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Stabilization of skyrmion textures by uniaxial distortions
in noncentrosymmetric cubic helimagnets
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In cubic noncentrosymmetric ferromagnets, uniaxial distortions suppress the helical states and stabilize
skyrmion lattices in a broad range of thermodynamical parameters. Using a phenomenological theory for
modulated and localized states in chiral magnets, the equilibrium parameters of the skyrmion and helical states
are derived as functions of the applied magnetic field and induced uniaxial anisotropy. These results show that
due to a combined effect of induced uniaxial anisotropy and an applied magnetic field, skyrmion lattices can be
formed as thermodynamically stable states in large intervals of magnetic field and temperatures in cubic
helimagnets, e.g., in intermetallic compounds MnSi, FeGe, (Fe,Co)Si. We argue that this mechanism is respon-
sible for the formation of skyrmion states recently observed in thin layers of FeysCoqgsSi [X. Z. Yu ef al.,

Nature (London) 465, 901 (2010)].
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Multidimensional localized and modulated structures
(skyrmions) are intensively investigated in many areas of
physics."? In the majority of nonlinear field models, skyrmi-
onic states appear only as dynamic excitations but static con-
figurations are generally unstable and collapse spontaneously
into topological singularities.> These instabilities can be
overcome if the energy functionals contain (i) contributions
with higher-order spatial derivatives (Skyrme mechanism),*
or (ii) terms linear with respect to spatial derivatives (so
called Lifshitz invariants),>°

Afjk) = LﬁkLJ - Lj&kL[, (1)

where L is a vector order parameter (e.g., the magnetization
vector M in magnetic materials or the director n in chiral
liquid crystals), d,L;=dL;/ dx; are spatial derivatives of the
order parameter.

In condensed-matter physics, there are no physical inter-
actions underlying energy contributions with higher-order
spatial derivatives.” On the contrary, the invariants of type
(1) arise in systems with intrinsic®® and induced chirality.®
Particularly, in noncentrosymmetric magnetic materials such
interactions stem from the chiral part of spin-orbit couplings
(Dzyaloshinskii-Moriya interactions).® Chiral interactions of
type (1) stabilize helical®'® and skyrmionic structures>'!
with fixed rotation sense (Fig. 1). Theoretically, isolated
skyrmions and skyrmion lattices have been investigated for
several classes of noncentrosymmetric systems (e.g., see
Refs. 2, 6, and 11 and bibliography in Ref. 2). Contrary to
uniaxial chiral ferromagnets from Laue classes C,, and D,,;
where thermodynamically stable skyrmionic states exist in a
broad range of applied magnetic fields and
temperatures,>'"1> skyrmionic states compete with one-
dimensionally modulated helices in cubic helimagnets.?
Hence, in the main part of the magnetic phase diagram for
cubic helimagnets, the ordered state helical structures corre-
spond to the global energy minima (such texture have been
recently observed in (Fe,Co)Si alloys'? and in FeGe.!* There-
fore, additional effects are necessary to stabilize skyrmionic
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states in these systems.>!? In this Brief Report, we demon-
strate that uniaxial distortions suppress the helical phases and
enable the thermodynamic stability of the skyrmion lattice in
a broad range of applied magnetic fields. The calculated
magnetic phase diagram allows to formulate practical recom-
mendations on the possibility to stabilize skyrmion states at
low temperatures in MnSi, FeGe, (Fe,Co)Si and similar in-
termetallic compounds with B20 structure.

Following the phenomenological theory developed in
Refs. 8 and 10 we write the magnetic energy density for a
cubic helimagnet with uniaxial distortions along z axis as

w=A(grad M)> =M -H +wp+w,—KM>,  (2)

where A is the exchange stiffness, the second term is
the Zeeman energy, wD:D(A;§C)+A)((’Z')+Ag))=DM-rot M
is the chiral energy with the Dzyaloshinskii constant D,
w,==[B(d;M)*+K.M/] includes exchange (B) and cubic
(K,) anistropies.'” The last term in Eq. (2) is uniaxial aniso-
tropy induced by distortions.

The Dzyaloshinskii-Moriya energy wp [Eq. (2)] favors
spatially modulated chiral states where the magnetization ro-
tates with a fixed turning sense in the plane perpendicular to
the propagation direction (Fig. 1). The sign and magnitude of
the Dzyaloshinskii constant D determine the modulation pe-
riod and the sense of rotation, respectively. Thus, in zero
magnetic field, H=0, and for zero anisotropies, B=K.=K
=0, a flat helix forms the magnetic ground state as a single
harmonic mode with wave number g,=D/(2A), where the
phase angle ¢ of the magnetization varies linearly along the
propagation direction &, ¢(&)=£q,.%!° Intrinsic cubic aniso-
tropy w, is much weaker than the energy terms in Eq. (2) and
are neglected in further calculations. Its role will be dis-
cussed to the end of the Brief Report. The solutions for one-
dimensional modulations include (i) distorted helices (heli-
coids) [Fig. 1(a)] and (ii) conical phases, helices with the
propagation vector along the applied field [Fig. 1(b)].

For the latter state, the equilibrium parameters are readily
derived in analytical form
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FIG. 1. (Color online) Chiral modulated states in noncentrosymmetric cubic magnets: the helicoid, a distorted helix with the propagation
direction perpendicular to the applied field (a), the conical helix propagates along the applied field (b), an isolated skyrmion (c), a hexagonal

skyrmion lattice (d) with the internal structure of the unit cell (e).

H z K
cos =—, th=—, H0=Hd<1 ——>, (3)
H, Lp Ky

and the equilibrium energy density Wo=—-K,M*[H?*/(H,H,,)
—1]. In Eq. (3), Lp=2A/D is the characteristic length unit of
the modulated states. In the critical field Hy(K), the conical
helix flips into the saturated state. The characteristic field
H,=D?M/(2A) is the flip field for zero distortions. The an-
isotropy value Ky=H_,/(2M) marks the critical value for
uniaxial distortions suppressing the conical phase in zero
field. The analytical solutions for helicoids have been de-
rived by Dzyaloshinskii.?

In addition to the helical phase, the model Eq. (2) has
solutions  for  two-dimensional = modulated  states
(skyrmions).>!! To describe skyrmionic states in a magnetic
field along the z axis, we introduce spherical coordinates for
the magnetization vector M=M(sin 0 cos ¢;sin 6 sin i;
cos 6) and the cylindrical coordinates for the spatial variable
r=Lp(p cos ¢;p sin ¢;z). Minimization of energy [Eq. (2)]
yields rotationally symmetric solutions ¢=¢+7/2 and 6
=0(p) derived from equation

1 sin 6 cos 6 2.,
=\ pb,,+ 6,— ———— |+ —sin” 6-f(6) =0,
P p P
f(6) = (K/K)sin 0 cos 6+ (H/H ,)sin 0 (4)

with boundary conditions, 8(0)=7, 6(«)=0.

Within a circular cell approximation, the equilibrium pa-
rameters of skyrmion lattices can be derived by integration
of Eq. (4) with boundary conditions 6(0)=m, 6(R)=0 and a
subsequent minimization of the lattice energy density
W =(2/R?) [§w(p)pdp with respect to the cell radius R.>!!
Mathematically similar equations arise for skyrmion states in
uniaxial noncentrosymmetric ferromagnets.'! In particular,
there are crystal classes where the Dzyaloshinskii-Moriya
energy is described by Lifshitz invariants with gradients only
along the directions perpendicular to the unaxial axis, e.g.,
for D,,; classes, wD=D(A(y§)+A§‘Z’)).5’15 This restriction of
modulations to two dimensions proved to be crucial for the
thermodynamical stability of the skyrmion states.'"'>15 In
the high-symmetry cubic helimagnets, the chiral energy wp
=DM -rot M [Eq. (2)] energetically favors the helical phases
compared to the skyrmion states.’

From the numerical investigation of Eq. (4), we now
show that a sufficiently strong magnetic anisotropy K stabi-

lizes skyrmionic textures in applied magnetic fields. Typical
solutions for #(p) are plotted in the inset of Fig. 2. At zero
field, the skyrmion cells have a smooth distribution of the
magnetization [profile (1) in Fig. 2, inset]. An increasing
magnetic field gradually squeezes the skyrmion core [profiles
(2) and (3)] and transforms the lattice into a system of iso-
lated skyrmions [profiles (4) and (5)]. The skyrmion core
size can be introduced in a manner commonly used for mag-
netic domain walls,'® Ry=p,+ 6,/ (d6/dp),, where (pq,6p)
is the inflection point of profile #(p) (Fig. 2). The plots in
Fig. 2 demonstrate a progressive localization of the skyrmion
core R, accompanied by the expansion of the lattice cell size
R. with increasing H.

The functional [Eq. (2)] includes two independent control
parameters, K/ K, and H/H,. The calculated magnetic phase
diagram in these variables (Fig. 3) provides a comprehensive
analysis of model (2). For K=0, the conical phase is
the globally stable state from zero field to the saturation
field (0<H<H,; (Ref. 10) while metastable solutions
for the skyrmion lattices and helicoids exist below the criti-
cal fields H./H,=0.8132 and H,/H,=m*/16=0.6168,
correspondingly.>!! The conical phase is the global mini-
mum of the system within the region (a-A-B-d) and trans-
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FIG. 2. (Color online) Equilibrium size R, of the skyrmion cell
and the characteristic radius of the core R, as functions of an ap-
plied magnetic field for K/K,=0.8. Inset (a) shows the evolution of
skyrmion profiles 6(p) with increasing magnetic field, the distribu-
tions of the perpendicular magnetization (M) are sketched in inset
(b): H/H;=0 (1,1), 0.2 (2, I1), 0.454 (3, 11I), 0.6 (4), 0.8 (5) profiles
(1,2) describe the magnetization in lattice cells (I, IT) while profiles
(4,5) isolated skyrmions. Profile (3) corresponds to the transition of
the skyrmion lattice into a system of isolated skyrmions (III).
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FIG. 3. (Color online) (Color online). Magnetic phase diagram
of the solutions for model (2). Filled areas designate the regions of
global stability (A-B-D) and metastability (a-b-c-¢) of skyrmion
lattices. These regions transform by first-order processes into the
helocoids (A-D) or conical phases (A-B). The solutions for heli-
coids exist within the area (a-b-D-e). Inset (a) gives the differences
AFE between the energies for the skyrmion lattice and the conical
phase (solid) and the distorted and conical helices (dashed) as func-
tions of the applied field. Insets (b), (c), and (d) show magnetization
curves for different values of uniaxial distortions: K/Ky=0.04 (b),
0.4 (c), and 1.6 (d). Solid lines indicate the globally stable phases,
metastable states are shown by green thin (conical), red dashed
(helicoids), and blue dotted (skyrmions) lines.

forms discontinuously into the skyrmion [(A-B) line] and
helicoid phases [(a-A) line]. A sufficiently strong K sup-
presses the conical states, and only modulations with the
propagation vectors perpendicular to the applied field can
exist (helicoids and skyrmion lattices). The skyrmion states
are thermodynamically stable within a curvilinear triangle
(A-B-D)  with  vertices (4)=(0.050,0.2158), (B)
=(0.3628,0.6374), and (D)=(1.9004,0.10) (Fig. 3). The so-
lutions for helicoids exist within area (a-b-D-e). For a cer-
tain value of magnetic field the helicoid is transformed into
the homogeneous state at the critical line (b-D-e) D
=(7/4)VAK[ 1+ v+arcsinh(1/\v)], where v=H/(2KM)."
Point (e) designates the critical value of the anisotropy K for
the suppression of the modulated states in zero field
(K,/Ky=1"14=2.467).

The critical points A, B, and D separate the phase diagram
(Fig. 3) into four distinct regions. (I) In the low anisotropy
region (K<K,=0.05K;) only helical states are realized as
thermodynamically stable phases. (II) For K;<K<Kjg
=0.363K,, the skyrmion lattice becomes absolutely stable in
a certain range of the applied field. The Skyrmionic phase is
separated from the helicoidal and conical states by first-order
transitions. [inset (¢)]. (II) For Kz<K<K,=1.90K,, the
magnetization curve includes a first-order transition between
the helicoid and the Skyrmion lattice and the second-order
transition of the Skyrmion phase into the saturated state [in-
set (d)]. (IV) Finally for (K, <K <K,) the helicoids are ther-
modynamically stable in the whole region where the modu-
lated states exist.
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The equilibrium energies of the conical (W), helicoidal
(Wy), and skyrmion (W;) phases plotted as functions
AEg; (i1=Wsrn—Wc versus the applied field [inset (a) of
Fig. 3] help to elucidate the physical mechanisms that lead to
the formation of the different modulated states. The conical
phase has a simple structure with its single-harmonic rotation
of the magnetization component M | =M sin 6 [Eq. (3)]. For
zero K, i.e., for an isotropic helimagnet this provides a larger
reduction in the energy density in an external field (wj o
-DM i) than is possible for the (anharmonic) modulations in
the alternative phases of helicoids and skyrmion lattices. An
increasing uniaxial anisotropy K> 0 gradually decreases M |
[Eq. (3)] and the chiral energy contribution in the energy of
the conical phase. Correspondingly, the conical phase be-
comes unstable with respect to the competing modulated
states (Fig. 3).

The energetic advantage of skyrmion states is due to ro-
tation of the magnetization in two dimensions. This (double
twist) grants a larger reduction in the Dzyaloshinskii-Moriya
energy than a single-direction rotation in helical phases.
Thus, the double twist yields a lower energy density in the
skyrmion cores compared to helical states. On the other
hand, the incompatibility of spin configurations near the
edges of the hexagonal cells leads to an excess of the energy
density in this region.” The analysis shows that at zero field
this energy cost outweighs the energy gain in the skyrmion
core. An increasing external magnetic field antiparallel to the
magnetization in the skyrmion center gradually decreases the
total energy by suppressing the energy cost near the wall-like
structure surrounding the skyrmion cores with the shape of a
honeycomb (Fig. 2, inset). At a finite field as marked by the
A-D line in Fig. 3, the skyrmion lattice has lower energy than
the alternative helical states. Because the topology of the
helix and the skyrmion lattices are different, this field-driven
transition has to take place by a first-order process. Thus, in
uniaxially distorted cubic helimagnets the thermodynamical
stability of skyrmion lattices is reached as a combined effect
of applied magnetic field, that causes the localization of the
cell core, and the uniaxial anisotropy to suppress the alter-
native conical states.

Skyrmionic states now have been observed in nanolayers
of Fey5CoysSi.!” To explain the stability of the skyrmion
phase in this system, we argue that surface-induced uniaxial
anisotropy in this system suppresses the cone phase and sta-
bilizes skyrmion and helicoid modulations in crystal plates
that are thin enough. The magnetic transformation under
field reported for the FejsCoy5Si films show a first-order
process from helicoids at low field into the dense skyrmion
phase. At high fields, isolated skyrmions are set free and
form disordered ensembles. This sequence of magnetization
processes corresponds to the calculated behavior for systems
with intermediate uniaxial anisotropy, Fig. 3(d). As seen in
Ref. 17, there is a type of melting of the ordered skyrmion
lattice at higher fields and temperatures where the free skyr-
mions form weakly coupled disordered aggregates. These
observations correspond to the existence region of free skyr-
mions in the magnetic phase diagram above the stability
range for dense stable skyrmion lattices, which is a feature of
the generic phase diagrams for skyrmion phases calculated in
Ref. 12. Thus, the experimental observations reported in Ref.
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17, are in close agreement with theoretical predictions on the
behavior of skyrmionic phases, as composed of particlelike
radial objects (in two spatial dimensions), that remain intrin-
sically stable beyond the existence range of latticelike con-
densed phases.>!"1?

For MnSi, earlier experiments'8 and analysis'® of magne-
toelastic couplings allow a quantitative estimate showing that
the effects predicted here can be achieved in experiment. The
magnetoelastic coupling with uniaxial strains u,, is given by
Wie=bu, (M, Mg)?, where Mg=50.9 A/m is the saturation
magnetization’® and b=7.4 GPa is a magnetoelastic coeffi-
cient derived from the magnetostriction data in Ref. 18. Us-
ing exchange constant A=0.11 pJ/m, as estimated from the
spin-wave stiffness reported in Ref. 21, and D=2¢gyA
=0.86 uJ/m? for MnSi> we have K,=17 kJ/m? and a di-
mensionless scale b/Ky=44 for the induced anisotropy.
Thus, a modest strain u,,=0.0024 is sufficient to reach an
induced anisotropy K/K;=0.1 well within the region for
stable skyrmion lattices in the phase diagram Fig. 3. This
strain corresponds to a tensile stress o,, =680 MPa for MnSi
by using the elastic constant ¢;;=283 GPa.?? The rather low
uniaxial stress necessary to stabilize the skyrmion lattice is

PHYSICAL REVIEW B 82, 052403 (2010)

particularly relevant for pressure experiments with a uniaxial
misbalance of the applied stresses but it could also be
achieved in epitaxial films.

Finally, intrinsic anisotropy w, [Eq. (2)] also makes a con-
tribution to stabilize skyrmionic states as both exchange (B)
and cubic (K,) anisotropies violate the ideal spin configura-
tion of the cone [Eq. (3)] and increases the energy of this
phase.'? This favors skyrmion lattices for certain directions
of the applied field. Particularly, in MnSi (B<<0) for skyr-
mion lattices oriented along [001] type axes AEg (H/H,)
=0 at critical point (B.,=0.10A/D?, H.=0.408H,). Thus,
for |B|> B,, skyrmion lattices are globally stable in a certain
interval of magnetic fields around H.,.,.

In conclusion, we have shown that in cubic helimagnets
uniaxial distortions effectively suppress helical states and
stabilize the skyrmion states in a broad range of the applied
fields.
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