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We present a method based on combination of �a� constrained polarization molecular dynamics and �b�
thermodynamic integration to determine the free-energy landscape relevant to structural phase transitions and
related phenomena in ferroelectric materials, bridging the gap between first-principles calculations and phe-
nomenological Landau-type theories. We illustrate it using a first-principles effective Hamiltonian of BaTiO3 to
�a� uncover the quantitative features of the free-energy function that are responsible for its first-order ferro-
electric transitions, �b� calculate the minimum free-energy pathways for the polarization switching and �c�
evaluate temperature-dependent free energy of domain walls, and a minimum free-energy pathway to forma-
tion of ferroelectric domains. We use our method within a variational mean-field theory to connect with Landau
theory and show through comparison with numerically exact simulations that �a� the state constrained to have
vanishing order �away from the equilibrium� below the transition temperature is highly degenerate due to
fluctuations that drive the phase transition first order, and �b� certain terms need to be added to the phenom-
enological Landau-Devonshire free-energy functions to capture the physics of spatial fluctuation in order
parameter. Our method can be readily generalized to any classical microscopic Hamiltonian and ensembles
characterized with a given constraint.
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I. INTRODUCTION

Ferroelectric materials are important to technologies
based on microelectromechanical systems, random access
memories, capacitors, transducers, and other applications.1,2

While first-principles simulations3 have played a significant
role in developing a fundamental understanding of properties
and phase transitions in these materials, phenomenological
Landau-type theories4–6 are very useful in understanding
phenomena at long length and times scales, and particularly
in simulations of devices.7,8 It is highly desirable to establish
a rigorous link between these two descriptions, which would
�a� provide a precise picture of the nature of these phase
transitions and �b� allow multiscale simulations of ferroelec-
tric structures.

BaTiO3, a simple example of ferroelectric perovskites,9,10

undergoes a succession of three phase transitions from high-
temperature cubic structure to tetragonal �C↔T�, tetragonal
to orthorhombic �T↔O�, and orthorhombic to rhombohedral
�O↔R� ferroelectric phases with decrease in temperature.
The direction of the spontaneous polarization in these ferro-
electric phases is typically along a crystallographic axis. For
example, tetragonal, orthorhombic, and rhombohedral ferro-
electric phases are characterized by polarization along �001�,
�011�, and �111� directions, respectively.

It is known from experiments as well as first-principles
calculations that the ferroelectric phase transitions in BaTiO3
involve small atomic displacements and strain deformations
of the high-temperature equilibrium cubic structure.11,12 Ex-
perimentally measured and local-density-approximation-
calculated phonon dispersions show that only lowest-energy
transverse-optical �TO� modes �soft modes� and long-
wavelength acoustic modes make significant contributions to
properties of low-temperature phases. Based on these obser-
vations, Zhong et al. used an approximation that the energy

surface relevant to ferroelectric transition could be expressed
as a function of acoustic, soft TO mode amplitudes and
strain, reducing the number of degree of freedom �DoF� per
unit cell from 15 to 6. Expressing this energy surface for-
mally as a Taylor expansion in these DoFs, they obtained a
simple effective Hamiltonian, which can be readily simulated
using molecular dynamics �MD� or Monte Carlo methods to
study phenomena with longer time and length scales. This
approximation for an effective Hamiltonian works well for
high-Tc ferroelectrics, and a more complete microscopic
Hamiltonian including order-disorder terms would be appro-
priate for materials with low Tc.

We note that the effective Hamiltonian captures the low-
energy landscape of BaTiO3 associated with degrees of free-
dom that include complete bands of soft optical phonons,
acoustic phonons, and six components of homogeneous
strain. Acoustic phonons describe the local or inhomoge-
neous strain, whose coupling with polarization leads to long-
range elastic interactions, which often have important conse-
quences to domain walls in ferroelectrics.

Earlier, there has been an attempt to link the first-
principles-based Monte Carlo simulations to the Landau-
Devonshire phenomenological theory by Iniguez et al.13

They used polarization histograms obtained in Monte Carlo
simulations to estimate free energies associated with ferro-
electric transitions in BaTiO3. In their study, the quadratic
coefficient in Landau-Devonshire free-energy function,
which determines the free energy close to zero polarization
state, was obtained by interpolating the exact free-energy
data at temperatures away from the transition. In such an
approach, detailed access to microstates relevant to the tran-
sition is not readily possible. Recently, Geneste14 used a
Lagrange’s multiplier technique to constrain polarization and
thermodynamics integration �TI� to determine changes in
free energies. Our method presented here is similar in spirit
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but based on Legendre transform of the Hamiltonian to con-
strain polarization. We also demonstrate its use in a varia-
tional mean-field theory to obtain Landau free energies as
well as generalization to obtain free energies of inhomoge-
neously ordered �polarized� states of ferroelectrics, such as
ones with domains.

Using our method, based on a combination of constrained
polarization MD and TI, in the FERAM �Refs. 15 and 16�
implementation of molecular dynamics of first-principles
ferroelectric model Hamiltonian of BaTiO3,11,12 we calculate
free-energy differences between a state with arbitrary con-
figuration of polarization and the one with zero polarization.
We aim to answer the following questions: �a� what is the
free-energy landscape as a function of polarization? �b� What
is the nature of the ferroelectric phase transitions and which
DoFs are crucial to it? �c� What is the free-energy barrier for
polarization switching? and �d� how does the domain-wall
energy vary as a function of temperature and what is the
minimum free-energy path and barrier between the uni-
formly polarized configuration and a configuration with do-
mains?

We show that the Landau-Devonshire free energy of states
with polarization close to the zero for T�Tc is accessible
using only mean-field theory, where spatial fluctuations are
suppressed. In this case, the quadratic coefficient of Landau-
Devonshire free-energy expansion decreases linearly with
temperature changing its sign at Tc

MFT. However, our “exact”
simulations of ferroelectric �T�Tc� phases constrained to
vanishing polarization reveal a high degeneracy associated
with states with spatial fluctuations with vanishing energy
cost, which drive the phase transition to a first-order type.
Such a degeneracy can result in unusual properties of the
free-energy function, as was pointed in the context of one-
dimensional model of structural transition.6

In Sec. II, we present the formalism and tests of our meth-
odology. We present results of our exact and mean-field
analysis of ferroelectric transitions in Sec. III. Our analysis
of BaTiO3 with domains is presented in Sec. IV and our
results for estimation of free-energy barriers for polarization
switching are presented in Sec. V. We finally summarize our
work in Sec. VI.

II. COMPUTATIONAL METHODS

A. MD with constrained homogeneous polarization

For constraining polarization at a given value in
molecular-dynamics simulations, we augment the effective
Hamiltonian H0 of BaTiO3, obtained from the first-principles
calculations11,12,17 through addition of three terms �like in
Legendre transformation�,

H = H0 − Z�E� · �
i

��i + �P� · E� −
�

8�
�
��

����
� − 	���E�E�

�1�

where ��i is the polar Wannier-type18 vector �i being the lat-
tice site� mapping to displacements of atoms clustered at site
i, Z� is the Born effective charge associated with the polar

soft mode, E� is an auxiliary fluctuating electric field, P� is the
target polarization, and � is the total volume of the system.
Born effective charges are determined using Berry phase ap-
proach. Since our simulations are classical MD simulations,
they do not need explicit implementation of Berry phase ap-
proach but are consistent with its results at the first-principles
level. Maximization of H �dielectric response ���

� =�� for the
cubic symmetry� with respect to E gives

Ẽ� =
4�

��� − 1�
�P� −

Z��i
��i

�
� , �2�

where Ẽ� is an effective auxiliary electric field that maintains
the total polarization of the system at a constraint value P.
Substituting variational value of electric field �Eq. �2�� in Eq.
�1�,

H = H0 +
1

2

4��

��� − 1�
�P� −

Z��i
��i

�
�2

. �3�

The second term in Eq. �3� is a harmonic confining po-
tential that forces polarization distribution in an MD simula-
tion to be centered at the constrained value of polarization.
As a result, use of the modified Hamiltonian H �given by Eq.
�3�� ensures sampling in molecular-dynamics simulations to
yield target average polarization obtained in the simulations
�see Fig. 1�.

The partition function of a system with Hamiltonian H
�Eq. �3�� is given by

ZH�P� � =� 
id��i exp	−

H0 +
2��

��� − 1�
�P� −

Z��i
��i

�
�2

kBT


�4�

and corresponding free energy of the system is

FH�P� � = − kBT ln ZP +
3

2
kBT ln� ��� − 1�kBT

2�
� , �5�

where ZP is the partition function of system at constrained
polarization in the absence of external electric field19 and we
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FIG. 1. �Color online� Average polarization vs target polariza-
tion at different temperatures in constraint polarization molecular-
dynamics simulations.
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have used the Gaussian approximation of Dirac delta func-
tion for the constraint on polarization,

ZP� =� 
id��i	�P� −
Z��i

��i

�
�exp�−

H0

kBT
� . �6�

The second term in Eq. �5�, which is proportional to 1
� , van-

ishes as �→�. The derivative of free energy with respect to
polarization is the average auxiliary field,

�FH

�P�
= �
 4�

��� − 1�
�P� −

Z��i
��i

�
��

H

, �7�

where � �H represent ensemble average with Hamiltonian H.
We use thermodynamic integration method20 to calculate

free-energy differences of the system between the states
characterized by values of order parameter P2 and P1,

�FH = �
P� 1

P� 2
�E�̃ �P� ���dP� �. �8�

B. MD with constraint on states with inhomogeneous
polarization

We now generalize our method to study the configurations
characterized by a constraint on thermodynamic average of
an arbitrary microstate �a configuration of degrees of free-
dom� of the system, e.g., a domain wall. This is accom-
plished through a general form of Hamiltonian,

H = H0 − ED · Z��
i

eî · �i + �PD · ED −
���� − 1�

8�
ED2

,

�9�

where superscript D means domain �or it can be a configu-
ration characterized by spatially dependent polarization� and
eî is the unit vector along the direction of this configuration
in the phase space. For a configuration with domains, if we
set eî = ẑ for site i belong to a region of the first domain in the
system and eî =−ẑ for site i belong in the second domain
separated by a domain wall. This leads to the formation of
two 180° domain walls separating the two domains in peri-
odic boundary conditions.

Generalized domain polarization is obtained through
maximization with respect to ED,

PD =
��� − 1�

4�
ED +

Z��i
eî�i

�
, �10�

which is zero for uniformly polarized state.

C. Mean-field theory

To be able to connect with Landau theory, we also study
properties of H in the mean-field approximation where spa-
tial fluctuations are suppressed. The general form of first-
principles effective Hamiltonian of BaTiO3 is

H = �
i

H0��i� + �
ij

Jij�i�j, �11�

where i is the index of a site and Jij includes all the interac-
tions in the system. �We note that we treat thermal fluctua-
tions in strain exactly in our analysis, and it amounts to in-
tegrating them out analytically.� In the mean-field theory, we
map this interacting many-body Hamiltonian into a single-
particle effective Hamiltonian using a self-consistent mean
field f as

H̃ = �
i

Hi = �
i

H0��i� + f�
i

�i. �12�

Free energy of the system of this noninteracting Hamiltonian
is

F�f ,p� = − kBT ln � 
id�i exp�−
p� J0p

N − f� + H̃

kBT
� ,

�13�

where J0=� jJij. The self-consistency condition on polariza-
tion ��i�i�H̃= p is obtained through a variational principle for
F�f , p� with respect to f , giving the mean-field Landau
theory. For practical calculations, we determine free-energy
differences, in the mean-field approximation, of a configura-
tion with polarization P and with respect to that with a zero
polarization using thermodynamic integration,

�F =
2J0

N
�

0

P 
�
i

�i�dp −
J0p2

N
. �14�

We implemented the above exact and mean-field formal-
isms in the mixed-space molecular-dynamics code
“FERAM”15,16,21 in which infinite long-range interactions are
treated in the reciprocal space.22,23 We use Nose-Poincare
thermostat24 for the constant temperature which allow us to
use relatively large time step of 2 fs. Our simulations are
carried out for systems of size Lx�Ly �Lz with periodic
boundary conditions. For a given temperature, we start the
simulation from a equilibrated zero polarization initial con-
figuration and increase the polarization in the step of
1 
C /cm2. For each value of polarization, we thermalize the
system with 100 000 time steps, and do thermal averaging is
using configurations of subsequent 100 000 time steps. We
find these time steps are sufficient for equilibration of the
system in the temperature range studied and we have tested
the convergence of free energy with respect to number of
time steps. Second, we have also tested our methodology
through calculation of the free-energy differences between
two configurations by carrying out thermodynamic integra-
tion along different paths connecting them and making sure
that they are path independent.

III. ANALYSIS OF FERROELECTRIC TRANSITIONS
IN BaTiO3

A. Free energies of ferroelectric transitions in BaTiO3

First, we report our results for the free-energy landscape
of ferroelectric transitions as a function of polarization and
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temperature. We determine free energy as a function of po-
larization in the �001�, �011�, and �111� directions with zero
polarization as the reference state at each temperature. At
high temperatures �T�326 K�, the free energy has a single
well form with one minimum at vanishing polarization. As
temperature is decreased below 316 K, free energy of a state
with P along �001� direction becomes lower for nonzero val-
ues of polarization compared to that with vanishing polariza-
tion and system undergoes a transition from the cubic perov-
skite to tetragonal �C→T� structure. With further decrease in
temperature free energies corresponding to nonzero value of
polarization along the �011� and �111� directions become
lower compared to that with vanishing polarization at tem-
peratures of 300 K and 290 K, respectively �see Fig. 2�.
However, at these temperatures the free energies of states
with P along �011� and �111� directions are higher in free
energy than the tetragonal �P along �001� direction� one. Be-
low T=245 K, free energy of the state with P along �011�
direction becomes lowest among the three and system under-
goes a transition from tetragonal to orthorhombic structure.
Subsequently, free energy of the rhombohedral state with P
along the �111� direction becomes the lowest among the
three at T=205 K and the system undergoes a transition
from an orthorhombic to a rhombohedral structure. Our esti-
mated values of spontaneous polarization for tetragonal,
orthorhombic, and rhombohedral phases are 28, 34, and
43 
C /cm2 which are the same as earlier calculations11 and
are close to the experimental values given by Mitsui et al.25

To develop more confidence in our methodology and con-
firm the temperatures of tetragonal-orthorhombic and
orthorhombic-rhombohedral transitions through determina-
tion of free energies along two independent polarization
paths, for example, we determined the free-energy differ-
ences as a function of polarization along paths �a� �000
→001�, �001→011�, and �011→111�, and �b� �000→011�
and �000→111�. These simulations show ferroelectric tran-
sitions at 245 K along the path �001→011�, and at 205 K
along the path �011→111�. The changes in free energy for
path with P along �000→111� and that with combined paths

of P along �000→011� and �011→111� are the same. Simi-
larly, the free energy of the orthorhombic phase obtained
along a path with P along �000→011� and along a combined
path of P along �000→001� and �001→011� are the same.
Thus, we our free-energy-based estimates of transition tem-
peratures match those obtained earlier through direct Monte
Carlo11 and MD simulations21 validating our methodology,
and corresponding free energies are path independent dem-
onstrating internal consistency.

B. Nature of the C-T phase transition in BaTiO3

To probe the first-order character of the C-T transition in
BaTiO3, we examine the polarization probability distribution
function D�P� �defined as �exp−��F�P�� close to the transition
temperature. It exhibits seven peaks �six corresponding to
symmetry equivalent states with polarization along �001� di-
rection and one at vanishing polarization� of equal height at
T=316 K �see Fig. 3�, confirming the first-order nature of
the C-T phase transition. Seven peaks are visible over a nar-
row temperature range from 304 to 322 K, corresponding to
local minima in the free-energy function. This is expected to
be the range of temperature for coexistence of C and T
phases. The presence of seven peaks is in contrast to first-
order transitions �such as liquid-solid transition� character-
ized by a third-order term in Landau free-energy function. In
the present case, the cubic symmetry of the high-symmetry
phase does not allow the third-order term, and the first-order
character of such transitions is expected from the fourth-
order term in free energy being negative �as shown in the
next section�. Six of the seven peaks in polarization distribu-
tion or minima in the free-energy function correspond to dif-
ferent orientation of the ordered phase, and suggest that spa-
tial fluctuations in order parameter �different orientations of
P in different spatial regions=domains, with � · P� =0 as we
will show later� cost vanishingly small energy in the thermo-
dynamic limit, the energy cost coming from the domain
walls. We note that the magnitude of the free-energy barrier
separating various local minima �for e.g., �P�001�� is very
small, and is expected to be related to domain-wall
energies.19 Our free-energy-based analysis provides a physi-
cal picture of the fact that C-T transition in BaTiO3 is a
fluctuation driven first-order transition.26–28
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FIG. 2. �Color online� �a� Free-energy differences per unit cell
with respect to vanishing polarization �P=0� as a function of polar-
ization along �001� direction for different temperatures, and �b�
minimum of the free-energy difference per unit cell as a function of
temperature along �001�, �011�, and �111� directions of polarization.
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To quantify the features of free-energy function relevant
to the first-order C-T transition, we determine the tempera-
ture dependence of Landau free-energy expansion coeffi-
cients by fitting calculated free energies to a sixth-order
polynomial in polarization given as �F�P�=C2P2+C4P4

+C6P6, where C2 ,C4 ,C6 are second-, fourth-, and sixth-
order coefficients, respectively �we find that higher-order
polynomials do not give better fit�. The fourth-order coeffi-
cient in Landau free-energy functional �see Fig. 4�c��, is
negative at all temperature close to the ferroelectric transition
temperature and responsible for the first-order phase transi-
tion. The second-order coefficient, which is proportional to
the phonon frequency, decreases linearly with decrease in
temperature close to T=Tc corresponding to the well-known
softening of the polar TO phonon near ferroelectric transi-
tion. However, it anomalously increases below Tc �see Fig.
4�c��, which seems to suggest that “cubic paraelectric?”
phase is locally stable even below Tc. This is indeed puzzling
in light of the standard picture based on Landau theory, and
we now discuss its microscopic origin.

We determine the nature of the phase with vanishing po-
larization below Tc through examination of a snapshot of a
microstate sampled during an MD simulation with total po-
larization constrained to zero. It is clear �see Fig. 5� that such
a constraint leads to stabilization of states with spatial fluc-

tuations in polarization. Thus, P=0 state for T�Tc is not a
cubic paraelectric but indeed a ferroelectric one consisting of
domains. We emphasize that this finding about the reference
P=0 state in exact statistical mechanics analysis below Tc is
in contrast to the one in Landau theory, and exact free ener-
gies thus determined should be interpreted with care. The
energy barrier �well depth�, for T�Tc, in exactly calculated
free-energy landscape actually relates to the energies of do-
main walls. Our analysis provides a simple understanding
why the parameter C2 remains positive and that it does not
reflect the stability of paraelectric phase below Tc. We note
that a state with similar fluctuating order parameter is also
stable for nonvanishing values of constrained polarization
�smaller than its equilibrium value� below Tc.

As is known from the earlier work on ferroelectric phase
transitions,29 the third-order coupling between strain �e���
and polarization �H�ge��P�� is crucial to the first-order
character of the C-T phase transition. We now determine the
free-energy landscape when this coupling is switched off. In
this case, the free-energy landscape as a function of polariza-
tion and temperature, does not exhibit any free-energy bar-
rier between states with zero and nonzero values of polariza-
tion for T�Tc �see Fig. 4�b��. Indeed, the second order
coefficient C2 varies linearly as a function of temperature
and becomes negative below T=155 K �see Fig. 4�d��, and
the fourth- and the sixth-order coefficients remain positive at
all temperatures. We thus confirm from the free-energy pic-
ture that it is the strain-polarization coupling which leads to
the first-order transition in BaTiO3. We note that the transi-
tion temperature is also significantly reduced with respect to
that obtained with effective Hamiltonian with a strain-
polarization coupling. This is largely due to the fact that
effect of negative pressure11,12 is nullified when the strain
coupling is switched off. To meaningfully compare the Tc’s
with and without strain-polarization coupling, we estimated
exact transition temperature with zero pressure, which is Tc
=175 K Thus, the reduction in Tc due to neglect of strain-
polarization coupling is only about 20 K.

C. Mean-field theory

To access Landau-Devonshire free-energy landscape, in
which the reference state with vanishing polarization is a
paraelectric phase, we now present our analysis by suppress-
ing spatial fluctuations in order parameter �which were
shown to be unavoidable in exact analysis above� within a
mean-field approximation �as described in Sec. II C�. Deter-
mining free energies as a function of polarization along
�001�, �110�, and �111� directions, we find that transition oc-
curs from cubic to rhombohedral phase at T=900�20 K. In
the mean-field theory, the relative stability of T, O, and R
phases is determined by the fourth-order term in free-energy
expansion. We find that R phase is always lower in energy
than T and O, though errors in our estimates of the free-
energy differences for temperatures close to Tc are a bit large
�see Fig. 6�. In contrast to the exact analysis, the second-
order coefficient in Landau free-energy expansion as a func-
tion of temperature varies linearly near Tc and vanishes at Tc.
It is negative below the transition temperature while the
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FIG. 4. �Color online� Free-energy landscape near the cubic to
tetragonal transition temperature when �a� strain-polarization cou-
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fourth- and sixth-order free-energy expansion coefficients as a func-
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FIG. 5. �Color online� The snapshots of formation of oscillatory
spatial fluctuations of polarization for the constrained vanishing po-
larization �P=0� at T=280 K, �a� top view and �b� side view.
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fourth-order coefficient is always positive. This picture is
very much the as one expected within Landau theory of
second-order phase transitions. We note that this analysis in-
cludes the strain-polarization coupling in the effective
Hamiltonian. We also carried out mean-field analysis of the
effective Hamiltonian switching off the strain-polarization
coupling. The nature of phase transition here remains the
same as above, with a transition temperature of about 500 K.
Large reduction in Tc here is also mostly from the effect of
negative pressure11

Thus, we clearly establish that �a� strain-polarization cou-
pling and �b� spatial fluctuations in order parameter are es-
sential to the physics of first-order ferroelectric phase transi-
tions. At low temperatures far from Tc, polarization is
expected to saturate,30 and a more generalized form of Lan-
dau free-energy functional is desirable.

While the temperature dependence of second-order coef-
ficient of our Landau free-energy functional is similar to
those in other flavors of Landau theory, it and other coeffi-
cients are not expected to be comparable to phenomenologi-
cal theories because ours is a Landau-type theory derived
from first principles. Thus, it compares well with similar
works of Iniguez13 and Geneste.14 However, it is different
from the phenomenological theory, as our transition tempera-
tures are very different from the experimental ones to which
a phenomenological Landau theory is fit to �Ref. 31�.

D. Free energy of spatial fluctuations in the order parameter

While the mean-field theory gives an expected behavior
of C2 �as in Landau theory� below the transition temperature,
it �a� yields a wrong order of phase transitions and �b� over-
estimates the transition temperatures greatly. The mean-field
theory is not quite adequate to capture the physics of ferro-
electric transitions in BaTiO3. As the spatial fluctuations in
the order parameter have been shown here to be responsible
for this, we now propose a way of developing a phenomeno-
logical theory that goes beyond the standard Landau-type
theory: we consider addition of terms to the Landau free-
energy function to include effects of spatial fluctuations in
order parameter,

F�P� ,T� = F�0,T� + C2�T�� dr��P� �r��2 + C41�T�� dr��Px
4�r�

+ Py
4�r� + Pz

4�r�� + C42�T�� dr��P� �r��4 + C41
s �T�

���
�
� dr�P�

2�r��2

+ C42
s �T�

�� �
���

� dr�P��r�P��r��2

+ C6�T�� dr��P� �r��6

+ C8�T�� dr��P� �r��8 + U� dr��� · P� �r��2

+ V� dr��� � P� �r��2

+
1

2��� dr�dr��
�� · P� �r����� · P� �r���

�r − r��
�15�

Low-energy spatial fluctuations in the polarization field
are expected to vary with a long wavelength, i.e., optical
phonons in the q→0 limit �see Fig. 7�. Polarization modes
with nonzero curl and vanishing divergence are the TO
modes, and the ones with nonzero divergence and vanishing
curl are the longitudinal optical modes. Thus the term de-
pending on �� P� captures the dispersion of branch of polar
TO modes near q=0 and the first term depending on � · P�
captures the dispersion of branch of LO modes. The last term
depending on divergence of P contains the long-range
dipole-dipole interactions, and reproduces the LO-TO split-
ting at � point in a ferroelectric. The quartic terms with
coefficients C41

s and C42
s arise from the coupling of polariza-

tion with strain. If the strain is integrated out �using a Gauss-
ian integral� from the partition function, it is
straightforward29 to show the emergence of this term.
Clearly, it has a negative coefficient and connects with the
negative quartic coefficient of free-energy function in the
exact analysis. It is evident from this free-energy functional
of the polarization field that the P=0 states with minimum
free energy at T�Tc will be inhomogeneous, consisting of
spatial fluctuations in P typical of a combination of modes in
the polar TO branch.

We note that the physics of strain and its coupling with
polarization are considered in our analysis, as it was done in
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FIG. 6. �Color online� Mean-field results: free energy per cell
with respect to vanishing polarization �P=0� as a function of tem-
perature along different directions of polarization.

FIG. 7. �Color online� Schematic showing that the presence of
spatial inhomogeneity of polarization in the ferroelectrics leads to
LO-TO splitting of phonon modes at � point.
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the Ref. 11. The present analysis of free-energy functional
depends explicitly on only polarization, as the strain has
been integrated out.

Fitting of exactly calculated free energies to this modified
free-energy functional �Eq. �15�� is rather tricky, as the states
with P=0 at T�Tc are highly degenerate! A clear evidence
for this is obtained by examining thermodynamics averages
of �dr���� P� �2, �dr��� · P� �2, and �dr�dr��

��·P� �r����·P� �r���
r−r�

as func-
tions of polarization and temperature �see Fig. 8�. Indeed,
these quantities are quite noisy for polarization below a
“critical” value of polarization when T�Tc. A careful exami-
nation of different snapshots of configurations from MD re-
veals any translational symmetry operation �for example,
translation of domain walls in Fig. 5� or rotation gives rise to
newer configurations with the same free energy. Since the
dispersion of the low-energy TO branch �Fig. 7� is rather
weak, it is clear that the energies of states with these modes
frozen are infinitesimally close to energy of ferroelectric
state. Inclusion of these terms leads to better fit to calculated
free energies.

Comparison of free-energy landscapes obtained with ex-
act analysis and within mean-field theory is also subtle due
to large difference in the estimates of transition temperatures
in the two schemes. Nevertheless, we compare the free-
energy landscape at low temperature �T=200 K� and find a
drastic difference in the magnitude of the free-energy barrier
�see Fig. 9�. In light of the microscopic picture developed so
far, this is not surprising. While the free-energy barrier in
exact analysis related to domain-wall energies and vanishes19

in the thermodynamic limit: ��F= �2L2�D+EFEL3� /L3,
where �D is the domain-wall energy per unit area, EFE is the
free-energy gain due to uniform polarization, and L is size of
the system�, the barrier estimated within mean-field theory
converges �T→0� to the barrier associated with double well
form of the total energy surface obtained within first-
principles density-functional theory �DFT�.

IV. FREE ENERGY AND NUCLEATION OF DOMAINS

Using the generalized Hamiltonian �Eq. �9��, which can
be used to study systems consisting of domains or any inho-
mogeneous configurations of polarization, we obtained free
energy as a function of domain polarization �PD as defined in
Eq. �10�� at different temperatures �see Fig. 10�a��. We start
with a uniformly polarized state �for which the domain po-
larization PD=0� and increase PD in step of 1 
C /cm2. At a
given temperature, uniform polarization changes discontinu-
ously �see Fig. 10�b�� at a certain value of PD. With further
increase in PD, the free energy is essentially constant �nearly
flat part of the free-energy curve� up to PD=the spontaneous
polarization at that temperature, and increases subsequently.
To understand this path to formation of ferroelectric do-
mains, we determined planar-averaged polarization �perpen-
dicular to the x axis and defined as P�x�=��y,z�P�x ,y ,z��.
Evolution to the state with ferroelectric domains starts with
nucleation of a small domain with opposite polarization in
one half of the system. The discontinuous change in uniform
polarization at a higher value of PD is associated with for-
mation of a wide ��2 nm� domain wall in the system �see
Fig. 10�c��. Finally, the flat region of the free-energy curve is
associated with narrowing of the width of the domain wall,
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which becomes atomically sharp �width=1 unit cell� at PD
= Ps�T�.

Nucleation in ferroelectric is a nonperturbative phenom-
enon, which is reflected in a highly nonlinear free-energy
function that we determine �see Fig. 10�a�� as a function of
nucleation coordinate �PD�. As system evolve from a uni-
formly polarized state �say, a stable state� to a state consist of
up and down domains �say, a metastable state with a domain-
wall analogous to a soliton�, we find a nucleus of domain
with opposite polarization is formed as seen in Fig. 10�c�,
accompanied by a sharp increase in free energy at values of
PD�14 
C /cm2 �see Fig. 10�a��. Once a nucleus of large
enough size is formed, system discontinuously jumps to a
state with up and down polarization in two domains sepa-
rated by a thick domain wall. Upon further evolution, the
domain wall sharpens without much energy cost �the flat
region of free energy in Fig. 10�a�� and becomes thin on the

atomic cell �a few unit cells�. This domain wall in the final
configuration is indeed analogous to a soliton.32 In fact the
free energy determined here can be used in the phenomeno-
logical soliton-based theory of domain dynamics.32

The domain-wall energy at a temperature is obtained from
�D�T�=�F�PD= Ps� / �2LyLz�, where Ps is the spontaneous
polarization of the system at that temperature. The factor of 2
is due to two domain walls present in our systems under
periodic boundary conditions. Our estimate of the domain-
wall energy as a function of temperature �see Fig. 11� and
domain-wall thickness are comparable to that estimated with
a T=0 K calculation based on DFT �Ref. 33� and reported in
the experimental work of Merz.34

The domain-wall energy can be shown from the free-
energy function �Eq. �15�� to be proportional to VPs

2 /a2,
where a is the lattice constant, and V relates to the dispersion
of TO phonons near q=0: w2�q�=w0

2�1+Vq2�. Thus, the tem-
perature dependence of the domain-wall energy arises from
that of spontaneous polarization and that of dispersion of the
branch containing the soft TO mode.

We note that other inhomogeneous configurations of po-
larization, for example, twin walls,35 can also be analyzed
with our technique while treating effects of homogeneous
and inhomogeneous �acoustic modes� strain coupling in ef-
fective Hamiltonian exactly. However, effects of coupling of
polarization to other optical phonon modes are not included
in the effective Hamiltonian itself, and they could be relevant
to more accurate analysis of twin walls.35

V. POLARIZATION SWITCHING: DOMAINS VERSUS P
ROTATION

Polarization switching with electric field �PE-hysteresis�
is a very important property of a ferroelectric that �a� char-
acterizes a material to be a ferroelectric, and �b� make is
useful for computer memory applications. We now use the
knowledge of free energies to understand the mechanisms of
polarization switching, restricting ourselves to bulk ferro-
electrics, which by definition is homogeneous, without con-
sidering effects of its interface with electrodes or extrinsic
inhomogeneities. We assess the role of two competing
mechanisms of polarization switching: �a� one by polariza-
tion evolution along a minimum free-energy path that con-
nects the state with polarization P to that with polarization
−P, and �b� the one that is forced to go through nucleation
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and growth of a domain with opposite polarization.
Using the constrained polarization method, we estimated

free-energy barrier and a minimum free-energy pathways for
polarization switching in BaTiO3. For example, the system is
stable along �001� direction of polarization at T=280 K. We
estimate the free-energy barrier for polarization switching by
evolving it along a path defined from �001� to �001̄�. We
constrain only the Pz component along line connecting these
two minima and allow the other two components �Px and Py�
to relax to the minimum free energy. From our results for Px,
Py and Pz, we find that P rotates in the zx or zy plane �see
Fig. 12�a��, consistent with earlier reports.36–38 Our estimate
for this barrier at T=260 K is lower �0.1 meV/cell� than that
at T=280 K �0.18 meV/cell� �see Fig. 12�b��. The state
along the switching path corresponding to the maximum
�barrier� is the orthorhombic phase, and hence it is under-
standable why the barrier is lower at T=260 K: as the sys-
tem undergoes a transition to orthorhombic phase at T
=245 K and its free energy relative to tetragonal phase de-
creases with temperature. We confirmed these results also
through determination of the minimum free-energy pathway
and barrier using the functional form of the free-energy land-
scape determined earlier.

From our results for free-energy barrier for P rotation
�which scales with volume of the system and given as �FR

= fR ·Lx ·A, where fR is the energy barrier for polarization
rotation per unit cell and A is domain-wall area� and free
energy of a domain wall �which scales with cross-sectional
area of the system and barrier is given as �FD=2�D ·A�, we
conclude that polarization switching through formation of
domains would be favored only if the width of the system is
larger than a critical size �Lx

c=
2�D

fR �. When the width of sys-

tem is smaller than this critical size, ferroelectric BaTiO3
would switch its polarization through rotation. This finding
should have implications to use of ferroelectrics to miniatur-
ized memory devices.

VI. SUMMARY

We have presented a method based on a combination of
constrained polarization MD and thermodynamic integration
to determine free-energy landscape of ferroelectric materials
starting from first-principles effective Hamiltonian. We dem-
onstrated this methodology through application to BaTiO3,
obtaining �a� a clear picture of fluctuation-driven first-order
phase transitions that it exhibits, and �b� free energetics rel-
evant to mechanisms of its polarization switching. Our
method of constrained polarization is very general and appli-
cable to any Hamiltonian, it can be readily used to study the
domain dynamics in bulk as well as in the finite systems, and
we plan to use in the study of kinetics of nucleation and
growth of polarization domains in ferroelectric materials.
Our approach can also be used to predict thickness depen-
dence of coercive field and polarization switching time in
thin films and understand their semiempirical behavior
�laws� proposed by Merz.39

Through a detailed microstates-based comparison be-
tween Landau mean-field and exact numerical analysis, we
showed that the spatial fluctuations in polarization involving
polar TO phonons �i.e., with �� P� �0, � · P� =0� are crucial
to first-order character of the cubic to tetragonal phase tran-
sition, through their coupling with strain �the secondary or-
der parameter�. Based on this, we proposed a generalized
phenomenological free-energy functional that depends on
curl and div of polarization to capture the physics of fluctua-
tions. The minimum free-energy pathways and barriers rel-
evant to polarization switching determined here show that
polarization switching in ferroelectrics should occur through
formation of domains when the width of the system is larger
than a temperature-dependent critical size, on the order of 6
to 20 nm.
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