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The superfluidity of liquid 3He in a high-porosity aerogel has been studied using a fourth-sound resonance
technique. This technique has two significant advantages: it can directly determine the superfluid density and
it can derive the transport properties of the viscous normal-fluid component. The temperature dependence of
the resonance frequency revealed suppression of superfluidity and that a finite normal-fluid fraction exists even
at T=0. The motion of the normal-fluid component has also been investigated. As T→0, the energy loss
becomes very small, despite a finite amount of the normal-fluid component remaining. This implies that the
normal-fluid component is highly constrained by the aerogel, and hence the dissipation mechanism cannot be
described in terms of the conventional hydrodynamic model. We have succeeded to explain these results by
introducing a frictional relaxation model to describe our observations, and found that the flow field changes
from being parabolic �Hagen-Poiseuille viscous flow� to flat �Drude frictional flow� on introducing an aerogel.
Numerical calculation of the relaxation time using the quasiclassical Green’s-function method reproduces
experimental results.
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I. INTRODUCTION

Liquid 3He has attracted an academic interest because it is
inherently highly pure and is a strongly correlated fermion
system. Most of its basic properties have been extensively
investigated and are consequently well understood.1,2 Since,
in the absence of a magnetic field, both the normal fluid and
the superfluid B phase are completely isotropic, most prop-
erties can be understood in terms of the interaction repre-
sented by the Landau parameters, which depend only on
pressure. Liquid 3He differs from electron systems such as
those in conventional metals in that it has no charge nor
lattice nor band structure. In this context, liquid 3He has been
described as being a simple, ideal liquid. One of the most
distinctive aspects of liquid 3He is its extremely long mean-
free path. Even for normal liquid 3He the mean-free path of
Landau quasiparticles varies as 1 /T2 and is several microme-
ters at milikelvin temperatures. By cooling below the super-
fluid transition temperature TC, the mean-free path of Bogo-
liubov quasiparticles, namely, the viscous transport mean-
free path3 �� becomes extremely long. And by cooling far
below TC, �� attains the size of the experimental cell. Intro-
ducing impurities into such a pure liquid in a well-controlled
way is a very important way to investigate the basic transport
phenomena of quasiparticles. Porous materials are useful to
construct an impurity system in superfluid 3He. Among
them, a silica aerogel is one of the materials whose porosity
is the highest. The aerogel consists of interconnected and
tangled chains of silica particles that are a few nanometers in
diameter. The average distance between adjacent chains is on
the order of a hundred nanometers. The porosity of the aero-
gel can be controlled chemically.4 These characteristics pro-
vide an interesting system for investigating the superfluidity
of liquid 3He since the average distance between adjacent
chains D is comparable to the superfluid coherence length �0

and is much smaller than ��. In addition, the chain diameter
d is smaller than �0 but larger than the Fermi wavelength �F,

�F � d � �0 � D � ��. �1�

This length scale indicates that the aerogel behaves as an
impurity rather than a wall in superfluid 3He. Indeed, the
suppression of the transition temperature TC and the super-
fluid density fraction �s /� have been found by various ex-
perimental methods.5–10 These results demonstrate that the
normal-fluid density remains finite at T=0 even in a high-
porosity aerogel. However, the dynamic properties of the
normal-fluid component are not yet determined. Our motiva-
tion is to understand the motion or the flow state of the
residual normal-fluid component at very low temperatures.

II. FOURTH SOUND

In this study, we employ the fourth-sound resonance tech-
nique. The fourth sound is a compression wave propagating
through a superleak. The superleak is the structure that
blocks the motion of the normal-fluid component due to its
finite viscosity and allows only the superfluid component to
pass through. For a straight cylindrical path of radius R, this
condition is characterized by the inequality

�v =� 2�

�n�
	 R , �2�

where �v is the viscous penetration depth, � is the shear
viscosity, �n is the density of the normal component, and � is
the angular frequency of the fluid motion. The time evolution
for the velocities of the normal fluid vn and of the superfluid
vs are described by the following equations, which account
for two-fluid hydrodynamics:
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�s
�vs

�t
= −

�s

�
� P + �sS � T , �3�

�n
�vn

�t
= −

�n

�
� P − �sS � T + ��2vn, �4�

and the mass and entropy conservation laws. Here,
�=�s+�n is the total density, �s is the density of the super-
fluid component, P is the pressure, T is the temperature, and
S is the entropy. In the case of an ideal superleak, the normal
component is completely immobile, hence,

�s/� = �c4/c1�2, �5�

where c1 and c4 represent the first- and fourth-sound veloci-
ties, respectively. The superfluid density can be obtained di-
rectly from Eq. �5�. The first experiment using superfluid
3He was performed by Kojima et al.11 In the case of an
actual superleak, the clamping force is not strong enough,
thus allowing the normal component to oscillate. The flow of
the normal component �nvn is described by Hagen-Poiseuille
flow, which has a parabolic flow profile. Jensen et al.12 dem-
onstrated that the dispersion relation for the fourth sound in a
cylindrical channel for R��v is given by

�2 = c4
2q2 − i�q2�n

�
c1

21

8
R2�n

�
�1 +

4


R
� , �6�

where q represents the wave number and 
 is the slip length.3

This dispersion relation reveals two important things. First,
neither a finite viscosity nor a nonzero slip length contributes
to the velocity of the fourth sound because the real part of
Eq. �6� follows the linear dispersion relation �=c4q. No cor-
rection needs to be made irrespective of whether the dissipa-
tion is high or low. Second, the ratio of the imaginary part to
the real part gives the energy loss,

Q−1 =
�n

2R2

8��s
��1 +

4


R
� �7�

=
1

4

�n

�s
� R

�v
�2�1 +

4


R
� . �8�

Equations �7� and �8� reveal that the energy loss is directly
related to the motion of the normal component. This hydro-
dynamic theory in the viscous/slip regime was justified even
for a complicated geometry like a sintered silver sponge su-
perleak in a previous study by us.13 Based on Eqs. �5� and
�8�, the fourth-sound resonance is considered to be an effec-
tive tool for studying the static and dynamic properties of a
superfluid.

III. EXPERIMENTAL

To study the motion of the normal-fluid component in an
aerogel, we prepared an acoustic resonator with a 99.0% po-
rosity aerogel, which is made of the same compound as the
one used in an NMR experiment performed by our
group.14,15 We performed a small-angle neutron-scattering
experiment using a large aerogel made from the same com-

pound. The structural analysis revealed the existence of a
weak spatial correlation with a characteristic length la of ap-
proximately 128 nm. To prevent the aerogel chain from os-
cillating with the liquid, we grew the aerogel directly be-
tween particles of a sintered silver sponge. This sponge has a
packing factor of 65%. The particles are almost spherical
with a diameter of about 70 �m. We performed the fourth-
sound experiment in pure 3He �i.e., with no aerogel� using an
identical sintered silver sponge as the superleak. Although
there was a discrepancy of approximately 10% between the
bulk superfluid density fractions16 measured using a torsional
oscillator, the sintered silver sponge superleak exhibited no
superfluid suppression due to the size effect and the effective
pore radius was estimated to be R=10 �m.13 The resonator,
which encases the sintered silver sponge in the aerogel, is
cylindrical in shape with a diameter of 8.0 mm and a length
L of 15.0 mm. The schematic drawings of the cell are shown
in Figs. 1�a� and 1�b�.

The eigenfrequency of the aerogel chain for this setup is
estimated to be more than 50 MHz,17 which is a 100 times
larger than the frequency band that is used in our experiment.
Since the eigenoscillation of the aerogel chain is decoupled
from the fluid oscillation during the resonance experiment,
slow-mode oscillations7 are not observed.

Measurements have been performed using a conventional
frequency spectroscopy method. To drive and to detect the
pressure oscillation, we used a piezoelectric transducers, as
shown in Figs. 1�a� and 1�b�. The transducers consist of a
thin piezoceramics and a brass diaphragm, adapted to fit the
cylinder size. In the spectroscopy method, an alternating
voltage Vin,fe

i2�ft is applied to the driver transducer to excite
a pressure wave, and the voltage signal Vout,fe

i2�ft is read
from the receiver transducer, which is on the opposite side of
the resonance cavity. If the resonance condition is satisfied, a
large pressure oscillation is induced in the cell and a large
R�f�=Vout,f /Vin,f is obtained. The system is the dissipative

Sintered
Silver
Sponge
+

aerogel

~

V
receiver

driver

L
=
15
.0
m
m

Vin,f

Vout,f
(a) (b)

FIG. 1. �Color online� �a� Schematic drawings and �b� three-
dimensional image of resonator. An inlet hole �1.0 mm in diameter�
is located at the side face of the cylinder. The sintered silver sponge
is well fixed to the wall of the cylinder. The driver and the receiver
are made of the piezoelectric transducers. The space between the
transducers and the sintered silver sponge is approximately
100 �m, and the amplitude of the transducer is less than 1 �m, so
that the transducer never hits the sintered silver sponge. The length
L of the cavity corresponds to the distance between the driver and
the receiver �see text for details�.
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because the third term in Eq. �4� is finite. It means that there
is a damping force proportional to the normal flow velocity.
In this case, the frequency must be treated as a complex
number, f + i /2�, where f is the resonance frequency for
the nondissipative case and  represents a damping factor.
Under this condition, the measured spectra can be fitted by
the following equation:

	R�f�	2 = 

m

Rm
2 fm

4

�fm
2 − f2�2 + ��fm�2f2 , �9�

where Rm is the mth mode amplitude, fm is the resonance
frequency, and �fm is the full width of the half maximum of
the resonance. The acuity of 	R�f�	2 is measured as a quality
factor Qm= fm /�fm. Since the analytical calculation gives
that the linewidth is equal to the damping factor , Qm

−1 ex-
presses the dissipation per unit cycle. In this sense, we call
Qm

−1 the energy loss. A low Qm
−1 means that the total damping

force is low, which is observed as a very sharp spectrum.
The relationship between the energy loss and the attenu-

ation is as follows. Suppose that a plane wave propagates
along the x axis without damping. It can be expressed as
exp�ikx�. In this case, the frequency is fixed but the wave
number k must be modified as

� = c4�k + i�� , �10�

and the propagating wave becomes e−�x exp�ikx�, where � is
the attenuation coefficient, the inverse of which is the char-
acteristic attainable length of the wave. The fourth-sound
velocity is derived from the real part of Eq. �10� and the
damping factor is derived from the imaginary part. The ratio
of the real to the imaginary part leads the energy loss. Fi-
nally, the relation between Qm

−1 and � becomes

Qm
−1 = c4�/2�fm. �11�

In the case of fluid oscillation in a complicated geometry
such as our sintered silver powder resonator, an acoustic
refraction18,19 must be taken into account as follows:

c4 = 2naLfm/m , �12�

where na=1.402 is the acoustic refraction index that is deter-
mined by the fourth-sound velocity measurements in super-
fluid 4He and is calibrated against the data table in Ref. 20.
The superfluid fraction �s /� is calculated using Eq. �5�,
where c1 is obtained from the table in Ref. 1, which has a
negligibly small temperature dependence.

The measurements were performed in a zero magnetic
field. The ambient pressure of the liquid 3He was adjusted to
2.89 MPa; at this pressure, the superfluid transition tempera-
ture TC

�pure� of pure 3He is 2.44 mK. The temperature was
measured using a Pt NMR thermometer immersed in a bulk
liquid; the thermometer was calibrated against a 3He melting
curve thermometer.

IV. RESULTS AND DISCUSSION

All the data given below were obtained during warming.
A single measurement series was obtained by the following
procedure. The sample was initially cooled to the minimum

temperature �i.e., below 0.6 mK� and it was then gradually
warmed in steps. The waiting time at each step was more
than 1 h to allow the Pt NMR thermometer to stabilize. We
performed this series several times and found good reproduc-
ibility. This measurement series could produce a uniform
B-like phase, except at temperatures slightly below the su-
perfluid transition temperature. The A-like phase might also
exist but the quality factor of the resonance was too low
�because of the preponderance of the normal-fluid compo-
nent� to confirm this experimentally. On the other hand, dur-
ing the cooling process we found an indication of an A-like
to B-like phase transition and a state in which both phases
coexist, as reported in Ref. 21. The A-like phase disappears
at a temperature of TA�−�=1.7 mK. The phase transition in
the aerogel is an interesting topic for study9 but in this study
we focus on the B-like region.

Figure 2 shows typical frequency spectra normalized by
the excitation voltage. The excitation voltages, which are
proportional to the maximum instantaneous pressure, were
chosen so as to maximize the signal-to-noise ratio without
inducing any nonlinear responses. We observed several reso-
nance peaks corresponding to the mth harmonic resonance.
Figure 2�b� shows an enlarged view of the spectrum 	R�f�	2,
which is well fitted by Eq. �9� with a negligibly small error.
The resonance frequencies decrease and the linewidths in-
crease with increasing temperature, and the resonance disap-
pears at a certain temperature TC. The resonance frequencies
depend very weakly on the temperature at low temperatures
but they decrease abruptly near TC. Since the frequency is
related to the superfluid density �as shown in Eqs. �5� and
�12��, the temperature dependence of the resonance fre-
quency demonstrates that we have detected the fourth-sound
resonance of superfluid 3He in an aerogel. Slow-mode
resonance7 was not observed; the reason for this is explained
in Sec. III. The transition temperature at which the resonance
disappears is TC=2.27 mK. The suppression factor was
TC /TC

�pure�=0.938. Figure 3�a� shows the temperature depen-
dence of the sound velocity; it shows that there is no fre-
quency dependence. The transition temperature TC obtained
from the spectrum is identical to the intercept with the tem-
perature axis for the fourth-sound velocity. Figure 4�a� shows
the temperature dependence of the superfluid fraction �s /�.
Both the superfluid transition temperature and the superfluid
density are suppressed. The pure superfluid resonator with a
sintered silver sponge superleak has an identical structure to
an aerogel resonator.13 Since the sintered silver sponge su-
perleak does not affect the superfluidity, the suppression of
the superfluid transition temperature in the aerogel resonator
is a result of the pair-breaking effect due to scattering be-
tween quasiparticles and the aerogel. We model this situation
using the conventional homogeneous scattering model
�HSM�. In this model, the temperature dependence of the
superfluid fraction in an impure system depends on the pair-
breaking parameter �TC and the Landau parameter F1

s . Here,
�TC is a simple function of the suppression factor for the
transition temperature TC /TC

�pure�, as shown in Fig. 5.22 We
found �TC=5.8 and the corresponding scattering time and
mean-free path are �=19.4 ns and vF�=620 nm, respec-
tively. It is reasonable that the mean-free path of the quasi-
particles is a few times longer than the correlation length la.
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Here, vF is the Fermi velocity of the 3He quasiparticles.
Since there have been no theoretical or experimental studies
on the Landau parameters of an impure Fermi liquid, we
used the Landau parameter for pure 3He at 2.9 MPa
�i.e., F1

s =13.3�.23 The superfluid fraction was calculated
using these parameters. The solid lines in Fig. 4�a� indicate
the upper and lower limits for the superfluid density
fraction. The red and blue lines indicate the Born and unitar-
ity limits, respectively. Here, the Born limit corresponds to
N�0�vimp�1 �weak scattering� and the unitarity limit to
N�0�vimp→� �strong scattering�, where N�0� is the density
of states at the Fermi level in the normal state and vimp is the
strength of the s-wave scattering potential. The calculation
reproduces the experimental results well except at low tem-
peratures. The corresponding density of states of the quasi-
particles is shown in the Appendix.

We now discuss the energy loss of the fourth sound. Fig-
ure 3�b� shows the results for the energy loss of the fourth
sound. We start from Eq. �8� to determine the temperature
dependence of the energy loss. The � symbols show the
results for a pure 3He fourth-sound resonator.13 In the tem-
perature range 0.3�T /TC�0.8, the energy loss decreases
monotonically with decreasing temperature, reflecting the
temperature dependence of the normal-fluid fraction. The
shear viscosity is less important because its temperature de-
pendence is weaker than that of the normal-fluid fraction, at
least in this temperature range. �, �, ◎, and � symbols
show the results obtained in this study for a resonator con-
taining aerogel. We found that Qaero

−1 varies almost linearly
with temperature. As shown in Fig. 4�b�, Qaero

−1 is proportional
to the frequency. These features are similar to the tempera-
ture dependence of Qpure

−1 , which can be explained by hydro-
dynamic theory. We found that Qaero

−1 almost vanishes at a
finite temperature of around T /TC=0.3 despite there being a
large amount of normal-fluid component in the aerogel at
this temperature. Since the energy loss originates from
normal-fluid motion, the normal-fluid component at low tem-
perature must be highly constrained by the aerogel. Surpris-
ingly, Qaero

−1 is approximately one fifth smaller than Qpure
−1 .

This implies that the magnitude of the drag force acting on
the normal fluid in the aerogel is stronger than that in pure
3He. The shear viscosity � cannot be responsible for this for
the following reason. We consider the shear viscosity at TC.
In this case, the shear viscosity has its maximum value and it
is possible to use transport theory for a normal-fluid state.
According to the Landau-Boltzmann transport equation, the
shear viscosity in the normal state of 3He that contains an
impurity can be written as
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� =
1

5
�vF

2���
−1 + �−1�−1, �13�

where ��=�� /vF is the relaxation time that characterizes the
viscosity. Here, �� is the viscous mean-free path of the qua-
siparticles. The pure state is expressed by �−1→0 but �
dominates when there is an aerogel since � is on the order of
the average aerogel chain length divided by vF and hence is
much smaller than ��. This means that the pure normal-state
viscosity in the aerogel is strongly suppressed. There have
not been any clear experimental results for the shear viscos-
ity in a superfluid with an aerogel but it is plausible that the
shear viscosity is also suppressed.24 Since the energy loss
Q−1 is inversely proportional to the shear viscosity, the en-
ergy loss must be enhanced by the aerogel. This poses a
problem: since the shear viscosity is reduced, the viscous
penetration depth �v must also be reduced but we observed
the fourth sound rather than the first sound. To prevent con-
tradictions, we extend the damping mechanism to the hydro-
dynamic regime by rewriting the relaxation term in Eq. �4� as

�n
�vn

�t
= −

�n

�
� P − �sS � T + ��2vn − Fd, �14�

�v = 1/	Im k	, k2 =
�n

�
�i� − � f

−1� , �15�

where � f represents the relaxation time that characterizes the
frictional drag force between the normal component and the
aerogel. These two forces differ in that the viscous force
depends on the spatial variation in vn, whereas the frictional
force does not. The frictional drag force Fd is proportional to
the normal-fluid velocity relative to the aerogel chain
velocity va; i.e.,

Fd =
�n

� f
�vn − va� . �16�

The frictional damping mechanism treats scattering between
quasiparticles phenomenologically. The drag force to the
normal fluid is generated by the momentum transfer from the
quasiparticles to the aerogel chains.17,25 This mechanism de-
scribes well the ultrasonic attenuation measurement in nor-
mal fluid performed by Nomura et al.26 According to Eqs.
�15� and �16�, the viscous penetration depth is also modified
as

�v = �
2�

�n�
= �v,0 �for �� f 	 1� ,

��� f

�n
= �v,a �for �� f � 1� .� �17�

The first case is the conventional type. However, in the
second case, �v,a becomes extremely small because
�v,a /�v,0=�� f /2. This means that introducing the aerogel
changes the flow profile from parabolic to flat. The flat ve-
locity profile means that the normal-fluid component oscil-
lates uniformly and simultaneously. This flow type is known
as Drude flow24 since it is analogous to the motion of the
conduction electrons in conventional metals. In other words,
we have experimentally found a new class of transition in
which introducing an aerogel causes the normal-fluid com-
ponent in the superfluid to lose its viscous nature and be-
come frictional.

To gain a better understanding of the frictional force, we
describe the frictional relaxation time � f in a little more de-
tail. According to viscoelastic theory,17 the dispersion rela-
tion becomes
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�z2 − c1
2��z2 − c2

2� + �i
4��

3�n
+

iz2

�� f
��z2 − c4

2� = 0, �18�

where z is a complex velocity. On introducing Eq. �18�,
va→0 is used because our experimental setup satisfies it as
shown in Sec. III.

The sound velocity and the energy loss can be obtained as
follows:

Re z2 = c4
2, Q−1 =

�n

�s
�� f + O���� f�2� . �19�

The first equation reveals why we observed the fourth-sound
resonances despite the short viscous penetration depth: the
oscillation of the normal component can be suppressed by a
frictional force as efficiently as by a viscous force. The sec-
ond equation shows that the energy loss is proportional to the
frequency, which can be seen in Fig. 4�b�. The fourth-sound
velocity and the energy loss do not involve the shear viscos-
ity term, which contributes only to the higher order term of
�� f. Figure 6 shows the frictional relaxation time calculated
by Eq. �19�. Almost all points appear on the same curve.27 It
shows the characteristic broad peak at Tpeak�0.6TC, which is
quantitatively consistent with a numerical study that used a
quasiclassical Green’s-function technique with the HSM in a
relatively clean system with �TC�1.28 We measured a small
but finite-energy loss relative to pure 3He indicating that
vn−va is small but finite. Since �n also remains finite, the
drag force Fd is simply inversely proportional to � f, as
shown in Eq. �16�. This is consistent with � f decreasing to
almost zero at a finite temperature. We give new numerical
calculation results below. According to the theory, generally
two adjustable parameters are needed to characterize the sys-
tem: �TC, which is already determined by the suppression of
TC and � f at the transition temperature TC. We obtained
� f�TC� in the following manner. According to the Landau
transport theory, � f�TC� and the scattering rate �−1 are related

by � f�TC�= �m /m���, where �=19.4 ns has already been ob-
tained and m� /m=5.8 is the effective-mass ratio of the
quasiparticles.23 We found � f�TC�=0.334 �s. The theory
predicts that all the experimental data should lie between the
curves of the Born and unitarity limits. The solid lines in Fig.
6 show the results for the numerical calculation within the
HSM. Although there are little differences, and despite using
the parameter for the pure 3He, the numerically obtained
relaxation time qualitatively reproduces the experimental ob-
servations, i.e., the peak structure, the order of the relaxation
time, and the relaxation time at TC. Hence, we have demon-
strated the effectiveness of our frictional relaxation model;
the drag force acting on the normal-fluid component at the
lowest temperature is not the viscous force but the frictional
force that originates from the momentum transfer from the
quasiparticle to the aerogel during scattering. The micro-
scopic spatial distribution of the normal-fluid component is
an interesting subject but it lies beyond the scope of the
present theory. For this, a more elaborate theory is required
that accounts for the aerogel structure in detail.

V. SUMMARY

We studied the motion of the normal-fluid component in
superfluid 3He immersed in a high-porosity aerogel by a
fourth-sound resonance technique. From the resonance fre-
quency, we found that both the transition temperature and the
superfluid fraction are suppressed. From the suppression of
superfluid transition temperature, we theoretically calculated
the superfluid fraction using the HSM, which reproduced the
experimental results well. From the shape of the resonance
spectra, we obtained the energy loss of the fourth sound due
to motion of the normal-fluid component. We found that the
energy loss in a resonator that contains an aerogel is smaller
than that in a pure superfluid resonator, and it decreases to
almost zero at a finite temperature despite retaining a finite
amount of the normal component. This means that the re-
sidual normal-fluid component is highly constrained by the
aerogel. We showed that the dissipation mechanism had
changed from a conventional viscous mechanism to a fric-
tional mechanism. Introducing the aerogel changed the flow
field changed from parabolic �Hagen-Poiseuille� to flat
�Drude�. The temperature dependence of the relaxation time
that characterizes the friction between the normal-fluid com-
ponent and the aerogel was obtained experimentally. The nu-
merically obtained relaxation time qualitatively reproduced
the experimental observations.
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APPENDIX: DENSITY OF STATES OF QUASIPARTICLES

In Sec. IV, we calculated the superfluid density fraction
using the homogeneous scattering model with �TC=5.8. It is
also possible to calculate the density of states of the quasi-
particles in aerogel, n���. Figure 7 shows the density of states
for several temperatures as a function of the energy differ-
ence from the Fermi level � normalized by the off-diagonal
part of the superfluid Hamiltonian at T=0, �BW�0�. In the
Born limit, a simple gap around the Fermi level appears at all
temperatures. However, in the unitarity limit, new quasipar-
ticle states emerge between the energy gap at all tempera-
tures. At higher temperatures, the structure of the density of
states strongly depends on the temperature; however, it ex-
hibits very little temperature dependence below T /TC=0.6.
The existence of a finite density of states at the Fermi level is
consistent with the findings of Choi et al.10 and Sharma and
Sauls.29 However, in our high-porosity aerogel, the impurity
band is located well below the gap edge and the gap width

is approximately half of kBTC, whereas that for a 98% aero-
gel extends up to the gap edge or even completely fills the
gap. This is a significant point for a high-porosity aerogel.
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