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We introduce a constrained Monte Carlo method which allows us to traverse the phase space of a classical
spin system while fixing the magnetization direction. Subsequently we show the method’s capability to model
the temperature dependence of magnetic anisotropy, and for bulk uniaxial and cubic anisotropies we recover
the low-temperature Callen-Callen power laws in M. We also calculate the temperature scaling of the two-ion
anisotropy in L1, FePt, and recover the experimentally observed M>! scaling. The method is newly applied to
evaluate the temperature-dependent effective anisotropy in the presence of the Néel surface anisotropy in thin
films with different easy-axis configurations. In systems having different surface and bulk easy axes, we show
the capability to model the temperature-induced reorientation transition. The intrinsic surface anisotropy is
found to follow a linear temperature behavior in a large range of temperatures.
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I. INTRODUCTION

The temperature dependence of magnetocrystalline aniso-
tropy of pure ferromagnets has been well known for decades,
following the Callen-Callen theory.! Examples of such sys-
tems classed as pure ferromagnets in the anisotropic sense
include Gadolinium (Uniaxial) and Fe (Cubic). Other ferro-
magnets, such as Co, have a much more complicated tem-
perature dependence due to the crystallographic origin of the
anisotropy.” Indeed, with increased temperature the aniso-
tropy in Co exhibits a change in sign, indicating a transfor-
mation from an easy-axis to easy-plane anisotropy. Such be-
havior is not explained by the Callen-Callen theory. Other
materials not exhibiting a simple temperature dependence of
the anisotropy are magnetic transition metal alloys such as
FePt and CoPt. Here the origin of the anisotropy is due to an
ion-ion anisotropic exchange interaction, arising from the
underlying crystal symmetry. In FePt the anisotropy exhibits
an unusual temperature dependence®* of K¢'ec M?!. Other
systems of technological interest include magnetic thin films
and nanoparticles, where surface effects can lead to unusual
temperature-dependent anisotropies. In general the tempera-
ture dependence of anisotropy in many materials is not ob-
vious, and as such is still an active area of research some 40
years after the Callen-Callen theory.

Recently, the high-temperature behavior of magnetic an-
isotropy has become important due to the applications in
heat-assisted magnetic recording (HAMR).>”7 The idea of
HAMR is based on the heating of the recording media to
decrease the writing field of the high anisotropy media (such
as FePt) to values compatible with the writing fields pro-
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vided by conventional recording heads. Since the writing
field is proportional to the anisotropy field Hy
=2K"(T)/M(T), the knowledge of the scaling behavior of
the anisotropy K, with the magnetization M has become a
paramount consideration for HAMR.® It should be noted that
even in relatively simple systems, a simple scaling behavior
predicted by the Callen-Callen theory is only valid at tem-
peratures far from the Curie temperature. The systems pro-
posed for HAMR applications can also include more com-
plex composite media such as soft/hard bilayers,’ FePt/FeRh
with metamagnetic phase transition,'®!" or exchange-bias
systems.!?

The evaluation of the temperature dependence of mag-
netic anisotropy is also important for the modeling of the
laser-induced demagnetization processes. The thermal de-
crease in the anisotropy during the laser-induced demagneti-
zation has been shown to be responsible for the optically
induced magnetization precession.!*> Thus the ability to
evaluate the temperature dependence of the anisotropy in
complex systems at arbitrary temperatures is highly desired
from the fundamental and applied perspectives.

In this sense magnetic thin films with surface anisotropy
are a representative example of this more complicated situa-
tion. In ultrathin films, especially when in contact with a
different nonmagnetic matrix, the interplay between the bro-
ken symmetry, magnetostriction, roughness, spin-orbit inter-
action, and charge transfer can often be encompassed in a
phenomenological model as an additional surface anisotropy.
Since the surface anisotropy has a different temperature de-
pendence from the bulk, multiple experiments on thin film
have demonstrated the occurrence of the spin-reorientation
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transition from an out-of-plane to in-plane magnetization
both as a function of temperature and thin-film
thickness.!#2! The possibility to engineer the reorientation
transition also requires the capability to evaluate the tem-
perature dependence of the surface anisotropy independently
from the bulk.

In the following we present a new Monte Carlo (MC)
method which can be applied to the computation of both
bulk and surface anisotropies at finite temperature. This pa-
per represents a first step showing the possibility to calculate
the temperature-dependent anisotropies, in principle. When
combined with detailed magnetic information, such as that
available from ab initio methods,?? this forms a very power-
ful method of engineering the temperature-dependent prop-
erties of a magnetic system.

II. MODELING METHODS

For the calculations presented in the following we de-
scribe the magnetic properties of the system by utilizing a
classical atomistic spin model, similar to Nowak,? with a
general Hamiltonian of the form

H=-2J8:S; KES E(S4+S4+S4)

i#j

- —(s (1)

i#j

describing the exchange interaction (J;;), uniaxial (K,), cubic
(K.), and Néel surface anisotropies>* (K ), respectively. Note
that in the following text, we also refer to the effective
temperature-dependent values K" (uniaxial), K" (cubic),
and Keff (surface). The summations for the exchange and
surface anisotropies are generally limited to nearest neigh-
bors only, except for the case of FePt where the full ex-
change up to five neighboring cells (around 1300 neighbors)
was taken into account.

The parameters are chosen to represent a generic ferro-
magnet, with a Curie temperature (7,) of around 1000 K, and
arbitrary anisotropy constants, where K,,K.<J;;. Note that
all three anisotropy terms have been included within the
same Hamiltonian for brevity—in practice a system will only
have cubic or uniaxial anisotropy, and clearly only surface
atoms will possess surface anisotropy.

We compute thermodynamic properties by averaging over
the Boltzmann distribution using the Metropolis algorithm.?
Our innovation, which we call the constrained MC (CMC)
method, is to modify the elementary moves of the random
walk so as to conserve the average magnetization direction

=(3,8)/||=S]. In this way we sample the Boltzmann dis-
tribution over a submanifold of the full phase space. Thus we
keep the system out of thermodynamic equilibrium in a con-
trolled manner while allowing its microscopic degrees of
freedom to thermalize.

Because the system cannot reach full equilibrium, the av-

erage of the total internal torque T=(-3;S,X dH /48,y does
not vanish. We show in Appendix C that this is equal to the

macroscopic torque ~M X 9F/ M, where .7-"(1\7[) is the Helm-
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holtz free energy, now a function of M. Even though we
cannot compute F directly, we can reconstruct its angular
dependence by integration
~ ~ M . ~
FM)=FMp+ | M XT')-dM’, (2)
M,

where the integral on M’ can be taken along any path on
which the system behaves reversibly. This, in turn, gives us
the anisotropy constants at any temperature.

In practice it is often simpler to recover the anisotropy
constants directly from the derivatives. We first initialize the
system with uniform magnetization in a direction of our
choice, away from the anisotropy axes, where we expect a
nonzero torque. Next we evolve the system by constrained
Monte Carlo until the length of the magnetization reaches
equilibrium. We then take a thermodynamic average of the
torque over a large number constrained Monte Carlo steps,
typically 50 000. We repeat at other orientations and we fi-
nally reconstruct the anisotropy constants from the angular
dependence of the torque.

III. CONSTRAINED MONTE CARLO

The Metropolis algorithm works by generating trial
moves at random and accepting or rejecting each move based
on the ratio of the Boltzmann probability densities exp(
—BH), B=1/kT, at the initial and final states. This ratio de-
pends only on the energy difference between the two states.
An accepted move yields a new state and a rejected move
yields a repetition of the initial state (“null move” in the
following). There is considerable freedom in the construction
of trial moves. It is required only that each move has the
same probability density as the inverse move (reversibility),
and that all states be reachable by a sequence of moves (er-
godicity). Under these conditions the random walk’s limiting
distribution is the Boltzmann distribution.

In the usual Monte Carlo method we generate our trial
moves by drawing a vector v from an isotropic normal dis-

tribution, choosing a spin S at random, addlng S Xv to it

and normalizing the result to obtain a trial spin Si. The prob-
ability density of the move depends only on the angle be-

tween é,» and g,’ , which ensures reversibility. Ergodicity is
obvious. The variance of the v distribution controls the size
of the attempted moves and can be chosen at will to improve
the ratio of accepted to rejected moves, similarly to the pa-
rameter « in Ref. 25. We find that a v variance proportional
to \T works well with our systems.

For our Hamiltonian, the energy difference involves only
spin i and the few neighboring spins to which it is coupled
by exchange, so the decision to accept or reject the move can
be made quickly. A sequence of N moves, counting null
moves, constitutes a step; we compute quantities of interest
once per step to average them.

In the constrained Monte Carlo method the trial moves act
on two spins at a time. The extra degrees of freedom allow

us to fix M to any given unit vector, which we take here to
be the positive z axis since we can always reduce the prob-
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lem to this case by means of a global rotation. Ignoring the z
coordinates for a moment, we simply displace two spins by
equal and opposite amounts in the XY plane. There are tech-
nical issues due to the fact that ﬁx,S‘y are not canonical co-
ordinates; furthermore, we need to allow sign changes in the
z coordinates. In the end we settled on the following: (1)
choose a primary spin §i and a compensation spin S j» N0t
necessarily neighbors. (2) Displace the primary spin as in the
usual Monte Carlo method, obtaining a new spin SAI’ . (3)

Adjust the compensation spin’s x and y components to pre-
serve Mx:My:O,

(4) Adjust the z component,
o7 P Qr2  or2
S =sgn(S;)V1 =S =S}

If the argument of the square root is negative, stop and take
a null move.
(5) Compute the new magnetization,
M:’ =MZ+‘§;Z+§}Z_‘§[Z_§]Z'
If M} =0, stop and take a null move. (6) Compute the energy
difference AH=H'-"H.
(7) Compute the acceptance probability P,

!

2 A
S
P=min| 1, |A¢exp(— BAH)

jz

N |N

(8) Accept the move with probability P or take a null move
with probability 1-P.

In effect, we use the compensation spin to project the
system back to its admissible manifold. The projection is not
orthogonal and does not preserve measure. Consequently the
Boltzmann ratio in step (7) is multiplied by a geometric cor-
rection, the ratio of two Jacobians, which we derive in Ap-
pendix A. We prove ergodicity in Appendix B.

The null moves at step (4) handle the kinematic con-
straints in a natural way. We could instead add fictitious
states that allow step (4) to complete and assign zero prob-
ability (infinite energy) to these states; this would guarantee
rejection at step (8) and it is simpler to stop at step (4).
Similarly at step (5) we reject trial move that would change

the sign of M; here the end states exist but we simply want to
sample them with zero probability.

IV. CALCULATION OF BULK ANISOTROPIES

Given the originality of the constrained Monte Carlo
method, it is important to ensure that the method is reliable
and conforms to existing results, especially regarding the
low-temperature dependence of bulk anisotropy as predicted
by Callen and Callen,' where uniaxial anisotropy was shown
to have an M> dependence and cubic anisotropy to have an
M'° dependence.
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FIG. 1. (Color online) Simulated and analytical angular depen-
dence of the restoring torque for uniaxial anisotropy at temperatures
10, 100, and 500 K.

In the present work such bulk systems were approximated
by simulating a generic ferromagnetic system with 16 000
spin moments with periodic boundary conditions, to elimi-
nate surface effects and minimize finite-size effects. Sample
torque curves for the system with uniaxial anisotropy are
shown in Fig. 1. The points show the calculated torque and
the curves are fits to a sin(26) dependence, where 6 is the
angle from the easy axis.

The sin(26) relationship is seen to hold at all temperatures
and the fitted proportionality constant gives K<(7). In a situ-
ation such as this, where all the torque curves have the same
shape, the anisotropy is described by a single parameter and
it is sufficient to compute the torque at the maximum.

In more general cases, such as those with surface aniso-
tropy, it is necessary to compute the torque at several angular
positions. Finally, with every new system it is prudent to
verify the shape of the torque curves over many angles, both
polar and azimuthal, before reducing the number of points to
the minimum necessary.

The uniaxial anisotropy, cubic anisotropy, and magnetiza-
tion for the generic system are plotted against temperature in
Fig. 2(a). In order to reduce the computational effort, the
torques were computed at a single angular position, #=45° in
the uniaxial case and #=22.5° in the xz plane for cubic an-
isotropy. In Fig. 2(b) the anisotropies are plotted against the
magnetization on logarithmic scales. As can be seen, the re-
sults show excellent agreement at low temperatures with the
scaling behavior predicted by Callen and Callen. We note
that in these calculations the internal energy and free energy
are almost interchangeable. That is, dF/d6 is nearly equal to
H)/ 6. The anisotropy is too weak to affect the entropy
and the difference (H)—F=TS is nearly independent of 6.
We expect this to hold in most magnetic systems, but in full
generality the distinction between F and (H) must be kept.

In strong anisotropy systems and temperatures close to 7,
we have found that the system torque deviates from the ex-
pected sin(26) behavior. This is in agreement with previous
publications where it has been shown that at high tempera-
tures strong-magnetization fluctuations lead to several inter-
esting effects, related to the free-energy behavior, such as the
change in the magnetization length on the saddle point?® or
the elliptic character of domain walls.?’
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FIG. 2. (Color online) Simulation results for the temperature
dependence and scaling of a pure ferromagnet with uniaxial and
cubic anisotropies.

V. CALCULATION OF ANISOTROPY IN FePt

FePt is a material of current interest because of its ex-
tremely high magnetocrystalline anisotropy energy in the
L1, crystal phase.”® The material is also unusual due to the
M?*! low-temperature scaling of the effective anisotropy.>*
Ab initio and Langevin dynamics simulations by Mryasov et
al.”® managed to reproduce the observed scaling of the an-
isotropy by calculation of the internal energy, and in this
work we have applied the constrained Monte Carlo method
to the same problem. We have utilized the same Hamiltonian
as Mryasov et al.?® and simulated a system 6 nm? with pe-
riodic boundary conditions. The key addition to the generic
Hamiltonian in Eq. (1) is a two-ion anisotropy term of the
form

J{two-ion _ E KI(J2) Svg S'Z- (3)

irje
i#j

where Kl@ is the anisotropy constant which is site and range
dependeﬁt, as extracted form the ab initio calculations. The
system also possesses an easy-plane anisotropy which is an
order of magnitude weaker than the easy-axis two-ion aniso-
tropy. The existence of these competing anisotropies, in fact,
gives rise to the unusual scaling exponent due to the different
temperature scaling of the anisotropic contributions, M? for
two ion and M? for single ion. Due to the large value of the
effective anisotropy in FePt, the torque deviates from the
expected sin(26) relationship at elevated temperatures, and
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FIG. 3. (Color online) Angular dependence of the free energy in
L1, FePt at high temperatures. The curves are sin’ @ fits to the data
in the range 0: /5.

so the free energy was obtained by integration over 6. The
torque curves were calculated by first equilibrating the sys-
tem for 10 000 steps at each temperature and angle, and then
the thermal average of the torque was calculated over a fur-
ther 70 000 steps. Plots of the change in free energy, AF, are
shown in Fig. 3, showing a deviation from the usual sin> 6
angular dependence at temperatures close to T, (700 K). In
fact a consistent flattening of the free energy is seen in the
proximity of the hard axis—the high-anisotropy energy
causes a reduction in the length of the magnetization which
effectively means it is competing with the exchange interac-
tion. The balance of these effects is that the length of mag-
netization is slightly lower and therefore so is the torque,
leading to a flattening of the free energy in the maximum.
This leads to a lower than expected energy barrier which is
important for the calculation of relaxation times at high tem-
perature. The low-temperature scaling of the anisotropic free
energy is plotted in Fig. 4, showing excellent agreement with
the previous theoretical and experimental results.>#2

VI. THIN-FILM SYSTEMS WITH NEEL SURFACE
ANISOTROPY

So far we have demonstrated the ability of the constrained
Monte Carlo method to reproduce results which are well
known. In the following the method is applied to a system
where the temperature-dependent behavior is unknown—
namely, thin films with surface anisotropy. Understanding
surface anisotropy presents a number of challenges due to its
complexity, especially in nanoparticles.’® Due to symmetry
thin films present a special case for surface anisotropy, where
the behavior is much simplified. Thin films have attracted a
great deal of research interest over the past 50 years and so a
large body of experimental data exists.!”!83! Nevertheless,
achieving good experimental data on the temperature depen-
dence of surface anisotropy requires the creation of very thin
films with very sharp interfaces, which has only been tech-
nologically feasible within the last decade. This is because
the influence of surface anisotropy is usually determined by
varying the thickness of the magnetic layer, so that volume
and surface contributions can be separated. For thick films
the volume component strongly dominates the overall aniso-
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FIG. 4. Temperature scaling of anisotropy in L1, FePt.

tropy, leading to a large degree of uncertainty in the strength
of the surface contribution. Another problem arises with
temperature-dependent atomic migration, structural changes
and interface mixing, which cause a change in the surface
properties.?’

A. Calculation of temperature-dependent anisotropy

The constrained Monte Carlo method allows for a thor-
ough investigation of the temperature dependence of aniso-
tropy in thin films with the Néel surface anisotropy. In the
case of a perfect single-crystal magnetic film with a face-
centered-cubic (fcc) or simple cubic (sc) crystal structure
with interfaces cut along the [001] direction, the on-site Néel
surface anisotropy yields a purely uniaxial anisotropy. In or-
der to simulate a section of such a thin film, a generic mag-
netic material with fcc (7,=1300 K) or sc (7,=1000 K)
crystal structure was chosen. In order to eliminate edge ef-
fects within the film, periodic boundary conditions in the
film plane were used. The surface anisotropy is normally
found to be much stronger than bulk-type anisotropy, and so
a value of K;=10K, was chosen. When studying thin films
with surface anisotropy, a number of basic combinations of
anisotropies are possible. Principally, in the case of bulk
uniaxial anisotropy, the surface and bulk anisotropies can
have aligned or opposing easy axes, depending on the sign of
the constant. Alternatively, a material could possess a cubic
bulk anisotropy and uniaxial surface anisotropy. In the fol-
lowing we present calculations of temperature-dependent ef-
fects in these thin-film systems with surface anisotropy.

Where both bulk and surface anisotropies are uniaxial, the
torque curves are similar to ones presented in Fig. 1, show-
ing a sin(26) angular dependence. In Fig. 5 we present a
more complicated situation, where the thin film has cubic
bulk anisotropy and Néel surface anisotropy. One of the easy
axes of the cubic anisotropy coincides with the surface-
anisotropy easy axis (perpendicular to the thin-film surface).
The torque curve clearly shows a summation of uniaxial and
cubic anisotropy contributions. The temperature dependence
of both contributions is presented in Fig. 6. Similar to our
results in the previous section, the cubic anisotropy exhibits
a much stronger temperature dependence than the uniaxial
(surface) part. Consequently, at low temperature the cubic
anisotropy dominates while at high temperature the uniaxial
surface anisotropy dominates.
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FIG. 5. The torque curve in a thin film of L,=10 atomic planes
with fcc structure, cubic bulk anisotropy, and Néel surface aniso-
tropy perpendicular to the thin-film plane and parallel to one of the
bulk anisotropy easy axes for 7=10 K. The line provides a guide to
the eyes.

B. Modeling of the reorientation transition in thin films

The temperature dependence of the surface anisotropy
leads to a number of interesting effects, such as a
temperature-dependent reorientation of the magnetization di-
rection from out of plane to in plane and vice versa.'4?!
Such an effect can occur when the easy directions of the
surface and bulk anisotropies compete. At low temperatures
the magnetization lies along the surface easy direction, e.g.,
perpendicular to the plane. As the temperature is increased
the surface contribution to the anisotropy energy rapidly de-
creases, so the system magnetization lies along the bulk easy
direction, e.g., in the plane. The temperature dependence of
the effective anisotropy is plotted in Fig. 7 for different thin-
film thicknesses. Given the large difference in the surface
and bulk anisotropy constants, the ultrathin films fail to show
any reorientation transition. As the film thickness is in-
creased the reorientation transition becomes more pro-
nounced and occurs at a lower temperature. These results are
comparable to mean-field calculations by Hucht and
Usadel.??
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FIG. 6. (Color online) Temperature dependence of uniaxial and
cubic effective anisotropies in a thin film of L,=10 atomic planes
with fcc structure, cubic bulk anisotropy, and Néel surface aniso-
tropy perpendicular to the thin-film plane and parallel to one of the
bulk anisotropy easy axes. The lines provide a guide to the eyes.
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FIG. 7. (Color online) Temperature dependence of the effective
anisotropy in thin films with in-plane bulk anisotropy and perpen-
dicular to the plane surface anisotropy for various thin-film thick-
nesses. The lines provide a guide to the eyes.

One other interesting property of the temperature-
dependent reorientation transition is that, depending on the
choice of nonmagnetic interface material, the temperature of
the transition can be tuned. To illustrate this phenomenon,
Fig. 8 shows a plot of the temperature dependence of the
total anisotropy for different Néel anisotropy constants, emu-
lating the effect of changing the interface material. Here the
bulk anisotropy is assumed to be perpendicular to the plane,
and the surface anisotropy is easy plane.

C. Temperature dependence of surface anisotropy

The temperature-dependent effective anisotropy in thin
films with surface anisotropy is not an intrinsic parameter
since it is strongly dependent on the thin-film thickness. In
this section we present two methods which enable the sepa-
ration of the surface and bulk anisotropy contributions as a
function of temperature in thin films, for simplicity, with
parallel surface and bulk uniaxial anisotropy axes perpen-
dicular to the thin-film plane. This allows the extraction of
the intrinsic uniaxial and surface contributions, independent
of the thin-film thickness.
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FIG. 8. (Color online) Temperature dependence of effective an-
isotropy for a thin film with competing surface (easy-plane) and
bulk (parallel to z axis) anisotropies for a system of 26 X 26 X 6 unit
cells for different magnitudes of K. The lines provide a guide to the
eyes.
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FIG. 9. (Color online) Scaling of the effective anisotropy with
the ratio between surface and total number of atoms Ny/N in a thin
film with sc structure, uniaxial bulk anisotropy, and Néel surface
anisotropy both perpendicular to the thin-film plane. The lines show
the fits to the data.

The first method is based on the variation in the effective
anisotropy with the number of surface atoms via the follow-
ing well known expression:3

K= K5 (S - K1), @

where N and N are the number of surface and total atoms
and K" and K" are the effective surface and bulk anisotro-
pies, respectively. In Fig. 9 we present results at different
temperatures in thin films with a simple cubic lattice and
different thicknesses. The data are perfectly scaled with the
ratio N,/N and for increasing film thickness the effective
anisotropy tends toward the temperature-dependent bulk
value. The fitting of the data to Eq. (4) allows the extraction
of the surface-anisotropy constant as a function of tempera-
ture, as presented in Fig. 10. In this system the surface an-
isotropy shows a linear decrease with temperature, similar to
the experimental results.!%-3433

Since the surface atoms must be identified in order to
calculate the Néel surface anisotropy, one can also resolve

0.2 | 4

0 I I I I I I I I I
0 50 100 150 200 250 300 350 400 450 500

Temperature [K]

FIG. 10. Temperature dependence of the effective surface aniso-
tropy in a thin film with sc structure, uniaxial bulk anisotropy, and
Néel surface anisotropy perpendicular to the thin-film plane deter-
mined from the size scaling of the effective anisotropy. The line is
a linear fit to the data.
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FIG. 11. (Color online) Simulated restoring torque in a thin film
of L,=10 atomic planes with sc structure, uniaxial bulk anisotropy,
and Néel surface anisotropy perpendicular to the thin-film plane for
T=10 K. The lines show a fit of the data to sin 26.

the surface and bulk contributions to the restoring torque
curves. Figure 11 shows the torque curves for the total, bulk,
and surface parts, evaluated for the same thin film as above.
As can be seen, the surface torque also follows the sin(26)
behavior and the effective surface anisotropy can therefore
be extracted. The values of the surface anisotropy obtained
through this method are comparable with the ones obtained
through the scaling method shown in Fig. 10.

In practice, the surface torque is a noisy quantity due to
the relatively small number of atoms. In order to obtain a
good thermodynamic average it is generally necessary to use
a large number of steps. However, the total torque converges
much more rapidly and requires relatively few steps.

D. Scaling behavior of the anisotropy with magnetization

The separation of surface and bulk contributions to the
anisotropy allows the investigation of the temperature scal-
ing of the surface anisotropy separately with respect to the
surface magnetization, M. and bulk magnetization,
M. We should bear in mind that the magnetization fluc-
tuations on the surface are dependent on the bulk so that, in
general, the corresponding scaling exponent is strongly
system-size dependent.

For an isolated surface layer the scaling of the surface
anisotropy with respect to the surface magnetization should
follow K"~ M? . . as was found in the bulk case. In prin-
ciple, this effect could be measured experimentally using a
monolayer of magnetic material, though such a structure is
generally unstable at anything other than cryogenic tempera-
tures.

We have found that a magnetic thin film with zero bulk
anisotropy also follows the K;’ff~M Surface law, at least for the
thin-film thicknesses for which our calculations were fea-
sible. We have simulated a thin-film system with fcc crystal
structure, surface anisotropy perpendicular to the thin-film
plane, and with zero bulk anisotropy. This essentially ensures
that the only anisotropic contribution to the Hamiltonian
comes from the surface. The normalized magnetization and
surface anisotropy calculated via the torque method as a
function of temperature are plotted in Fig. 12 for the system
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FIG. 12. (Color online) Plot of normalized magnetization and
surface anisotropy against temperature for a thin film with zero bulk
anisotropy. The surface magnetization shows stronger criticality
than the bulk and average magnetization. The lines provide a guide
to the eyes.

dimensions 32X 32X 12 unit cells. The surface, bulk, and
volume average magnetization are plotted, each having the
same Curie temperature but with a different criticality, as
previously reported by Binder and Hohenberg.3¢

The reduced criticality in the surface magnetization arises
from a reduction in coordination number. An isolated surface
layer would also have a reduced Curie temperature, but in
our case the surface layer is polarized by the bulk and thus
has the same 7, of around 1300 K. Figure 13 shows the
temperature scaling of the surface anisotropy with the sur-
face magnetization showing a low-temperature exponent of
K:ff~ M furface, in excellent agreement with the Callen-Callen
theory for single-ion uniaxial anisotropy.

The scaling of the total effective anisotropy in the pres-
ence of the Néel surface anisotropy with total magnetization
is unknown a priori, and is coordination number, thin-film
thickness, and material dependent. Nevertheless, it is this
scaling which would be measured experimentally. To illus-
trate this effect we have calculated the effective scaling ex-
ponent Kﬁff~szerage for a system with both uniaxial and
surface anisotropies for different film thicknesses, as shown
in Fig. 14. For an isolated surface layer N,=N the critical
exponent y=3 is recovered. The critical exponent has a
maximum and should tend again to y=3 value for very thick
films.
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FIG. 13. Plot of temperature scaling of surface anisotropy with
surface magnetization for a system with zero bulk anisotropy.
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FIG. 14. Plot of scaling exponent with thin-film thickness in a
thin film with K;=10K,, parallel out-of-plane easy axes and sc lat-
tice. The line provides a guide to the eyes.

VII. CONCLUSION

We have developed a constrained Monte Carlo method by
which we can compute thermodynamic properties of mag-
netic systems as a function of the magnetization direction.
We have shown its distinct capability to evaluate the tem-
perature dependence of the magnetic anisotropy, which is an
important quantity for technological applications in hard
magnetic materials. The method has been utilized to compute
the temperature dependence of bulk magnetic anisotropy and
we have recovered numerically the analytic scaling law of
Callen and Callen.

The importance of the method resides in its potential to
calculate temperature-dependent effective anisotropies in
complex materials. The present challenge for modeling of
magnetic materials is the multiscale approach, where the ab
initio information is passed to a different scale with the aim
to model larger sizes of material, using, for example, micro-
magnetics. The CMC method provides a real possibility to
link the quantum-mechanical scale with micromagnetics, via
the parameterization of a classical Heisenberg Hamiltonian.??
This Hamiltonian can be used to calculate temperature-
dependent equilibrium behavior. To demonstrate this, we
have applied the method to the calculation of the effective
anisotropy bulk FePt, using the model parametrized through
ab initio calculations and have recovered the experimentally
observed K;gptvaz'l temperature scaling. Moreover, we
have also noted the appearance of a flattening of the free-
energy surface at the energy maximum, an effect not previ-
ously seen with less subtle methods.

We have then applied the method to a variety of thin films
with surface anisotropy, investigating the size-dependent be-
havior and temperature dependence of surface anisotropy.
We have shown the capability of the method to simulate the
temperature-dependent magnetization reorientation transi-
tion. We also have shown that the method enables the sepa-
ration of the temperature-dependent surface anisotropy as an
intrinsic system parameter, independent of the thin-film
thickness. Our results demonstrate a linear temperature de-
pendence of the surface anisotropy, consistent with the ex-
perimental results in Gd,3*3> Ni,? and Fe (Ref. 19) grown on
different substrates. However, when comparing with our re-
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sults, various factors should be taken into account, including
structural changes with increased temperatures or a lattice
mismatch which could influence the bulk anisotropy. One
other possibility is that of an enhanced exchange interaction
at the surface of the material.>” An increased exchange inter-
action would lead to an increase in the criticality of the sur-
face layer and commensurate reduction in the temperature
dependence of the surface anisotropy. In the future, more
complicated models could take into account these effects.

Finally, we have investigated the scaling of the anisotropy
in thin films with magnetization. In thin films with zero bulk
anisotropy, the surface anisotropy scales with the surface
magnetization following the Callen-Callen law. In other
cases we report no universal scaling behavior of the surface
anisotropy.

To summarize, the constrained Monte Carlo method is a
powerful tool, allowing to include both thermodynamic fluc-
tuations and entropy into the evaluation of macroscopic
quantities such as temperature-dependent magnetic aniso-
tropy. In the future we plan to apply the method to model
more realistic systems within a general trend to large-scale
material modeling aiming the design of novel materials with
potential applications.
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APPENDIX A: JACOBIANS IN THE TRIAL MOVES

We are displacing two spins, whose combined volume
element is d°S;dS;. However, we plan to readjust S; to keep
M constant. Accordingly, we eliminate the variable §j in
favor of M and rewrite the volume element as
|J(S;,M)|d2S,d*M, expressing éj in terms of M and expect-
ing the Jacobian J(S;,M) to be nontrivial. This allows us to
view the trial move as taking place in the §i, M variables.
The Boltzmann probability density in these variables is p
«|Jlexp(-BH). Since our trial moves are reversible in
(S;,M), the Metropolis-Hastings test ratio®® is just p’/p
=|J’/J|exp(=BAH). The fact that we always keep M’ =M
has no bearing on the argument and we use the same ratio to
decide whether to accept the move from (§,~,1\7I) to (é[ ,M).

The first result we need is the relationship between a

spherical surface element and its projection in the XY plane.
We have

. dS.dS. . dS.ds.
dZS — x40y dZS — JX y

a ’ J A H (Al)
S5l |

i

jz
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. dM.dM,

&M EY =dM,dM,. (A2)
MZ

Too see this, note that for any unit vector S the angle be-
tween the tangent plane to the sphere at S and the XY plane
is simply 9=cos_](|§z|), therefore the projected area dgxdgy
is |cos(6)|d*S=|S |d?S. Equations (A1) and (A2) are the in-

verse of this relation, stated for the three vectors éi, S s and

M. In the case of M, Eq. (A2), the denominator |M,| is not
necessary because we are locking M in the positive Z direc-

tion, therefore M =1

Next, we express a’[\;I)C and dMy in terms of dS‘,-x, dS‘iy,

das s and dS iy We assume that M lies in the Z direction but
we do not make the same assumption for M-+dM. For the
unnormalized vector M, we have

dMX:dSix-I-dex’ dMy:dSiy+dey (A3)
since the other spins are fixed. For the normalized M, we
have

dM =d(M~"M) = M~'dM - M~>MdM . (A4)

We only need the x and y components of Eq. (A4). Since M
lies in the +Z direction, the last term contributes nothing to
the in-plane components and we do not need to calculate dM
(although it would be easy to do so). The remaining term
gives

dM,=M"'dM,, dM,=M""dM,. (AS)

We substitute Eq. (A3) in Eq. (A5) and replace M by M,

dM, = M_'dS; + M7'dS;,,

dM, = M_'dS,, + M;'dS,,. (A6)
We rewrite Eq. (A6) in matrix form
ds;, 10 o o ||dS
ds;, 0o 1 0 0 ||ds,
A) = -1 -1 ~ "l (A7)
am, | |M: 0 M0 g3
. o M!' o M -
_dMy_ | < e | _dey_

The Jacobian of the change in variables is the determinant of
the matrix in Eq. (A7), namely, MZ_Z. Therefore, the volume
elements are related by

dS;dS,dM dM, = M_dS;,dS,,dS ,dS ;, (A8)
and the inverse relation is
dS;,dS,,dS;,dS ;, = M2dS ,dS;,dM,dM,. (A9)

Dividing by |S../|S;.| and using Eq. (A1), we obtain

PHYSICAL REVIEW B 82, 054415 (2010)

Ao ME L.
d*S,d°S; = ﬁszidzM.
S

Jjz

(A10)

Thus the Jacobian is [J/|=M?/|S,;.| and we accept each trial
move with probability

P=min[1,

J'IJlexp(- BAH)]

2 A
IS
=min 1,(—‘) |A'—]Z|exp(— BAH)
Jz

(A11)

as stated in step (7) of the algorithm.

APPENDIX B: ERGODICITY

We show that every admissible state (i.e., with total mag-
netization along +Z) can be reached from any other admis-
sible state by a sequence of constrained Monte Carlo trial
moves. In this context we may ignore the Metropolis accep-
tance test at step (8) of the algorithm, but the trial moves
must still pass the kinematic tests at steps (4) and (5). The
proof relies on two lemmas.

Lemma 1. Any spin with a negative 7 component can be

moved to the hemisphere .§z> 0 by a sequence of trial moves
without any other spin crossing the plane z=0.
Lemma 2. Assuming all the spins are in the hemisphere

S'Z >0, one of them can be moved to the z axis by a sequence
of trial moves without any spin crossing the plane z=0.
Repeated applications of Lemma 1 allow us to move the

spins one by one to the hemisphere S’Z>O, at which point
Lemma 2 becomes applicable.

Repeated applications of Lemma 2 allow us to move all
the spins to the positive z axis. After the first application we
have one spin along +Z; the remaining N—1 spins are per-
turbed in the process, but they remain in the upper hemi-
sphere and their final magnetization must also point along
+Z. That is, they form an admissible state of N—1 spins,
Lemma 2 becomes applicable to them and we can iterate.
Thus, any admissible state can be collapsed to the saturated
state by a sequence of trial moves. By chaining such a col-
lapsing sequence with the inverse of another one, we can
connect any two admissible states.

1. Proof of Lemma 2

We use trial moves where the primary spin does not cross
the plane z=0. We write s; (lower case) for the projection

(S’ix,S’iy) in the XY plane. It is enough to consider the s; since

the z components are uniquely determined by them, S'iz
=+\1—||s/]*. The trial moves cannot fail at step (5), leaving
only step (4) to consider. A trial move then consists in dis-
placing two points s;,s; by equal and opposite amounts while
keeping both points in the unit disk, [|s].[|s|=1.

We want to show that, for any set of N points in the unit
disk with centroid (0,0), one of the points can be shifted to
(0,0) by a combination of such moves. In fact we have a
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FIG. 15. Admissible zone for projected trial moves in the proof
of Lemma 2. The projections of the two spins (black circles) can
move symmetrically about their centroid (white circle) within the
region shown in white.

slightly more general result: in any set of N points, one can
be moved to the centroid, whether or not the centroid is
(0,0).

We proceed by induction on N. For N<<2 there is nothing
to prove. For N=2, let ¢=(s;+s,)/2 be the centroid. Since ¢
is invariant, the condition ||s,|| =1 can be expressed in terms
of s;, [2e-s,|=1. Similarly we have |[2¢—s,|=1. This
means that we can move the two points symmetrically about
¢, as long as we keep them both within a lens-shaped “‘ad-
missible zone,” which is the intersection of the unit disk and
of its inversion through c. This is shown in Fig. 15. The
admissible zone, being convex, contains c. Therefore we can
move both points to ¢, using several submoves if necessary.

For N>2 we assume by the induction hypothesis that the
centroid ¢y_; of the first N—1 points is already occupied by
one of the s;. The full centroid cy=[sy+(N—1)s,]/N lies on
the segment [s;,sy] and is in the admissible zone of s,sy.
Therefore we can move either point to the centroid. This
proves the lemma.

2. Proof of Lemma 1

We want to reduce by one the number of spins with S‘Z
=0. Our rules allow trial moves where the primary spin flips
its z component and the secondary spin does nothing, but we
would like to avoid these potentially low-probability moves.
Our strategy is to move the offending spin close to the plane

z=0 so as to require only a small jump in S‘Z in the final
move. We proceed as in the proof of Lemma 2, using pro-
jections in the XY plane, but this time we have to avoid
rejection at step (5) of the algorithm.

Consider an admissible state where spin i has §;z<0-
Choose a j such that S >0 (there must be one, since M, is
positive). We use trial moves with §,~ as the primary spin and

§j as the compensation spin. Let s;,s; be the projections in

the XY plane. The two points s;,s; are restricted to a lens-

shaped admissible region as in the proof of Lemma 2, but
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FIG. 16. Admissible zone for projected trial moves in the proof
of Lemma 1. The dashed lines are contours of $ ,-z+.§ - as a function
of fix,fiy. A possible path for the projection of the primary spin is
shown in black with the matching path of the secondary spin in
gray. If the primary spin stays in the white region the total magne-
tization M, cannot become negative.

there may be a further restriction to ensure that A/, remains
positive.

As before, we express S; in terms of s;, sj:2c—s,-. The
contribution of spins 7 and j to M, is then

§i2+§jz=_ vl _”51'”2"' V1- ||2c_si||2- (B1)

It can be shown that the contours of Eq. (B1) in the (s;;,s;,
plane are arcs of ellipses centered on ¢ and tangent to the
admissible zone, as shown in Fig. 16, and that Eq. (BI)
increases monotonically as s; moves from the interior edge to
the exterior edge of the admissible zone. If s; stays on the
distal side of its starting contour, the value of M, cannot
become negative. This is represented by the white region in
Fig. 16. We see that there is an ample supply of paths that
take s; arbitrarily close to the edge of the unit disk. At that

point a final trial move can take §i across the plane 3’,-2=0.

The only other spin involved, S s remains in the positive z
hemisphere throughout. This proves Lemma 1.

APPENDIX C: MACROSCOPIC TORQUES

The magnetization direction M plays the role of a macro-
scopic parameter. In this section we identify the generalized

forces acting on M (torques) with the derivatives of the
Helmholtz free energy.

By way of introduction, consider a thermodynamic sys-
tem with an external macroscopic parameter g and micro-
scopic states &,. We treat « as a discrete index for simplicity.
The energy of each microscopic state is a function of g; the
partition function and the Helmholtz free energy are®

2(q) = 2, expl- BH(£,9)], (C1)
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Flg)=- B " In[Z(g)]. (C2)

Differentiation of Eq. (C2) with respect to ¢ yields immedi-
ately

- (?H(gw 4)

—dFldg =2, 27" exp[- BH(£,.q)] 7

=(— IH/dq), (C3)

where in the second line of Eq. (C3) we recognized the sum
over microstates as a thermodynamic average, since the
weights Z7! exp[-BH(£,.q)] are the Boltzmann probabili-
ties. Thus the mean force conjugate to ¢ is the negative de-
rivative with respect to g of the Helmholtz free energy F(q).

The right-hand side of Eq. (C3), being a thermodynamic
average, can be computed by the Metropolis algorithm. As a
general rule, derivatives and differences of free energies are
computable in this way, even though the free energy itself is
not.

The argument is not directly applicable to our case since

A

M is not a parameter in the Hamiltonian, but a restriction on
the set of admissible states. One could, in principle, set up a
system of 2N—2 coordinates that forms a complete set with

M and treat M as a parameter, but we never did this. Instead,
we picked a temporary coordinate system for each Monte
Carlo move to be discarded after the move. Indeed, the
whole of Appendix A is a stratagem to avoid setting up glo-
bal coordinates.

However we can recover a result similar to Eq. (C3).

Given any two directions M and M’ we can find a rotation
R that sends M to M. If we apply this rotation globally to

every spin Si that constitutes a microstate & we obtain a
measure-preserving bijection between the two admissible
manifolds. This allows us to replace sums over the mi-

crostates of the M’ manifold by sums over the microstates
(rotated) of the M manifold. In particular, the partition func-
tion Z'=Z(M') is

Z' =2 expl- BH(RE,]. (C4)

Dividing by Z and factoring out an exp[—-B8H(&,)] from each
term

Z'1Z=2, 2 exp(- BH(£Y)

X exp[- B(H(RE,) — H(E,))] (Cs5)

or
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2'1Z=(exp{- BlH(RE) - H(H]}), (Co)
where the sums in Egs. (C4) and (C5) and the thermody-
namic average in Eq. (C6) are over the admissible manifold
of M. Taking logarithms and dividing by —f, we have

F' — F=— B In[{exp{- B{H(RE - H(&IP], (CT)

where again the thermodynamic average is over the manifold
of M.

Specializing to an infinitesimal rotation, Rv=v+d@i
X v+0(d6?) and writing each microstate & as a collection of

spins éi, the energy difference in the argument of the expo-
nential is

H(RE) —H(E) = deE (R XS, - ﬂ +0(d#) (C8)

1

. OH
=don - >, (si X —) +0(d6P).
i aS;
(C9)
As d@ approaches zero the logarithm and exponential in Eq.
(C7) become a no-op

. M
F —-F=doi-{ 28; X — ) +0(dé). (C10)
i asS,;

Meanwhile, M’ is related to M by the same infinitesimal
rotation and we can expand F'=F(M’) in a Taylor series.

F = FIM+doia X M+ 0(d6?)] (C11)

. OF
=F+d0(h X M) - — + 0(d) (C12)
IM

. IF
=]—“+d0ﬁ-(M><—A)+0(d62). (C13)
oM

Combining the terms of order d6 in Egs. (C10) and (C13),
we obtain

. JH . OF
- > S, X — =ﬁ-(M><—A). (C14)
i aS; M

Since the equality holds for all i, we have finally

. JH . OF
DS X — )=Mx —. (C15)
i aS; M

054415-11



ASSELIN et al.

*rfle500@york.ac.uk
'H. B. Callen and E. Callen, J. Phys. Chem. Solids 27, 1271
(1966).
2P. Bruno, Physical Origins and Theoretical Models of Magnetic
Anisotropy (Forschungszentrum Jiilich, Jiilich, 1993).
3]J. U. Thiele, K. R. Coffey, M. F. Toney, J. A. Hedstrom, and A.
J. Kellock, J. Appl. Phys. 91, 6595 (2002).
4S. Okamoto, N. Kikuchi, O. Kitakami, T. Miyazaki, Y. Shimada,
and K. Fukamichi, Phys. Rev. B 66, 024413 (2002).
SH. F. Hamann, Y. C. Martin, and H. K. Wickramasinghe, Appl.
Phys. Lett. 84, 810 (2004).
5R. E. Rottmayer, S. Batra, D. Buechel, W. A. Challener, J.
Hohlfeld, Y. Kubota, L. Lei, L. Bin, C. Mihalcea, K. Mountfield,
K. Pelhos, P. Chubing, T. Rausch, M. A. Seigler, D. Weller, and
Y. XiaoMin, IEEE Trans. Magn. 42, 2417 (2006).
7T. W. McDaniel, J. Phys.: Condens. Matter 17, R315 (2005).
8 A. Lyberatos and K. Yu. Guslienko, J. Appl. Phys. 94, 1119
(2003).
°F. Garcia-Sanchez, O. Chubykalo-Fesenko, O. N. Mryasov, and
R. W. Chantrell, J. Magn. Magn. Mater. 303, 282 (2006).
103, U. Thiele, S. Maat, and E. Fullerton, Appl. Phys. Lett. 82,
2859 (2003).
K. Yu. Guslienko, O. Chubykalo-Fesenko, O. Mryasov, R. W.
Chantrell, and D. Weller, Phys. Rev. B 70, 104405 (2004).
I2ZR. F. L. Evans, R. Yanes, O. Mryasov, R. W. Chantrell, and O.
Chubykalo-Fesenko, EPL 88, 57004 (2009).
3U. Atxitia, O. Chubykalo-Fesenko, N. Kazantseva, D. Hinzke, U.
Nowak, and R. W. Chantrell, Appl. Phys. Lett. 91, 232507
(2007).
14B. Schulz and K. Baberschke, Phys. Rev. B 50, 13467 (1994).
15 A. Berger and H. Hopster, Phys. Rev. Lett. 76, 519 (1996).
16p. Bruno and J.-P. Renard, Appl. Phys. A: Mater. Sci. Process.
49, 499 (1989).
171, G. Baek, H. G. Lee, H. J. Kim, and E. Vescovo, Phys. Rev. B
67, 075401 (2003).
18R. Allenspach and A. Bischof, Phys. Rev. Lett. 69, 3385 (1992).
19 A. Enders, D. Peterka, D. Repetto, N. Lin, A. Dmitriev, and K.

PHYSICAL REVIEW B 82, 054415 (2010)

Kern, Phys. Rev. Lett. 90, 217203 (2003).

20A. Dinia, N. Persat, and H. Danan, J. Appl. Phys. 84, 5668
(1998).

2I'M. Farle, Rep. Prog. Phys. 61, 755 (1998).

2ZN. Kazantseva, D. Hinzke, U. Nowak, R. W. Chantrell, U. Atxi-
tia, and O. Chubykalo-Fesenko, Phys. Rev. B 77, 184428
(2008).

23U. Nowak, Annual Review of Computational Physics IX (World
Scientific, Singapore, 2001), p. 105.

24L. Néel, J. Phys. Radium 15, 225 (1954).

N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H.
Teller, and E. Teller, J. Chem. Phys. 21, 1087 (1953).

26N. Kazantseva, D. Hinzke, R. W. Chantrell, and U. Nowak, EPL
86, 27006 (2009).

2'D. Hinzke, N. Kazantseva, U. Nowak, O. N. Mryasov, P. Asse-
lin, and R. W. Chantrell, Phys. Rev. B 77, 094407 (2008).

28D. Weller and A. Moser, IEEE Trans. Magn. 36, 10 (2000).

290. N. Mryasov, U. Nowak, K. Y. Guslienko, and R. W.
Chantrell, Europhys. Lett. 69, 805 (2005).

30R. Yanes, O. Chubykalo-Fesenko, H. Kachkachi, D. A. Garanin,
R. Evans, and R. W. Chantrell, Phys. Rev. B 76, 064416 (2007).

31D, S. Chuang, C. A. Ballentine, and R. C. O’Handley, Phys. Rev.
B 49, 15084 (1994).

32 A. Hucht and K. D. Usadel, Phys. Rev. B 55, 12309 (1997).

33C. Chappert and P. Bruno, J. Appl. Phys. 64, 5736 (1988).

34G. Andre, A. Aspelmeier, B. Schulz, M. Farle, and K. Baber-
schke, Surf. Sci. 326, 275 (1995).

M. Farle, W. Platow, A. N. Anisimov, B. Schulz, and K. Baber-
schke, J. Magn. Magn. Mater. 165, 74 (1997).

39K. Binder and P. C. Hohenberg, Phys. Rev. B 9, 2194 (1974).

37 A. Buruzs, P. Weinberger, L. Szunyogh, L. Udvardi, P. I. Chle-
boun, A. M. Fischer, and J. B. Staunton, Phys. Rev. B 76,
064417 (2007).

38W. K. Hastings, Biometrika 57, 97 (1970).

¥David L. Goodstein, States of Matter (Prentice-Hall, Englewood
Cliffs, NJ, 1975), Egs. (1.3.30)—(32).

054415-12


http://dx.doi.org/10.1016/0022-3697(66)90012-6
http://dx.doi.org/10.1016/0022-3697(66)90012-6
http://dx.doi.org/10.1063/1.1470254
http://dx.doi.org/10.1103/PhysRevB.66.024413
http://dx.doi.org/10.1063/1.1644924
http://dx.doi.org/10.1063/1.1644924
http://dx.doi.org/10.1109/TMAG.2006.879572
http://dx.doi.org/10.1088/0953-8984/17/7/R01
http://dx.doi.org/10.1063/1.1585118
http://dx.doi.org/10.1063/1.1585118
http://dx.doi.org/10.1016/j.jmmm.2006.01.135
http://dx.doi.org/10.1063/1.1571232
http://dx.doi.org/10.1063/1.1571232
http://dx.doi.org/10.1103/PhysRevB.70.104405
http://dx.doi.org/10.1209/0295-5075/88/57004
http://dx.doi.org/10.1063/1.2822807
http://dx.doi.org/10.1063/1.2822807
http://dx.doi.org/10.1103/PhysRevB.50.13467
http://dx.doi.org/10.1103/PhysRevLett.76.519
http://dx.doi.org/10.1007/BF00617016
http://dx.doi.org/10.1007/BF00617016
http://dx.doi.org/10.1103/PhysRevB.67.075401
http://dx.doi.org/10.1103/PhysRevB.67.075401
http://dx.doi.org/10.1103/PhysRevLett.69.3385
http://dx.doi.org/10.1103/PhysRevLett.90.217203
http://dx.doi.org/10.1063/1.368828
http://dx.doi.org/10.1063/1.368828
http://dx.doi.org/10.1088/0034-4885/61/7/001
http://dx.doi.org/10.1103/PhysRevB.77.184428
http://dx.doi.org/10.1103/PhysRevB.77.184428
http://dx.doi.org/10.1051/jphysrad:01954001504022500
http://dx.doi.org/10.1063/1.1699114
http://dx.doi.org/10.1209/0295-5075/86/27006
http://dx.doi.org/10.1209/0295-5075/86/27006
http://dx.doi.org/10.1103/PhysRevB.77.094407
http://dx.doi.org/10.1109/20.824418
http://dx.doi.org/10.1209/epl/i2004-10404-2
http://dx.doi.org/10.1103/PhysRevB.76.064416
http://dx.doi.org/10.1103/PhysRevB.49.15084
http://dx.doi.org/10.1103/PhysRevB.49.15084
http://dx.doi.org/10.1103/PhysRevB.55.12309
http://dx.doi.org/10.1063/1.342243
http://dx.doi.org/10.1016/0039-6028(94)00795-0
http://dx.doi.org/10.1016/S0304-8853(96)00475-1
http://dx.doi.org/10.1103/PhysRevB.9.2194
http://dx.doi.org/10.1103/PhysRevB.76.064417
http://dx.doi.org/10.1103/PhysRevB.76.064417
http://dx.doi.org/10.1093/biomet/57.1.97

