanism of this field-
induced enhancement of AFM fluctuation or ordering below
Hc2 depends upon the relative orientation between the mo-
ment m of the expected AFM order and the applied field H:
in m �H case, strong PD change the sign of the O�m2���2�
term in the free energy for any pairing symmetry, just like
that of its O����4� term leading to the first-order Hc2
transition,2 where m��m� and � are order parameters of an
expected AFM phase and a spin-singlet SC one. In contrast,
the field-induced AFM ordering in m�H, which is possibly
satisfied in CeCoIn5 in H�c,3 is a peculiar event to the

d-wave paired case with the momentum �k�-dependent gap
function wk satisfying wk=−wk+Q and tends to occur irre-
spective of the presence of the first-order Hc2 transition,
where Q is the wave vector of the commensurate AFM
modulation and is �� ,�� for the dx2−y2-wave pairing.9 As a
consequences of this PD-induced magnetism, two striking
phenomena observed in CeCoIn5, an AFM order3 stabilized
by a FFLO spatial modulation and an anomalous flux density
distribution in the vortex lattice,10 will be discussed.

First, we start from a BCS-type electronic Hamiltonian11

for a quasi-two-dimensional �2D� material with � and m
introduced as functionals. By treating � at the mean-field
level, the free energy expressing the two possible orderings
is written in zero-field case as

F�H = 0� = �
r

1

g
���r��2 − T ln Trc,c†,m exp�− H�m/T� ,

H�m = �
�,�=↑,↓

�
k

ĉk,�
† ek��,�ĉk,� + �

q

1

U
�m�q��2

− �
q

�m�q� · Ŝ†�q� − ��q��̂†�q� + H.c.� , �1�

where �̂�q�=−�kwkĉ−k+q/2,↑ĉk+q/2,↓, Ŝ��q�=��,������,�
	�kĉk−q,�

† ĉk+Q,� /2, ĉk,�
† creates a quasiparticle with spin in-

dex � and momentum k, �� are the Pauli matrices, and the
positive parameters g and U are the attractive and repulsive
interaction strengths leading to the SC and AFM orderings,
respectively. The dispersion ek, measured from the chemical
potential, satisfies ek=−ek+Q+Tc�I.

12 The dimensionless pa-
rameter �I is related to a small incommensurate part �Q of
the AFM wave vector through the relation ��Q�
	��I�Tc / �2EF��
�Q��, where EF is the Fermi energy. In the
case with a nonzero H, the Zeeman energy �BH · ����,�
needs to be added to ek��,�. Below, we focus on either the
case, m�H or m �H by choosing the spin-quantization axis
along H. The orbital field effect will be included later.

To examine an interplay between the AFM and SC order-
ings below, let us consider the Gaussian AFM fluctuation
term Fm in the free energy F, Fm=T��ln det�U−1�q,q�
−q,q�����, where
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q,q���� = 

0

T−1

d��T�Ŝ�
†�q;��Ŝ��q�;0��ei�� �2�

with a fixed � and Ŝ��q ;�� denotes Ŝ��q� at imaginary time �.
For the moment, we focus on the Pauli limit with no orbital
field effect and with uniform � in which q,q����
= ��n��q ,��+�an��q ,����q,q�, and Fm=−T�q,�ln X�q ,��,
where X−1�q ,��=U−1−�n��q ,��−�an��q ,��, and �n� and
�an� are expressed by Figs. 1�a� and 1�b�, respectively. The
�-dependent part of �n�+�an�, s=�n�−�n� ��=0+�an�, has
been studied previously11 in H=0 case. In the Pauli limit,
expressions of Fig. 1 in nonzero H take the form

�n��0,�� = − T�
p

�
�,�=�1

d�+�,�̄�ep+Q�d�,��ep�

D�+�,�̄�p + Q�D�,��p�
,

�an��0,�� = T�
p

�
�,�=�1

�− wpwp+Q����2

D�+�,�̄�p + Q�D�,��p�
, �3�

where � ��� is a fermion’s �boson’s� Matsubara frequency,
d�,��ep�= i�+��BH+ep, and D�,��p�=−d�,��ep�d�,��−ep�
+ ��wp�2. Main features of �n� and �an� are seen in their
O����2� terms. In zero field, s����s�0,0� behaves like T−2

in T→0 limit and is negative so that the AFM ordering is
suppressed by superconductivity.11

To explain results in the case of strong PD, let us first
focus on m �H case in which �̄=�. For a near-perfect nest-
ing, the O����2� terms of �n�−�n� ��=0 and �an�, at �q�=�
=0, take the same form as the coefficient of the quartic
�O����4�� term of the SC Ginzburg-Landau �GL� free energy
and thus, change their sign upon cooling.13 Thus, s��� be-
comes positive for stronger PD, leading to a lower Fm, i.e.,
an enhancement of the AFM ordering in the SC phase. As
well as the corresponding PD-induced sign change in the
O����4� term which leads to the first-order Hc2 transition,2 the
PD-induced positive s is also unaffected by inclusion of the
orbital depairing.

In m�H, where �̄=−�, a different type of PD-induced
AFM ordering occurs in a d-wave pairing case with a gap
node along Q, where wp+Qwp�0: in this case, the O����2�
term of �n��0,0� remains negative and becomes
−N�0����2 / �2��BH�2� in T→0 limit with no PD-induced
sign change, where N�0� is the density of states in the normal
state. Instead, the corresponding �an��0,0� and thus, s are
divergent like N�0����� / ��BH��2�ln�Max�t , ��I���� in T→0
limit while keeping their positive signs, where t=T /Tc. This
divergence is unaffected by including the orbital depairing.

Therefore, even in m�H, the AFM order tends to occur
upon cooling in the dx2−y2-wave paired case. In contrast,
�an��0,0� is also negative in the dxy-wave case satisfying
wpwp+Q�0 so that the AFM ordering is rather suppressed
with increasing H.

A possible AFM phase boundary in m �c�H case defined
as the temperature at which X0

−1��X�0,0��−1 vanishes up to
O����2� is shown in Fig. 2�a� together with the corresponding
s=0 curve, which is the upper bound of a PD-induced AFM
phase and shifts to higher temperature for larger ��I�. Here,
the orbital depairing brought by the gauge field A has been
incorporated through the quasiparticle Green’s function
G�,��r1 ,r2� in real space with replacement2,15 G�,��r1 ,r2�
�G�,��r1−r2�exp�ie��c�−1r2

r1A ·dl�. In Fig. 2�a�, we have
used �M

�ab� �Maki parameter in H�c�
�7.1�BHc2,�

�GL��0� / �2�Tc�=7.8 and the anisotropy �
�defined14 from ek� =4.5, where Hc2,�

�GL��0�=�Hc2,�
�GL��0�

=��c / �2e�0
2� is the Hc2�0� value in H�c defined near Tc

with the coherence length �0. The AFM phase is lost in H
�Hc2 due to the discontinuous Hc2 transition2 in t�0.215.
With a larger X0

−1 in the normal state, the uniform AFM
phase boundary in Fig. 2�a� is pushed down to t=0 to reduce
to an AFM-QCP.

The limitation to the O����2� term of s overestimates the
AFM ordering. In fact, using the full expression of s, the
AFM region for �I=0 is limited to an invisibly narrow region
in the vicinity of Hc2�0�. Nevertheless, the PD-induced AF
order for nonzero ��I� also follows from the full s���: by
substituting ��� obtained from the gap equation into Eq. �3�,
the lines on which the full s��� vanishes are obtained, in the

p

p +Q
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p

p Q

-

- -
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FIG. 1. Diagrams describing �a� �n� and �b� �an�, where a cross
denotes a particle-hole vertex on the AFM fluctuation, and double
solid lines in �a� and �b� denote normal and anomalous Green’s
functions, respectively.
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FIG. 2. �Color online� Possible s=0 lines �dashed curves� in t
vs h�H /Hc2�0� diagram in H�c �m following �a� from the
O����2� term of s��� for �I=0 and �b� from the full s��� in the
Pauli limit for �I=0.44 �lower dashed �green� curve� and 0.63
�higher dashed �blue� one�, respectively. With no AFM phase in
H�Hc2�T� �nearly vertical dotted curve�, a dashed curve is the
upper bound of a possible uniform AFM phase for a fixed �I. In �a�,
the solid �blue� curve is the phase boundary of a uniform AFM
order which follows from the dashed curve and an assumed form of
X0 ��=0. The lower panel of �a� is the corresponding X0

−1�h� at t
=0.0075. In the FFLO state with a modulated ������, however, the
uniform AFM order parameter m in the uniform � case is trans-
formed to a modulated one m���, and, due to this modulation, the
higher dashed �blue� curve in �b� is pushed up to the lower solid
�blue� one lying close to the second-order FFLO transition �Ref. 14�
�higher solid �red�� line. The lower panel of �b� is the normalized
�Fm

�MF��h� at t=0.075.
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Pauli limit with uniform �, as the dashed curves in Fig. 2�b�.
The s�0 region becoming wider with increasing ��I� sug-
gests that, as in CeCoIn5, the PD-induced AFM order near
Hc2�0� should be incommensurate.3 Similar results also fol-
low from the direct use of the tight-binding model.16

Interestingly, the AFM ordered region is expanded further
by the presence of the FFLO modulation ����
��2cos�qLO��, where � is the component parallel to H of the
coordinate. To demonstrate this, the gradient expansion15

will be applied to the O�m2� term of the mean-field expres-
sion of Fm. Up to the lowest order in the gradient, its
����-dependent part simply becomes

�Fm
�MF� =
 d�m����− �X0

−1��2� �2

��2 − s�������m��� , �4�

where �X0
−1��2�=�X−1�k ,0� /�k2 �k=0, and we only have to ex-

amine its sign which, for uniform �, corresponds to that of
−s. For simplicity, by using the qLO data in Ref. 14, we find
that �Fm

�MF��0 below the lower �blue� solid curve in Fig.
2�b�, indicating that the FFLO order can coexist with the
AFM order in most temperature range. Close to the FFLO
transition �red solid� curve on which qLO=0, m��� is found to
have the modulation 	sin�qLO�� so that this AFM order is
continuously lost as the FFLO nodal planes goes away from
the system.17 Oppositely, the form of m��� deep in the FFLO
state may not be examined properly in terms of the present
gradient expansion and will be reconsidered elsewhere.

Next, we examine the anomalous flux density distribution
in the vortex lattice of CeCoIn5 in H �c �Ref. 10� as another
phenomenon suggestive of an AFM fluctuation enhanced just
below Hc2. The flux distribution is measured by the form
factor �F�, which is the Fourier component of the longitudinal
magnetization Mc�r���Bc�r�−H� / �4�� at the shortest
reciprocal-lattice vector K and implies the slope of the flux
density Bc in real space. Here, Mc�r�=�K�0Mc�K�eiK·r is
given by

Mc�K� = ic−1K−2�K 	 j�K��c −� �F
�BPD�− K�

�
BPD=0

, �5�

where j�K� and BPD�K� are Fourier components of the or-
bital supercurrent density and a Zeeman field BPD imposed to
define Mc, respectively. It is straightforward to, according to
Ref. 2, obtain Mc in the weak-coupling model with no AFM
fluctuation by fully taking account of the PD and the orbital
depairing. In our numerical calculations, the O����4� contri-
butions to Mc are also incorporated. Nevertheless, it is in-
structive to first focus on its O����2� terms. In H
Hc2,�

�GL��0�,
the contribution to Mc from the spin part �last term� of Eq.
�5� is given by

Mc�K��PD� =
�BN�0�

2�T
���2�K�Im ��1��1

2
+ i

�BH

2�T
� , �6�

which is negative, where ��1��z� is the first derivative of the
digamma function. Thus, the PD tends to enhance the mag-
netic screening far from the vortex core. This is one of ori-
gins of the field-induced increase in �F�. However, such an
enhancement of �F� in the weak-coupling model is much
weaker in the d-wave case than in the s-wave one,18 although

it is the d-wave material CeCoIn5, which has clearly shown
such an enhanced �F�.10 This has motivated us to see how the
PD-induced AFM fluctuation is reflected in �F�. For this pur-
pose, let us first consider the m�H case and start with the
Pauli limit again in which Mc is determined by the last term
of Eq. �5�. By noting that this term can be obtained as the
first derivative of the free energy density with respect to
�BH, it is found that the contribution to Mc from the Gauss-
ian AFM fluctuation is positive and proportional to
	O����r��2��B

2 H�qX�q ,0� /T3, implying a suppressed
screening due to the AFM fluctuation, for weak PD ��BH

T�, while it is negative and given by
−2�BT���r��2��BH�−3�ln�Max���I� , t������qX�q ,��, sug-
gesting an enhancement due to the AFM fluctuation of the
screening and thus, of �F�, for strong PD ��BH�T�, respec-
tively.

In Fig. 3, we show h vs �F�2 curves obtained by incorpo-
rating the orbital depairing for both cases with and with no
contributions to Eq. �5� from the AFM fluctuation through
Fm, where �F� was normalized by that in the GL region near
Tc. Based on the result in Fig. 2�a�, the familiar phenomeno-
logical form of X�q ,��, N�0�X�q ,��=1 / �mN+ ��q	 ẑ��0

�N��2

+�0
�N���� / �v�� was assumed in calculating the Fm contribution

to Eq. �5�, where mN= t+1−h /hQCP and �0
�N�=0.6�0, and v2 is

the squared Fermi velocity averaged over the Fermi surface.
The remarkable peak just below Hc2 of the red solid curve is
a reflection of the aforementioned growth of �an� in m�H.
A similar �F� enhancement also occurs in m �H �dashed�
curves with increasing H, reflecting the aforementioned sign
change in s due to large PD. The favorable direction of the
moment m in CeCoIn5 in H �c is unclear at present. If, in
CeCoIn5, the m�H components are dominant in the AFM
fluctuation even in H �c, the �F�t ,h�� data10 growing with
increasing field and on further cooling is a reflection of the
dx2−y2-wave pairing19 accompanied by a strong AFM fluctua-
tion with Q � �� ,��. With the same Q, the corresponding
�F�t ,h�� in the s-wave case would become much lower than
the dotted ones, contrary to the trend in the weak-coupling
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FIG. 3. �Color online� Normalized form factor �F�h��2 curves in
H �c obtained in the weak-coupling BCS model with no AFM fluc-
tuation �dotted curves�, in the case with AFM fluctuations with
m �H �dashed ones�, and in the corresponding m�H case �solid
ones� at t=0.02 �highest �red� curves�, 0.04 �middle �blue��, and
0.08 �lowest �green��. Here, hQCP=0.942, �M

�c�=�M
�ab� /�=6.5, and

the typical quasiparticle damping rate �2T / �4kF�0
�N��mN�t ,h��1/2�

due to 2D AFM fluctuation was used.
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results.18 The curves in Fig. 3 have been obtained by neglect-
ing the narrow FFLO region in CeCoIn5 in H �c. Effects of
the FFLO modulation on Mc will be reported elsewhere.

It has been argued in previous studies1,2,19 that the anoma-
lous SC properties in CeCoIn5 in high fields are conse-
quences of strong PD. The present results indicate that the
AFM fluctuation and order indicated in more recent
measurements3,10 on this material just below Hc2�0� also
stem from PD, and thus that its HFLT phase and the behav-
iors suggestive of an AFM-QCP near Hc2�0� commonly seen
in d-wave superconductors with strong PD,4–8 including
CeCoIn5, should be understood on the same footing. For in-
stance, the result in Fig. 2 that the field-induced AFM order-
ing is discontinuously bounded by the first-order Hc2 transi-
tion naturally explains why, in spite of the AFM ordering just
below Hc2�0�,3 the transport properties in CeCoIn5 in H
�Hc2 have suggested a QCP notably below Hc2�0�.4 We
have also shown that, in dx2−y2-wave superconductors, the
AFM order is significantly enhanced by the FFLO periodic
modulation of the SC order parameter. In contrast, other
works have assumed the presence of an attractive �-triplet
pairing channel as the only origin of the AFM ordering be-
low Hc2.3,20 However, the field-induced AFM transition in
Ref. 20 is of first order in contrast to the observation1 in

CeCoIn5. The present work has shown that an incommensu-
rate AFM ordering just below Hc2�0� develops without as-
suming such an occurrence of other pairing state and due
only to strong PD effect. In fact, the strange impurity
effects,21 arising even from a nonmagnetic doping, on the
HFLT phase of CeCoIn5 cannot be explained unless the
HFLT phase has an additional modulation of the SC order
parameter.22

In conclusion, an AFM ordering or fluctuation enhanced
close to Hc2�0�, often seen in unconventional superconduct-
ors, is a direct consequence of strong paramagnetic depairing
and also of their d-wave pairing symmetry with a gap node
parallel to the AFM modulation. The AFM ordering en-
hanced due to the FFLO modulation suggests that the HFLT
phase in CeCoIn5 is a coexistent state of the AFM and FFLO
orders. Discussing the AFM-QCP issues in systems6,8 with a
continuous behavior around Hc2 based on the present theory
is straightforward and will be performed elsewhere together
with studies of a precise �Q orientation in CeCoIn5 based on
a more realistic electronic Hamiltonian.

This work was supported by Grant-in-Aid for Scientific
Research �Grants No. 20102008 and No. 21540360� from
MEXT, Japan.
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