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Molecular nanomagnets show clear signatures of coherent behavior and have a wide variety of effective
low-energy spin Hamiltonians suitable for encoding qubits and implementing spin-based quantum information
processing. At the nanoscale, the preferred mechanism for the control of a quantum systems is the application
of electric fields, which are strong, can be locally applied, and rapidly switched. In this work, we provide the
theoretical tools for identifying molecular nanomagnets suitable for electric control. By group-theoretical
symmetry analysis we find that the spin-electric coupling in triangular molecules is governed by the modifi-
cation of the exchange interaction and is possible even in the absence of spin-orbit coupling. In pentagonal
molecules the spin-electric coupling can exist only in the presence of spin-orbit interaction. This kind of
coupling is allowed for both s=1 /2 and s=3 /2 spins at the magnetic centers. Within the Hubbard model, we
find a relation between the spin-electric coupling and the properties of the chemical bonds in a molecule,
suggesting that the best candidates for strong spin-electric coupling are molecules with nearly degenerate bond
orbitals. We also investigate the possible experimental signatures of spin-electric coupling in nuclear magnetic
resonance and electron spin resonance spectroscopy, as well as in the thermodynamic measurements of mag-
netization, electric polarization, and specific heat of the molecules.
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I. INTRODUCTION

The control of coherent quantum dynamics is a necessary
prerequisite for quantum information processing. This kind
of control is achieved through coupling of the internal quan-
tum degrees of freedom of a suitable microscopic or mesos-
copic system to an external classical or quantum field that
can readily be manipulated on the characteristic spatial and
temporal scales of the quantum system.

The molecular nanomagnets �MNs� �Refs. 1 and 2� repre-
sent a class of systems that show rich quantum behavior. At
low energies, the MNs behave as a large spin or a system of
only few interacting spins. The behavior of this spin system
can be designed to some degree by altering the chemical
structure of the molecules and ranges from a single large spin
with high anisotropy barrier to small collections of ferromag-
netically or antiferromagnetically coupled spins with various
geometries and magnetic anisotropies. This versatility of
available effective spin systems makes the MNs promising
carriers of quantum information.3 While the interaction with
magnetic fields provides a straightforward access to the spins
in an MN, it is preferable to use electric fields for the quan-
tum control of spins since the electric fields are easier to
control on the required short spatial and temporal scales. In
this work, we explore the mechanisms of spin-electric cou-
pling and study the ways in which an MN with strong spin-
electric coupling can be identified.

Quantum behavior of MNs is clearly manifested in the
quantum tunneling of magnetization.4–11 A prototypical ex-
ample of quantum tunneling of magnetization is the hyster-
esis loop of an MN with a large spin and high anisotropy
barrier. The height of the barrier separating the degenerate
states of different magnetization leads to long-lived spin con-
figurations with nonzero magnetic moment in the absence of
external fields. The transitions between magnetization states

in the MN driven through a hysteresis loop occur in tunnel-
ing events that involve coherent change in a many-spin state.
These transitions have been observed as stepwise changes in
magnetization in single-molecule ferromagnets.7,8,12–14 Simi-
lar tunneling between spin configurations are predicted in
antiferromagnetic molecules,15,16 and the observed hysteresis
was explained in terms of the photon bottleneck and Landau-
Zener transitions.17–20 The transitions between spin states are
coherent processes and show the signatures of interference
between transition paths,21–23 as well as the effects of Berry
phase in tunneling.21–27

Spin systems within molecular nanomagnets offer a num-
ber of attractive features for studying the quantum coherence
and for the applications in quantum information processing.3

A wide variety of spin states and couplings between them
allows for encoding qubits. Chemical manipulation offers a
way to modify the structure of low-energy spin states.28 Co-
herence times of up to �3 �s �Ref. 29� which can persist up
to relatively high temperatures on the order of a few kelvin
are sensitive to the isotopic composition of the molecule. A
universal set of quantum gates can be applied in a system of
coupled antiferromagnetic ring molecules, without the need
for local manipulation.30 The presence of many magnetic
centers with the coupled spins allows for the construction of
spin cluster qubits that can be manipulated by relatively
simple means.31 In polyoxometalates, the spin structure of
the molecule is sensitive to the addition of charge, and con-
trolled delivery and removal of charges via a scanning tun-
neling microscope �STM� tip can produce useful quantum
gates.32 Chemical bonds between the molecules can be engi-
neered to produce the permanent coupling between the mo-
lecular spins and allow for interaction between the
qubits.33,34

Sensitivity of molecular state to the addition of charge
was demonstrated in the tunneling through single
molecules35 and used to control the spin state of a MN.36
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Transport studies of the MNs can provide a sensitive probe
of their spin structure.27,37–40

The most straightforward and traditional way of control-
ling magnetic molecules is by applying an external magnetic
field. With carefully crafted electron spin resonance �ESR�
pulses, it is possible to perform the Grover algorithm, or use
the low-energy sector of the molecular nanomagnet as a
dense classical memory.3 Unfortunately, the approaches
based on magnetic fields face a significant drawback in the
large-scale quantum control application. Typically, the quan-
tum manipulation has to be performed on very short spatial
and temporal scales, while the local application of rapidly
varying magnetic field presents a challenging experimental
problem. For that reason, the schemes for quantum comput-
ing tend to rely on modifying the spin dynamics that is
caused by intramolecular interaction, rather than on the di-
rect manipulation of spins.41

The electric fields offer an attractive alternative for spin
manipulation in the molecular nanomagnets.42 One major ad-
vantage is that they can be applied to a very small volume
via an STM tip43,44 and rapidly turned on and off by applying
voltage pulses to the electrodes placed close to the molecules
that are being manipulated. Switchable coupling between
different nanomagnets is essential for qubit implementation.
At present, this can be implemented only locally, and the
interaction is practically untunable. The use of microwave
cavities can offer a solution to this problem. By placing the
nanomagnets inside a microwave cavity, one can obtain a
fully controllable, long-range interaction between them.42

This coupling relies on the presence of a quantum electric
field inside such a cavity, which mediates the interaction be-
tween distant nanomagnets. The interaction can be tuned by
tuning each molecule in-or out-of-resonance with the cavity
field using local electric or magnetic fields.42 The spins, how-
ever, do not couple directly to the electric fields, classical or
quantum, and therefore any electric spin manipulation is in-
direct and involves the modification of molecular orbitals or
the spin-orbit interaction �SOI�. Alternatively, the flying spin
qubits can be manipulated by tailoring the exchange interac-
tions and moving the domain walls in spin chains.45,46

The description of the molecular nanomagnets in terms of
spins is an effective low-energy theory that does not carry
information about the orbital states. However, it is still pos-
sible to predict the form of spin-electric coupling from sym-
metry considerations and single out the molecules in which
such a coupling is possible. In particular, the molecules with
the triangular arrangement of antiferromagnetically coupled
spin-1 /2 magnetic centers interact with external electric field
through chirality of their spin structure.42,47 The same cou-
pling of chirality to the external electric field was derived for
the triangular Mott insulators.48

While the symmetry of a molecule sets the form of spin-
electric coupling, no symmetry analysis can predict the size
of the corresponding coupling constant. The coupling
strength will depend on the underlying mechanism that cor-
relates the spin and orbital states, and on the detailed struc-
ture of low-energy molecular orbitals. To identify molecules
that can be efficiently manipulated by electric fields, it is
necessary to perform an extensive search among the mol-
ecules with the right symmetries and look for the ones that

also have a large coupling constant. Unfortunately, this
search has to proceed by ab initio calculations of the cou-
pling constants for a class of molecules of a given symmetry
or by an indiscriminate experimental scanning of all of the
available molecules.

We will consider the spin electric coupling in the lan-
guage of effective model, namely, either the spin Hamil-
tonian or the Hubbard model. In reality the mechanism be-
hind the spin-electric coupling involves either the
modification of the electronic orbitals in an external field and
the Coulomb repulsion of electrons or the much weaker di-
rect spin-orbit coupling to the external fields. A derivation of
spin-electric coupling from this realistic picture would re-
quire the knowledge of electronic orbitals from an ab initio
calculation and the distribution of electric field within the
molecule. Both of these problems require substantial compu-
tational power and cannot be performed routinely. Since the
electric field acts primarily on the orbital degrees of freedom
and the spin Hamiltonian carries no information about the
orbital states, we provide a description in terms of a Hubbard
model that still contains some information about the orbital
states. We can then describe the properties of the molecule
that allow for strong spin-electric coupling in the language of
orbitals that offers some intuitive understanding of the un-
derlying mechanisms of interaction.

The main body of the paper is divided into three largely
independent sections that deal with the symmetry analysis,
Hubbard model description, and experimental signatures of
the spin-electric coupling. In Sec. II, we consider the general
form of spin-electric coupling in the ring-shaped molecules.
Based on the symmetry analysis, we identify the parameters
of the spin Hamiltonian that can change in the electric field
and cause spin-electric coupling. We find that the low-energy
sector of the rings with odd number of spins �odd-spin rings�
contains two Kramers doublets. Electric fields cause transi-
tions between these states. The even-spin rings possess a
nondegenerate S=0 ground state, making their low-energy
sector unsuitable for electric manipulation. Among the odd-
spin rings, we find that generically the triangular molecules
show strongest coupling to electric fields. In triangles, the
spin-electric coupling mechanism that is of the first order in
electric field does not involve the spin-orbit coupling. In-
stead, the spin-electric coupling in the odd-spin rings with
more than three spins requires it.

In Sec. III, we describe the molecules in terms of Hubbard
model and find how the spin-electric coupling can be attrib-
uted to changes of Hubbard model parameters in the electric
field. We show that the spin Hamiltonian description arises in
the limit of spins well localized on the magnetic centers, and
the symmetry-based results are confirmed in this limit. In
addition, we consider a Hubbard model of a single superex-
change bridge between magnetic centers. We find that the
various symmetries of the bridge and the reduction in sym-
metry in external electric fields specifies the coupling be-
tween the spins on magnetic centers.

In Sec. IV, we identify the response of an MN with spin-
electric coupling in the standard measurements of ESR,
nuclear magnetic resonance �NMR�, magnetization, polariza-
tion, linear magnetoelectric effect, and specific heat. Our
conclusions are summarized in Sec. V.
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II. SYMMETRY ANALYSIS OF ANTIFERROMAGNETIC
SPIN RINGS

Spin chains whose ground state multiplet consists of two
quasidegenerate S=1 /2 doublets represent suitable candi-
dates for the manipulation of the spin state by pulsed electric
fields. Such a ground-state multiplet characterizes a number
of frustrated spin rings, consisting of an odd number of half-
integer spins. Rings containing an even number of antiferro-
magnetically coupled spins show no frustration, and in con-
sequence the ground state is a nondegenerate S=0 state.

Symmetry analysis is one of the most powerful tools for
investigating molecules. By identifying the point group sym-
metry associated with a given molecule, one can readily read
the energy level structure of the system, as well as the al-
lowed transitions induced by external perturbations. In even-
spin molecular systems, the symmetry analysis is done by
using the so called single-valued point groups.49 In an odd-
spin system instead, double valued point groups are usually
used in order to describe the states, the splittings and the
allowed transitions �magnetic or electric�.49 In the presence
of spin-orbit interaction the splittings can be accounted for
either by single group analysis �perturbatively� or by double
group analysis �exact�.

Using both the single group and double group analysis we
pinpoint the transitions that arise in the absence or only in
the presence of SOI. Therefore, the electric dipole transitions
present in the single group are a consequence of the modified
exchange interaction and can arise even in the absence of
SOI, while the ones that show up only in the double group
analysis are a consequence of the SOI �or modification of
SOI in electric field�.

We expect that the molecules that lack inversion symme-
try are going to show stronger spin-electric coupling so that
the odd-spin rings are the prime candidates for observing
such effects. The importance of inversion stems from the fact
that the electric field, being odd under inversion, can only
cause transitions between the states of opposite parity in in-
version symmetric molecules. Unless there is an accidental
degeneracy, these transitions will be suppressed by an energy
of the order of intramolecular exchange interaction. In the
following we consider prototypical examples odd-spin ring
systems and, in the Sec. II D, summarize the symmetry re-
quirements for the existence of spin-electric coupling.

A. Triangle of s=1 Õ2 spins

The low-energy properties of most molecular nanomag-
nets are well described in terms of spin degrees of freedom
alone. Within the spin Hamiltonian approach, the coupling of
external electric fields to the molecule can be accounted by
suitably renormalizing the physical parameters. In the fol-
lowing, we use the symmetry of the molecules to calculate
the changes of spin Hamiltonian parameters, to identify the
system’s eigenstates, and to deduce the allowed transitions.
Quantitative estimates of the parameters entering the spin
Hamiltonian require ab initio calculations50 or comparison
with experiments. The simplest example of a spin system
which may couple to an external electric field in a nontrivial
way is a triangle of s=1 /2 spins, for example, the Cu3

MN.51,52 The schematics of such a spin system in the pres-
ence of an electric field is showed in Fig. 1. Its spin Hamil-
tonian, in the absence of external fields, reads:

Hspin = �
i=1

N

Jii+1si · si+1 + �
i=1

N

Dii+1 · �si � si+1� , �1�

with N=3 and s4�s1. The first term in Eq. �1� represents the
isotropic Heisenberg exchange Hamiltonian with the ex-
change couplings Jii+1 between the spins si and si+1, and the
second term represents the Dzyalozhinsky-Moriya �DM� in-
teraction due to the presence of SOI in the molecule, with the
DM vectors Dii+1. The states of the spin triangle can be
found by forming the direct product of the SU�2� represen-
tations of three spins S=1 /2: Dtot=D�1/2��3=2D�1/2� � D�3/2�,
meaning there are eight states in total. The point group sym-
metry of the molecule is D3h,51 which imposes the following
restrictions on the spin Hamiltonian parameters: Jii+1�J and
Dii+1

x,y �0, and Dii+1
z �Dz. The spin states in a form adapted to

the rotational symmetry C3 of the system are

��M=1/2
�k� � =

1
�3

�
j=0

2

� j
kC3

j �↓↑↑� , �2�

��M=3/2� = �↑↑↑� , �3�

where � j =exp�2i�j /3� and j=0,1 ,2. The states with oppo-
site spin projection M�=−M, i.e., with all spins flipped can
be written in an identical way �not shown�. These states are
already the symmetry adapted basis functions of the point

J23(E)

S3

E

S2

J12(E)

S1
J31(E)

FIG. 1. �Color online� Schematics of the si=1 /2 triangular mol-
ecule in electric field. The antiferromagnetic exchange couplings,
represented by the bonds with thickness proportional to Jii+1, are
modified in electric field. In the absence of electric field, exchange
couplings are equal Jii+1=Jjj+1, here represented in gray �fade blue
online�. The black �blue online� triangle represents the exchange
interaction strengths in electric field.
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group D3h. Moreover, these are eigenstates of the chirality
operator

Cz =
1

4�3
s1 · �s2 � s3� , �4�

with Cz��M
�1,2��= � ��M

�1,2��, Cz��M
�0��=0, and Cz��M=�3/2�=0.

The above states in Eq. �3� carry different total spin. There
are two spin S=1 /2 states, corresponding to k=1, 2, and a
spin S=3 /2 state corresponding to k=0. Obviously, the states
��M=�3/2� have S=3 /2.

Note that the quantum numbers j=0, 1, 2, and chirality
Cz=0, �1 describe the same states. Since 	e2i�Cz/3

�	e2i�j/3
, we can use either of the two quantum numbers to
classify the states. For an arbitrary 2n+1 odd-spin chain with
n=1,2 , . . . the same arguments hold. We can either use the
set 	e2i�k/3
 with k=0,1 , . . . ,2n, or 	e2i�Cz/3
 with Cz
=0�1, . . . , �n to quantify the states. The advantage of us-
ing one or another will show up in the next section when we
treat the SOI.

1. Single valued group analysis of the s=1 Õ2 spin triangle

In the single valued point group D3h, the states ��M=�1/2
�k� �

with k=1,2 form the basis of the two dimensional irreduc-
ible representation E�, while the states ��M=�1/2

�0� �, and the
��M=�3/2� transform as A2�. The allowed electric transitions in
the system are determined by the transformation properties
of the basis states.

The simplest and possibly the dominant dependence of
the spin Hamiltonian on the applied electric field comes via
the modification of the exchange interactions, like depicted
in Fig. 1. This gives rise to the following term in the spin
Hamiltonian:

�H0�E� = �
i=1

3

�Jii+1�E�si · si+1, �5�

where �Jii+1�E��dii+1 ·E, with dii+1 being vectors that de-
scribe the electric-dipole coupling of the bond si−si+1 to the
electric field E in leading order. There are three such vector
parameters and thus nine scalar parameters in total. How-
ever, symmetry will allow to drastically reduce the number
of free parameters by providing relations between them. The
S=3 /2 states of the unperturbed spin Hamiltonian form the
multiplet 4A2�, while the S=1 /2 states form two multiplets
2E�.49 The electric dipole Hamiltonian is He−d=−e�iE ·ri
�−eE ·R, with e standing for the electron charge, ri being
the coordinates of the ith electron, and R=�iri. The nonzero
electric dipole matrix elements of He−d in the D3h symmetric
molecule are

��M
�1,2�� − eX��M�

�2,1�� = i��M
�1,2�� − eY��M�

�2,1�� � d�MM�, �6�

proportional to the effective electric dipole parameter d. The
value of d is not determined by symmetry and has to be
found by some other means �ab initio, Hubbard modeling,
experiments, etc.�. All the other matrix elements are zero.
The electric field acts only in the low-energy sector, which
allows us to write the effective spin-electric coupling Hamil-
tonian acting in the lowest quadruplet as

He−d
eff = dE� · C , �7�

where E�=Rz�7� /6−2��E, with Rz�	� describing the rota-
tion with an angle 	 about the z axis, and � is the angle
between in-plane component E of the electric field E and
the bond s1−s2. For C = �Cx ,Cy ,0� we have

Cx = �
M

���M
�1����M

�2�� + ��M
�2����M

�1��� , �8�

Cy = i�
M

���M
�1����M

�2�� − ��M
�2����M

�1��� . �9�

The low-energy spectrum in the presence of electric field and
the related states can be expressed in terms of the spin
Hamiltonian Eq. �5� so that we find anisotropic variations of
the exchange coupling constants,

�Jii+1�E� =
4d

3
�E�cos�2�

3
i + �� , �10�

which depend on the angle � and the projection of the elec-
tric field E on the plane of the triangle. In the si=1 /2 triangle
the C operators can be written as

Cx = −
2

3
�s1 · s2 − 2s2 · s3 + s3 · s1� , �11�

Cy =
2
�3

�s1 · s2 − s3 · s1� , �12�

with �Ci ,Cj�=2i�ijkCk ��ijk are the Levi-Civita symbols�.42,48

From the above relations we can conclude that �i� only the
electric field component perpendicular to the bond and lying
in the plane of the molecule gives rise to spin-electric cou-
pling; �ii� there is only one free parameter d describing the
coupling of the spin system to electric fields and dii+1
=4d /3 �sin�2i� /3� , cos�2i� /3� ,0�.

The SOI in a D3h symmetric MN is constrained by the
transformation properties of the localized orbitals. It reads

HSO = 
SO
 TA2

Sz + 
SO
� �TE+�

S− + TE−�
S+� , �13�

with T� being tensor operators transforming according to the
irreducible representation �.49 The nonzero matrix elements
of this SOI Hamiltonian in the low-energy quadruplet read
��M

�1,2��HSO��M�
�1,2��= �M
SO

 �MM� so that the SOI takes the
following effective form:

HSO = �SOCzSz, �14�

with �SO=
SO
 and Sz=�i

3si
z. An effective SOI Hamiltonian is

obtained also from the DM SOI Hamiltonian in Eq. �1�. The
constraints Dii+1

x,y =0 and Dii+1
z �Dz on the DM vectors due to

D3h symmetry of the molecule give rise to the same effective
SOI in Eq. �14�, with Dz=
SO

 . Thus, as expected, the mo-
lecular SOI and the DM SOI give rise to the same effective
SOI Hamiltonian acting in the low energy quadruplet. Like
in the case of the electric dipole parameter d, finding Dz�
SO

 �
requires more than symmetry, like ab initio methods or ex-
periments. The transverse SOI, with interaction strength 
SO

�

does not act within the low-energy space, and its effect will
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appear only in higher orders of perturbation theory in 
SO
� /J.

An external magnetic field couples to the spin via the
Zeeman term HZ=B ·g�S, with g� =diag	g ,g ,g�
 being the
g-factor tensor in D3h. The full effective Hamiltonian de-
scribing the low-energy quadruplet in the presence of SOI,
electric field, and magnetic field reads

Heff = �SOCzSz + B · g�S + dE� · C . �15�

Note that �C ,S�=0, and chirality and spin act as independent
spin 1 /2 degrees of freedom. Furthermore, in the absence of
SOI the chirality C and the spin S evolve independently.
However, the SOI couples the two and provides with means
for electric control of both spin and chirality. Vice versa,
magnetic fields can also couple to chirality due to SOI. Also,
while magnetic fields �time-dependent� cause transitions be-
tween states of opposite spin projection M but with the same
chirality Cz, the electric field does the opposite: it causes
transitions between states of opposite chirality Cz, but carry-
ing the same M. Full control of the lowest quadruplet is thus
realized in the presence of both electric and magnetic fields,
as can be seen in Fig. 2.

2. Double valued group states of the s=1 Õ2 spin triangle

The double groups provide a formalism that takes into
account the fact that the rotation of a half-integer spin by the
angle 2� does not produce the identity transformation on its
quantum state. The double group representations allow to
nonperturbatively describe the magnetic and electric transi-
tions in the presence of spin-orbit interaction �see Chapter 10
of Ref. 49�. The lowest quadruplet consists of two Kramers

doublets, transforming like Ē� and Ē�, respectively. The S

=3 /2 states transform as Ē� �for M = �1 /2� and Ē� �M
= �3 /2�. Thus, the S=1 /2 states mix with the S=3 /2 states,
but only the ones transforming according to the same repre-

sentations, i.e., there is no mixing between Ē� and Ē� due to
spin-orbit interaction. The magnetic dipole transitions take

place between Ē� and Ē�, and within Ē� and Ē�, respectively,

while electric dipole transitions take place only between Ē�

and Ē�. The selection rules for the electric transitions are
�M = �2, while for the magnetic transitions these are �M
=0, �1. We see that there are allowed electric dipole transi-
tions also within the S=3 /2 subspace.

We can now establish several selection rules for the SOI,
electric field, and magnetic field induced transitions. Note
that the above analysis was exact in SOI. However, it in-
structive to treat electric field, magnetic fields, and SOI on
the same footing. First, we find that the electric dipole tran-
sitions fulfill the selection rules �Cz= �1 and �Sz=0, mean-
ing that electric field only couples states within the lowest
quadruplet. The SOI transitions show a richer structure. We
can separate the SOI interaction in two parts: the perpendicu-
lar SOI, quantified by Dz in the DM interaction Hamiltonian,
and the in-plane SOI, quantified by Dx,y in the DM interac-
tion Hamiltonian, respectively. By doing so, we find that the
Dz SOI terms obey the selections rules �Cz=0 and �Sz=0,
while for the Dx,y terms we get the selection rules �Cz
= �1 and �Sz= �1. Due to the cyclic boundary conditions
the relation Cz=1+1�Cz=−1 holds. Moreover, for a 2n+1
spin ring with n=1,2 , . . ., this relation is generalized to Cz
=n+1�Cz=−n. We see that in-plane SOI �Dx,y terms� do not
cause any splitting in the ground state and can lead to ob-
servable effects only in second order in perturbation theory
in Dx,y /J. Also, note that if h symmetry is present, Dx,y
�0 and thus there are no in-plane SOI effects at all. Modi-
fication of these terms due to an in-plane external electric
field E, however, lead to different selection rules: changes in
Dz terms lead to �Cz= �1 and �Sz=0, while modification of
Dx,y lead to �Cz=0, �2 and �Sz= �1. The magnetic field
transitions obey the selection rules �Sz=0, �1 and �Cz=0.
Thus, we can make clear distinction between pure electric
field transitions, SOI-mediated electric transitions, and mag-
netic transitions. This distinction between the electric and
magnetic field induced transitions could be used to extract
the spin-electric coupling strength parameter d from spectro-
scopic measurements.

B. Spin s=3 Õ2 triangle

The spin s=3 /2 triangle has a more complex level struc-
ture than the s=1 /2 triangle due to its higher spin. The spin
Hamiltonian, however, is similar to the one in Eq. �1� for s
=1 /2, and the reduction in the representation of three spins
S=3 /2 is Dtot=D�3/2��3=2D�1/2� � 4D�3/2� � 3D�5/2� � 2D�7/2�

� D�9/2�, a total of 64 spin states. The s=3 /2 triangle states
can be defined according to their transformation properties
under threefold rotations C3 in D3h and are of the following
form:

��M
�k,i�� = Pk

3�M,i� , �16�

Pk
3 =

1
�3

�
j=0

2

� j
kC3

j , �17�

where � j
k=exp�2i�jk /3�, C3

j are the threefold rotation of or-
der j, and j ,k=0,1 ,2. The states �M , i���123� represent
all possible states �i states in total� with a given spin projec-
tion M���kk� that cannot be transformed into each other

FIG. 2. �Color online� The spin transitions in the si=1 /2 triangle
induced by electric and magnetic fields. The electric field causes
transitions between the states of opposite chiralities Cz and equal
spin projections Sz �horizontal arrows�, while the magnetic field
instead causes transitions between the states of opposite spin pro-
jections Sz and equal chiralities Cz �vertical arrows�.
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by application of the rotation operator C3
j . These states are

showed in Table I.
The corresponding states with all spins flipped, namely,

with M�=−M, can be written in a similar form �not shown�.
Having identified the symmetric states in terms of the spin
states, we proceed to analyze the allowed transitions induced
in the spin systems by magnetic and electric field, both
within the single valued group and double valued group rep-
resentations.

1. Single valued group states of the s=3 Õ2 triangle

The above states are basis of the point group D3h, but not
eigenstates of the total spin operator S2. The total spin eigen-
states can be written as linear combinations of states with
given M, S, and chirality �k�: ��S,M

�k� �=�l�M�ak,l
S ��M

�k,l��, where
l�M� is the number of different states with a given M. The
coefficients ak,l are to be identified so that these states satisfy
S2��S,M

�k� �=S�S+1���S,M
�k� �, with S=1 /2,3 /2,5 /2,7 /2,9 /2.

The states with k=0 are all transforming according to the A2�
representation, while the states with k=1,2 are organized in
doublets, being the bases of the two dimensional representa-
tion E�. The magnetic and electric transitions are similar to
the ones in the s=1 /2 triangle, in the absence of SOI. The
electric field causes transitions only between states with the
same M and S, but opposite chirality Cz= �1 /2�3�s1 · �s2
�s3� �this is different from the triangle with si=1 /2 spins in
each of the vertices�. As for the s=1 /2 spin triangle, there
are electric dipole transitions within the S=1 /2 quadruplet,
even in the absence of SOI. The ground state is fourfold
degenerate consisting of two S=1 /2 eigenstates,

��M=1/2
�1� � =

1
�10

���M=1/2
�1,1� � + �3��M=1/2

�1,2� �

− ��1 − �2����M=1/2
�1,3� � − ��M=1/2

�1,4� ��� , �18�

��M=1/2
�2� � =

1
�10

���M=1/2
�2,1� � + �3��M=1/2

�2,2� �

+ ��1 − �2����M=1/2
�2,3� � − ��M=1/2

�2,4� ��� . �19�

As in the case of the s=1 /2 triangle, electric-field induced
transitions take place between the states of opposite chirality
Cz and same spin projection M. Besides, the lowest quadru-
plet states are still organized as spin and chirality eigenstates
that are split in the presence of SOI.

In the original spin Hamiltonian in Eq. �1� the electric
field causes modification of the spin Hamiltonian parameters.
As for the spin s=1 /2 triangle, the strongest effect comes
from modification of the isotropic exchange interaction so
that

�H0�E� = �
i=1

3

�Jii+1�E�si · si+1, �20�

with �Jii+1�E�=dE cos�2�i /3+��, where � is the angle be-
tween the projection of the external electric field E to the
molecule’s plane and the s1−s2 bond, and i=0,1 ,2. The ef-
fect of the electric field on the lowest quadruplet is found to
be similar to the spin s=1 /2 case. While the SOI splits the
two chiral states without mixing them �at least in lowest
order�, the electric field, on the other hand, mixes the chiral
states. The effective Hamiltonian acting in the lowest qua-
druplet reads

Heff = �SOCzSz + B · g�S + d�E · C . �21�

Above, d�=3d /2, C = �Cx ,Cy ,0�, with Cx=�M��M
�1����M

�2��
+ ��M

�2����M
�1�� and Cx= i�M���M

�1����M
�2��− ��M

�2����M
�1���, and �SO

stands for the SO splitting. However, in this situation the
in-plane chirality operators Cx,y cannot be written in a simple
form as a function of the individual spin operators, as op-
posed to the s=1 /2 triangle.

2. Double valued group states of the s=3 Õ2 triangle

The double group representation allows us to identify the
couplings between different spin states induced by the SOI
and to identify the allowed magnetic dipole transitions. Due
to SOI, the electric field induced spin transitions will take
place also outside the spin quadruplet. In the absence of extra
degeneracies �induced, for example, by external magnetic
fields�, however, these transitions are strongly reduced due
the gap of the order J. We can then focus, as for the S
=1 /2 triangle, only on the lowest quadruplet. These states

are organized in two Kramer doublets Ē� and Ē� transform-
ing as M = �1 /2 and M = �3 /2.

As in the case of the s=1 /2 triangle, the electric field

induced transitions take place between Ē� and Ē�, with the
selection rules �M = �2. Magnetic transitions instead take

place both within and between Ē� and Ē�, satisfying the se-
lection rules �M =0, �1.

If we now treat the SOI, electric field, and magnetic fields
on the same footing, we arrive at the same selection rules as
for the s=1 /2 triangle, namely, �Cz= �1 and �Sz=0 for
electric transitions, �Cz=0, �1 and �Sz=0, �1 for SOI
transitions, and �Cz=0 and �Sz=0, �1 for magnetic transi-
tions, respectively.

C. Spin s=1 Õ2 pentagon

We now analyze the spin-electric coupling in a pentagonal
molecule with a spin s=1 /2 in each of the vertices, like
depicted schematically in Fig. 3. As in the case of the spin
triangle, an external electric field E gives rise to modification
of exchange couplings Jii+1. However, the net spin-electric

TABLE I. Nonsymmetry adapted states of the s=3 /2 spin tri-
angle. We use �⇑ �⇓ ��= ��3 /2� and �↑ �↓ ��= ��1 /2�.

M

i

1 2 3 4

1 /2 �↓ ↑ ↑ � �⇑ ↓ ↓ � �⇓ ⇑ ↑ � �⇓ ↑ ⇑ �
3 /2 �⇓ ⇑ ⇑ � �↓ ↑ ⇑ � �↓ ⇑ ↑ � �↑ ↑ ↑ �
5 /2 �⇑ ↑ ↑ � �↓ ⇑ ⇑ � 0 0

7 /2 �↑ ⇑ ⇑ � 0 0 0

9 /2 �⇑ ⇑ ⇑ � 0 0 0
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coupling in the lowest spin sector can only be mediated by
SOI, i.e., via the DM interaction.

To make the analysis simpler, we assume in the following
that the pentagonal spin molecule possesses a D5 point group
symmetry, thus no horizontal reflection plane h. However,
no generality is lost since lower symmetry implies more al-
lowed transitions in the spin system. If, for example, in the
lower symmetric situation some transitions are forbidden,
these transitions will be also forbidden in the higher symme-
try case. The Hamiltonian is given in Eq. �1� with N=5. The
states of the pentagon are found from the product of
the individual spin representations Dtot=D�1/2��5=5D�1/2�

� 4D�3/2� � D�5/2�, meaning there are 32 spin states in total.
As before, these states can be organized in a symmetry
adapted basis in the following way:

��M
�k,i�� = P5

k�M,i� , �22�

P5
k =

1
�5

�
j=0

4

� j
kC5

j , �23�

where � j
k=exp�2i�jk /5� with k , j=0, . . . ,5, C5

j are the five-
fold rotations of order j. The states �M , i���12345�
represent all possible states �i states in total� with a given
spin projection M���kk� that cannot be transformed into
each other by application of the rotation operator C5

j . These
states are showed in Table II and the corresponding states
with all spins flipped, i.e., M→−M states �not shown�. In the
absence of SOI there is no mixing of different k states, i.e.
the chirality is a good quantum number. In this case
the chirality is quantified by the operator Cz

=1 / �2�5+2�5��isi · �si+1�si+2� �the prefactor is chosen for
convenience; see below�. The ground-state quadruplet con-
sists of two Kramers doublets with spin S=1 /2. In the fol-

lowing we inspect the level structure of these four states in
terms of the above symmetry adapted states.

1. Single valued group s=1 Õ2 pentagon

We focus here only on the four lowest energy states,
which are two pairs of S=1 /2 states. The first �second� pair
is given by linear combination of states with k=1�k=−1� and
spin projection M = �1 /2. We obtain

��S=1/2,M=�1/2
�k� � =

1
�3� 1

2 cos�2k�

5
� ��M=�1/2

�k,1� �

+ 2�2
k cos�2�

5
���M=�1/2

�k,2� �� , �24�

so that Cz��M=�1/2
�k� �= �−1�k��M=�1/2

�k� �. These states �for a
given M projection� form the basis of the two-dimensional
irreducible representation E1. We are now in positions to
investigate the allowed electric dipole transitions within this
lowest subspace. The in-plane electric dipole d= �dx ,dy�
forms a basis of the irreducible representation E1 in D5.49 By
calculating the product E1 � E1 � E1=2E1 � 2E2, with E2 be-
ing another two-dimensional irreducible representation of
D5, we see that the totally symmetric representation A1 of D5
is absent. Therefore, there are no electric dipole transitions
within the four-dimensional subspace in the absence of SOI.

As in the previous two cases, the coupling of the spin
Hamiltonian to electric field comes via modification of the
spin Hamiltonian parameters. If only the modification of the
isotropic exchange Hamiltonian is taken into account, the
spin-electric Hamiltonian takes the same form as in Eq. �7�,
with �Jii+1�E�=dE cos�2i� /5+��, i=1, . . . ,5. The parameter
d quantifies the electric dipole coupling of each of the bonds
and � is the angle between the electric field E and the bond
s1−s2. Note that d is in principle non-zero in D5 point group
symmetry. However, the matrix elements of the spin-electric
Hamiltonian within the lowest quadruplet are all zero, i.e.,

��S=1/2,M
�k� ��He−d�E���S=1/2,M�

�k�� ��0. This means that electric
field has no effect on the lowest quadruplet, as found out also
by purely symmetry arguments. Therefore, we may expect
that the spin-electric coupling in pentagonal spin molecule is
caused by SO effects.

2. Double valued group s=1 Õ2 pentagon

The lowest four states in the double group D5� are de-
scribed by the two dimensional irreducible representations

S1 S5

S4

S3

S2

J45(E)J12(E)

E

J51(E)

J23(E J34(E))

FIG. 3. �Color online� Schematics of a pentagonal spin ring
molecule in electric field E, light �green� arrow. The molecule in the
absence of electric field is depicted in fade colors, while the full
colors represent the molecules in electric field. Thickness of the
bonds represents the strength of antiferromagnetic exchange inter-
action between the spins. An electric field modifies the strengths of
spin exchange couplings Jii+1.

TABLE II. Spin s=1 /2 pentagon nonsymmetry adapted
states.

M

i

1 2

1 /2 �↑ ↓ ↑ ↓ ↑ � �↑ ↓ ↓ ↑ ↑ �
3 /2 �↓ ↑ ↑ ↑ ↑ � 0

5 /2 �↑ ↑ ↑ ↑ ↑ � 0
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Ē1��M = �1 /2� and Ē1��M = �3 /2�. Since both the magnetic
� and electric d dipoles transform as E1 in D5�, both electric
and magnetic transitions will take place between the same
pair of states. The products of the irreducible representations

that labels the states in the low-energy quadruplet read Ē1�

� Ē2�=E1 � E2, Ē1� � Ē1�=A1 � A2 � E1 and Ē2� � Ē2�=A1 � A2
� E2. These equalities imply the same selection rules in the
lowest subspace as for the spin triangle case: �M = �2 for
electric dipole transitions, and �M =0, �1 for the magnetic
ones.

The main feature of the pentagonal spin ring is the ab-
sence of electric dipole transitions in the lowest quadruplet in
the absence of SOI. This is to be contrasted with the spin
triangle case, where spin-electric coupling exists in the
ground state even in the absence of SOI. This feature finds its
explanation in the interplay between the selection rules for
electric field transitions and the ones for the SOI. In fact,
these selection rules are by no means different from the tri-
angular spin rings. Since the ground state is spanned by four
states with chirality Cz=−1,1 and spin Sz= �1 /2, we see
that the condition �Cz= �1 for the electric field transitions
implies no electric field coupling within the ground state. In
the presence of SOI though, spin electric coupling is still
possible, but it will be �Dx,y /J� times smaller than in tri-
angles. Spin-electric coupling can arise also via modification
of the DM vectors Dx,y,z in electric field. However, the selec-
tion rules for this transitions are, like for the triangle, �Cz
=0, �2 and �Sz=0, �1. This means direct splitting in the
ground state, and thus we expect that for pentagonal spin
rings the electric dipole response will be much weaker.

D. Symmetry requirements for the existence
of spin-electric coupling

There are two general feature that allow for the manipu-
lation of the MN state vector within the ground-state multi-
plet, through pulsed electric fields. �For simplicity, we refer
to the case where such coupling is not mediated by spin-orbit
interaction and appears in a triangular molecule.�

Firstly, in order for the spin-electric Hamiltonian to be
linear in the electric field, permanent electric dipoles dij must
be present on the bridge�s� that mediate the coupling of spins
i and j. These dipole moments must depend on the relative
orientation of si and s j, see Fig. 4. Besides, in order for the
electric field to modify differently the super-exchange cou-
plings Jij between different pairs of spins, the dipoles dij
must point in different directions from one another. In the
present case �10�, the dij are orthogonal to the vectors Rij,
other in-plane components being forbidden by symmetry. If
the dipoles associated with the spin pairs are all along the
same direction, instead, the electric field can only induce
equal renormalizations of all the exchange couplings ��Jij
��J�. As a consequence, the spin-electric Hamiltonian �HE
would commute with H0 and could not induce transitions
between eigenstates of the unperturbed Hamiltonian. In a
recent study of spin crossover effect,53 the total molecular
electric dipole moment was shown to cause influence the
spin state of the molecule. In the mechanism considered
here, we require only the existence of the bridge dipole mo-

ment, while the total dipole moment of the molecule may be
zero.

Secondly, given the existence of a spin-electric coupling,
we require that this allows nontrivial manipulations of the
MN quantum state within the low-energy multiplet. In par-
ticular, in the case of triangle, our proposal relies on the
existence of a four-dimensional ground-state multiplet �with
S=1 /2�, whose states are identified by the spin projection
�Sz�=1 /2 and by chirality Cz. This condition is fulfilled by
rings consisting of an odd number of half integer and equiva-
lent spins. Within these class of systems, triangles are par-
ticularly suited because the two eigenstates of chirality can
be coupled in first order by the spin-electric Hamiltonian
even in the absence of spin-orbit interaction.

Both the above criteria can be formulated in terms of
inversion symmetry. As far as the first criterion is concerned,
the superexchange bridges that magnetically couple si and s j
must lack an inversion center, though this condition is not
sufficient in order for the bridge to possess a permanent elec-
tric dipole. Regarding the level structure and selection rules
�second criterion�, the presence of an odd number of equiva-
lent spins in the ring implies the lack of an inversion center
for the molecule as a whole.

III. HUBBARD MODEL OF A MOLECULAR
NANOMAGNET

Spin Hamiltonian models of molecular nanomagnets are
based on the assumption that the spins on magnetic centers
are the only relevant degrees of freedom. This assumption of
fully quenched and localized orbitals allows for the relatively
simple predictions of spin structure in the low-energy states
of the molecule. However, since the orbital dynamics plays a
crucial role in the spin-electric coupling, spin Hamiltonian
models are unable to predict the corresponding coupling con-
stants. In this section, we relax the assumption of quenched
and localized orbitals and treat the orbital degrees of freedom
of electrons on magnetic ions within a Hubbard model. This
provides an intuitive picture of spin-electric coupling in
terms of the deformation of the molecular orbitals induced
by the external field. Besides, in the limit of strong quench-
ing of the orbitals, the Hubbard model reproduces a spin
Hamiltonian, similar to the results found in the studies of

FIG. 4. �Color online� Dipole moment of an unperturbed bridge.
In the first order, external electric fields couple to the electric dipole
moments of the bridges that connect the spins at magnetic centers.
The different orientations of the bridge dipole moments dij�dkl

lead to inhomogeneous variations of the resulting exchange interac-
tions between the spins �Jij��Jkl.
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cuprates54–56 and multiferroics.57,58 In particular, we find the
relation between modifications of the electronic hopping ma-
trix elements induced by the field and that of the spin-electric
coupling in the spin Hamiltonian, thus providing a guide for
the estimate of the size of spin-electric coupling in a mol-
ecule.

The outline of the present section is the following. In Sec.
III A, we introduce the Hubbard model of a spin chain with
the shape of regular n-tangon and derive the resulting sym-
metry constraints for the hopping parameters. In Sec. III B
we assume a direct electron hopping between magnetic sites
and derive the spin Hamiltonian of a spin triangle from the
Hubbard model in the limit of large on-site repulsions; we
thus express the coupling to electric fields in terms of the
Hubbard model parameters. In Sec. III C, we introduce a
Hubbard model of a magnetic coupling in the case where this
is mediated by a nonmagnetic bridge between the magnetic
centers; also in this case, we find a connection between the
modification of the bridge and spin-electric coupling.

A. Parameters of the Hubbard model of molecular
nanomagnets

Magnetic properties of molecular nanomagnets are gov-
erned by the spin state of few electrons in the highest par-
tially occupied atomic orbitals, split by the molecular field.
The spin density is localized on the magnetic centers,59 and
thus the low-energy magnetic properties are correctly de-
scribed by quantum models of interacting localized
spins.60,61

The response of molecular nanomagnets to electric fields,
as a matter of principle, does not have to be governed by the
electrons occupying the same orbitals that determine the
molecule’s spin. However, the quantum control of single
molecule magnets by electric fields depends on the electrons
that both react to electric fields and produce the magnetic
response. Therefore, the models of molecular nanomagnets
that consider only few orbitals can provide useful informa-
tion about the electric control of spins.

Hubbard model provides a simplified description of or-
bital degrees of freedom by including only one or few local-
ized orbitals on each magnetic center. Furthermore, the inter-
action between electrons is accounted for only by
introducing the energies of the atomic configurations with
different occupation numbers. The Hubbard model of the
MN is given by

HH = ��
i,j

�
�,�

ci�
† �t��� +

iPij

2
· ����cj� + H.c.�

+ �
j

Uj�nj↑,nj↓� , �25�

where cj
† �cj� creates �annihilates� an electron with spin 

= ↑ ,↓ on the orbital localized on jth atom, and nj=cj
† cj is

the corresponding number operator. Model parameters Uj de-
scribe the energy of nj↑�↓� spin up�down� electrons on the site
j. Hopping parameters tij and Pij describe the spin-
independent and spin-dependent hopping between sites i and
j.

We assume that the largest energy scale is the splitting
between the energy of the highest occupied atomic orbital
and lowest unoccupied one, induced by the molecular crystal
field: this justifies the inclusion of one orbital only for each
magnetic center. The on-site repulsion energy is the next
largest energy scale in the problem, being Uj larger than the
hopping coefficients. Among these, processes involving
states of different spin, mediated by spin-orbit interaction,
are described by the x and y components of Pij. The param-
eters Pij;z, instead, describe the difference of the hopping
matrix elements between spin-up and spin-down electrons.
In the following, we shall consider both the case where elec-
tron hopping takes place directly between neighboring mag-
netic ions and that where the magnetic interaction is medi-
ated by bridges of nonmagnetic atoms. Hubbard model with
spin-dependent hopping was used to describe the spin-orbit
coupling in cuprates62 and multiferroics.57 The Hubbard
Hamiltonian can be approximated by a spin Hamiltonian
model in the limit �tij� , �Pij��Uj. The symmetry constraints
on the spin Hamiltonian parameters can be deduced from
those on the Hubbard model parameters.54 If the spin-
independent hopping dominates ��t�� �P��, the resulting spin
Hamiltonian will contain the Heisenberg exchange terms and
a small additional spin-anisotropic interaction. If �t�� �P�, the
size of spin-dependent interactions in the spin Hamiltonian
will be comparable to the Heisenberg terms. Both these cases
appear in the molecule nanomagnets.18,51,63,64

Symmetry of the molecule imposes constraints to the
Hubbard model, thus reducing the number of free param-
eters. The on-site repulsion parameters Uj are equal for all
equivalent magnetic ions. In the molecules of the form of
regular n-tagon, all of the spin-independent hopping param-
eters are equal due to the Cn symmetry. The spin-dependent
hopping elements are related by both the full symmetry of
the molecule and the local symmetry of localized orbitals.
For example, in the case of localized orbitals in a regular
polygon that are invariant under the local symmetry group of
the magnetic center,

Pj,j+1;x = exp�i
2��j − k�

n
�Pk,k+1;x, �26�

with the convention that site n+1 coincides with site 1. In
this case, there is only one free parameter that determines all
of the Px matrix elements. Therefore, the regular n–tagon
molecule in the absence of external electric and magnetic
fields can be described by a Hubbard model, with five inde-
pendent parameters: U, t, and P12. In addition, the v sym-
metry, if present will impose P12= pez, thus reducing the
number of free parameters to three.

B. Hubbard model of the spin triangle: Direct exchange

In this section we give a brief description of the Hubbard
model for a triangular molecule with D3h symmetry. In this
model we assume only direct coupling between the magnetic
centers, thus no bridge in-between. Even so, this simplified
model catches the main features of the effective spin Hamil-
tonian and gives the microscopic mechanisms for the spin-
electric coupling. The Hamiltonian describing the electrons
in the triangular molecule reads
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HH = ��
i,

ci
† �t + i
SO�ci+1, + H.c.�

+ �
i,

��0ni +
1

2
Uninī� , �27�

where 
SO� p=Pij ·ez is the spin-orbit parameter �only one�,
�0 is the on-site orbital energy, and U is the on-site Coulomb
repulsion energy. As stated before, typically 
SO, �t��U,
which allows for a perturbative treatment of the hopping and
spin-orbit Hamiltonians. These assumptions agree well with
the numerical calculations performed in Ref. 59.

The perturbation theory program involves the unperturbed
states of the system. The first set of unperturbed states are the
one-electron states

�	i
� = ci

† �0� , �28�

while the three-electron states split in two categories: �i� the
singly occupied site states

��k
� = �

j=1

3

cjj

† �0� , �29�

with  j = for j�k and  j = ̄, for j=k, and �ii� the double-
occupied sites

��kp
 � = ck↑

† ck↓
† cp

† �0� , �30�

with k=1,2 ,3 and p�k. The states ��k
� and ��kp

 � span the
subspaces with M =1 /2 and M =−1 /2 for =↑ and =↓,
respectively.

The states in Eqs. �28�–�30� are degenerate with energies
E=�0, E=3�0, and E=3�0+U, respectively. Note that these
state are eigenstates of the Hamiltonian in Eq. �27� only in
the absence of tunneling and SOI.

The above defined states are not yet adapted to the sym-
metry of the system, i.e., they are not basis states of the
corresponding irreducible representations of D3h point group.
Finding these states is required by the fact that the symmetry
of the molecule is made visible through the hopping and SOI
terms in the Hubbard Hamiltonian. This is accomplished by
using the projector operator formalism.49 We obtain for the
one-electron symmetry adapted states.

�	A1�
 � =

1
�3

�
i=1

3

�	i
� , �31�

�	E
��

 � =
1
�3

�
i=1

3

�1,2
i−1�	i

� , �32�

where A2� and E�� are one-dimensional and two-dimensional
irreducible representations in D3h, respectively. Similarly, the
symmetry adapted states with the singly-occupied magnetic
centers read

��A2�
1� =

1
�3

�
i=1

3

��i
� , �33�

��E
��

1 � =
1
�3

�
i=1

3

�1,2
i−1��i

� , �34�

while the symmetry adapted states of the doubly-occupied
magnetic centers read

��A1,2�
2 � =

1
�6

�
i=1

3

���i1
 � � ��i2

 �� , �35�

��E
��

1
2 � =

1
�6

�
i=1

3

�1,2
i−1���i1

 � + ��i2
 �� , �36�

��E
��

2
2 � =

1
�6

�
i=1

3

�1,2
i−1���i1

 � − ��i2
 �� . �37�

The tunneling and SOI mixes the singly-occupied and
doubly-occupied states. Since both the tunneling and SOI
terms in the Hubbard Hamiltonian transform as the totally
symmetric irreducible representation A1� in D3h, only states
transforming according to the same irreducible representa-
tions � mix. We obtain the perturbed states in first order in
t /U and 
SO,

��A2�
1� � ��A2�

1� , �38�

��E
��

1 � � ��E
��

1 � +
��̄ − 1��t � 
SO�

�2U
��E

��
1

2 � ,

+
3��t � 
SO�

�2U
��E

��
2

2 � . �39�

Doubly-occupied states become high in energy when
�t� /U ,
SO /U�1. In this limit, the orbital states are quenched
into singly-occupied localized atomic orbitals, and low-
energy behavior is determined by spin and described by a
spin Hamiltonian. In this limit the states in Eq. �34� are ex-
actly the same chiral states in the spin Hamiltonian, i.e.,
��E�

1 ����
�1,2�� and ��A2�

1����
�0��. The probability of finding

two electrons at the same site decays as �t � /U. The lowest
energy states have total spin S=1 /2 and the chirality Cz

= �1, and the fluctuations of chirality �Cz=��Cz
2�− �Cz�2 in

the eigenstates vanish, see Fig. 5. The chiral states emerge as
the eigenstates in the large-U limit, when the system is well
described by the spin Hamiltonian:

The coupling of the molecule to an external electric field
E takes place via two mechanisms. The first one implies
modification of the on-site single particle energies �0 and
leads to the following electric-dipole coupling Hamiltonian:

He−d
0 = − e�



Eya
�3

c1
† c1 −

a

2� Ey

�3
+ Ex�c2

† c2

+
a

2�Ex −
Ey

�3
�c3

† c3, �40�

with a being the geometrical distance between the magnetic
ions and Ex,y the in-plane components of the electric field.
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The second mechanism is due to modification of the hopping
parameters tii+1 in electric field and gives

He−d
1 = �

i,
tii+1
E ci

† ci+1 + H.c., �41�

where tii+1
E = �	i�−er ·E�	i+1� are new hopping parameters

induced solely by the electric field E, and �i are the Wan-
nier states localized on the magnetic centers. We can write
the E-induced hoppings as tii+1

E =�q=x,y,zqii+1Eq, with qii+1=
−�	i�eq�	i+1� being electric dipole matrix elements be-
tween the i and i+1 ions. These matrix elements are not all
independent, symmetry alone reducing drastically the num-
ber of independent electric dipole parameters. In order to
find suitable independent free parameters, we switch from
the description in terms of localized Wannier orbitals �i, to
the description in terms of symmetry adapted states, namely
from qii+1 to q���= �	��q�	���, where �=A1� ,E�� . In the
basis of symmetry adapted states, the components q��� sat-
isfy a number of relations. In particular, we find

�	A1�
 �x�	A1�

 � = �	A1�
 �y�	A1�

 � = �	E+�
 �x�	E+�

 � � 0, �42�

�	E−�
 �x�	E−�

 � = �	E+�
 �y�	E+�

 � = �	E−�
 �y�	E−�

 � � 0, �43�

�	E+�
 �x�	E−�

 � = − i�	E+�
 �y�	E−�

 � � − dEE/e , �44�

�	A1�
 �x�	E+�

 � = �	A1�
 �x�	E−�

 � = − i�	A1�
 �y�	E+�

 � = i�	A1�
 �y�	E−�

 �

� − dAE/e . �45�

These relations reduce the number of free coupling constants
to two, namely, dEE and dAE.

It is instructive to write first the relation between the sec-
ond quantized operators ci

† �ci� and c�
† �c��, which create

�annihilate� electrons in localized and symmetry adapted
states, respectively,

�c1
†

c2
†

c2
† � =

1
�3�1 1 �

1 �̄ �̄

1 � 1
��

cA1�

†

cE+�

†

cE−�

† � . �46�

With these expressions at hand, we can write the electric
dipole Hamiltonian together with the spin-orbit Hamiltonian
in the following form:

He−d
0 =

− iea�3

2 �


�ĒcE+�

† cA1� − �EcE−�

† cA1� + �ĒcE−�

† cE+��

+ H.c., �47�

He−d
1 = �



dAE�ĒcA1�

† cE+� − EcA1�

† cE−�� + ĒdEEcE+�

† cE−�

+ H.c., �48�

HSO = �3
SO�


�cE−�

† cE−� − cE+�̄

† cE+�̄� , �49�

where E=Ex+ iEy�Ē=Ex− iEy�. The symmetry adapted states
can also be expressed in terms of the symmetry adapted op-
erators c�

† . The expressions for these states are shown in
Appendix A. Using these states, we can compute all the ma-
trix elements corresponding to the electric dipole and SOI
Hamiltonian, respectively. The explicit form of these matrix
elements can be found in Appendix B.

We now compute the electric dipole matrix elements be-
tween the perturbed chiral states of the E� symmetry. The
question is to what order in t /U and/or eEa�dEE ,dAE� /U we
want to do it. We use the relations �ea��dEE ,dAE, which hold
in the case of localized orbitals. This leads us to the follow-
ing matrix element of the electric dipole in the ground state:

���E−�
1�He−d

0 ��E+�
1�� � � t3

U3eEa� , �50�

���E−�
1�He−d

1 ��E+�
1�� � �4t

U
EdEE� . �51�

We now relate the SOI matrix elements to the DM vectors
in the effective spin Hamiltonian. From Eq. �49� we get

��E
��

1 �HSO��E
��

1 � = �
5�3
SOt

2U
sgn�� , �52�

In the same time, in D3h symmetry, the DM term reads

HSO =
iDz

2 �
i=1

3

�s+
i s−

i+1 − s−
i s+

i+1� , �53�

allowing us to make the following identification:

0 10 20 30
U/t

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

C
z

0.0

0.2

0.4

0.6

P D

C
z

= -1/2
C

z
= 1/2

P
D

FIG. 5. �Color online� Spin Hamiltonian limit. Expectation val-
ues of chirality �Cz� �full lines� and the their bounds of uncertainty
�Cz���Cz �dotted lines�, see text, in the low-energy states of the
Hubbard model as a function of the on-site repulsion U at the fixed
hopping matrix element t=1 �left scale�. The dashed line shows
dependence of the double occupancy probability PD in the ground
state on the right scale. The spin Hamiltonian description becomes
accurate in the U→� limit. The approach to this limit is slow, and
the double occupancy probability is proportional to t /U.
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Dz �
5
SOt

U
. �54�

We see that this SOI term acts exactly as the “microscopic”
SOI derived before: it splits the chiral states, but it does not
mix them.

The Hubbard model with spin-orbit coupling can repro-
duce the energy-level structure of the spin Hamiltonian. In
the limit of strong on-site repulsion �t� /U�1, the atomic
orbitals in the triangle vertices are occupied by one electron
each. The lowest energy manifold consists of four states with
the total spin S=1 /2. These states are split from the next
four-level S=3 /2 manifold by a gap of the order of t2 /U.

C. Superexchange in molecular bonds

In this section, we use the Hubbard model to deduce the
dependence of the spin Hamiltonian of MNs on the external
electric fields in the case where the coupling between mag-
netic sites is mediated by a nonmagnetic bridge. In particular,
we study how the parameters of the effective spin Hamil-
tonian depend on the hopping matrix elements that are modi-
fied by the presence of an electric field. The spins in molecu-
lar nanomagnets are localized at the magnetic centers and
interact through the long bridges of nonmagnetic atoms. In
addition, we do not expect that these orbitals deform in the
electric field. Therefore, we expect that the superexchange
mechanism through the bridge is more significant than the
direct exchange. This method was successfully applied in the
studies of strongly correlated electrons, like cuprates56 and
multiferroics.58

In order to describe the magnetic coupling, we consider a
pair of sites corresponding to the magnetic centers and a
bridge site. Since the direct overlap of the orbitals localized
on the magnetic centers is small, we set the direct hopping
between the magnetic centers to zero but allow for the hop-
ping of electrons between the magnetic sites and the bridge
site. This hopping gives rise to superexchange interaction
between the spins on the magnetic sites.54 In the limit of
strong on-site repulsions, the effective Hamiltonian in the
lowest energy sector of the bond corresponds to a spin
Hamiltonian where the coupling strengths are determined by
the Hubbard model parameters. This correspondence pro-
vides an intuitive picture of the mechanism that leads to the
interaction between the spins. It also allows us to infer the
properties of the molecule that lead to a strong spin-electric
coupling, e.g., the delocalization of the orbitals and their
local symmetry.

The Hubbard Hamiltonian of the bond is given by

Hb = �
i,��

�ci�
† �ti��� +

iPi

2
· ����b� + H.c.�

+ U1�n1� + U2�n2� + Ub�nb� , �55�

where the indices 1 and 2 refer to the magnetic sites, and b
refers to the bridge site. We derive the spin Hamiltonian by
fourth-order Schrieffer-Wolff transformation of the Hamil-
tonian Hb.

The Schrieffer-Wolf transformation65 of the bond Hamil-
tonian Hb=H0+Htun, where the unperturbed Hamiltonian

H0=U1�n1�+U2�n2�+Ub�nb� produces an effective low en-
ergy Hamiltonian H12 that approximately describes the low-
energy dynamics of the bond. The effective Hamiltonian is

H12 = PeSHbe−SP , �56�

where the antiunitary operator S is chosen so that the low-
energy space of H0 is decoupled from the high-energy space.
This operator is found iteratively, S=S�1�+S�2�+¯ so that the
nth order transformation S�n� removes the terms that couple
the low- and high-energy states up to order n. The projector
P projects to the low-energy states. In our system, the lowest
order Schrieffer-Wolff transformation that gives a nontrivial
contribution to the low-energy spin Hamiltonian is of fourth
order, and the operator S is approximated as S��n=1

4 S�n�.
The unperturbed Hamiltonian, H0=U1+U2+Ub, describes

localized electrons, and the hopping Htun acts as perturbation.
The low-energy subspace of the unperturbed Hamiltonian is
spanned by the states in which the magnetic ions are singly
occupied, and the bridge is doubly occupied. The lowest-
order terms that give rise to a nontrivial spin Hamiltonian, in
the limit �t� , �P��U, are of the fourth order in t and P.

The resulting interaction of the spins includes an isotropic
exchange of strength J, a Dzyalozhinsky-Moriya interaction
described by a vector D, and an anisotropic exchange term
described by a second rank symmetric traceless tensor �,66

H12 = JS1 · S2 + D · �S1 � S2� + S1 · �S2. �57�

Quite generally the interaction between two spins up to sec-
ond order in P12 can be represented as an isotropic exchange
of rotated spins.56 However, since the frustration in the tri-
angle is strong, it is a good approximation to take only the
Dzyalozhinsky-Moriya interaction into account for the weak
spin-orbit coupling, �P12�� �t12� when describing a full mol-
ecule.

In a bond with a single bridge site, the largest possible
symmetry is C2v. We introduce Cartesian coordinates with
the x axis pointing from the magnetic center 1 to 2, y axis
lying in the bond plane and pointing toward the bridge site,
and the z axis normal to the bond plane �Fig. 6�. The ele-
ments of the C2v symmetry group are then rotation Ry,� by �
about the y axis, reflection v in the yz plane, and reflection
h in the xy plane. Each of these symmetry operations im-
poses constraints on the parameters of Hb. In the case of
localized orbitals that remain invariant under the local sym-
metries of their respective sites, the constraints resulting
from the Ry,� symmetry are

t1 = t2, �58�

Px,1 = − Px,2, �59�

Py,1 = Py,2, �60�

Pz,1 = − Pz,2. �61�

The v symmetry implies

t1 = t2, �62�

Px,1 = Px,2, �63�
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Py,1 = − Py,2, �64�

Pz,1 = − Pz,2, �65�

and the h symmetry implies

P1 = − P2 = pez. �66�

In the perturbative calculation of the effective spin Hamil-
tonian parameters, these constraints reproduce the
Dzyalozhinsky-Moriya rules. We do not deal with the sym-
metry of on-site energies U1,2,b in any detail since they do
not affect the spin Hamiltonian at this level of approxima-
tion.

D. Electric field along y

In the electric field pointing along the y axis, the point
group symmetry of the bridge remains C2v, and all of the
constraints �59�–�66� hold. The fourth-order Schrieffer-Wolff
transformation then gives the interaction between the spins
on magnetic centers of form �57� with the parameters

J =
1

12U3 �48t4 − 40t2pz
2 + 3pz

4� , �67�

D =
2

U3 tpz�4t2 − pz
2�ez, �68�

�xx = �yy = −
1

2
�zz = −

8

3U3 t2pz
2, �69�

while all the off-diagonal elements of � vanish. Here, the
parameters of the Hubbard model satisfy the symmetry con-
straints of the full C2v, and

t1 = t2 = t , �70�

P1 = − P2 = pzez. �71�

We have introduced U3=Uc2�2Uc2−Ub2��Ub1−Ub2
+Uc2�2 / �4Uc2−Ub2�, where the on-site repulsions are Ub2 for

the doubly occupied bridge, Ub1 for the singly occupied
bridge, and Uc2 for the doubly occupied magnetic center. The
parameter U describes the energy cost of leaving the mani-
fold of states with the minimal energy of Coulomb repulsion.
We assume that the lowest energy charge configuration cor-
responds to a doubly occupied bridge, so that Ub2�Ub1.

In first order, the variations in the spin-Hamiltonian pa-
rameters resulting from the modification of the Hubbard
model parameters are

�J =
1

3U3 ��48t3 − 20tpz
2��t + �− 20t2pz + 3pz

3��pz� , �72�

�Dz =
2

U3 ��12t2pz − pz
3��t + �4t3 − 3tpz

2��pz� , �73�

��xx = ��yy = −
��zz

2
= −

16tpz

3U3 �pz�t + t�pz� . �74�

Electric field modifies the orbitals and therefore the overlaps
between them that determine the hopping parameters. We
consider the case where the variations �t and �pz are linear in
the field intensity Ey: �t=�tEy, �pz=�pz

Ey. We will not dis-
cuss the effect of variations in the on-site energies U in any
details since their only effect in the fourth-order perturbation
is a rescaling of all the spin Hamiltonian parameters by
U3 / �U+�U�3.

We stress that these linear modifications of the hopping
parameters are characteristic for the C2v symmetry. If the
electric field is oriented differently and thus lowers the sys-
tem symmetry �see below� first-order increments are not al-
lowed, and the spin-electric coupling is at least a second-
order effect in the electric field. The modification of the
orbitals includes the energy scale of splitting of the atomic
orbitals in the molecular field. We have assumed earlier that
the splitting of the orbitals localized on the magnetic centers
is large, and the dominant source of the spin-electric cou-
pling is the modification of the bridge orbital. Therefore, the
key criterion for strong spin-electric coupling is the presence
of bridge orbitals that are weakly split in the molecular field.
If, in addition, we assume that the modification is a property
of the bond alone, and not of the entire molecule, the �
parameters can be determined in an ab initio calculations on
a smaller collection of atoms.

In the limit of weak spin-orbit coupling, �t�� �pz�, the main
effect of the electric fields is a change of J, leading to our
symmetry-based results, see Eq. �15�. In particular, the d
parameter of the symmetry analysis is

d =
4

U3 ��48t3 − 20tpz
2��t + �− 20t2pz + 3pz

3��pz� . �75�

In this case, the Dzyalozhinsky-Moriya vector D is con-
strained to point in the z direction, D=Dez. The model sug-
gests that the dominant effect of the electric field in the mol-
ecules with dominant Heisenberg exchange �J� �D�� is
modification of the isotropic exchange constants J, and

z

z

x

y

x

y

E E

E E

C2v → C1v C2v → C2

C2v → C2v C2v → C1h

d)b)

c)a)z

x

y

z

x

y

FIG. 6. �Color online� Geometry of the bond and reduction of
symmetry. �a� Electric field E in the y direction, leaves the C2v
symmetry unbroken. �b� An electric field E in the z direction, nor-
mal to the bond plane, reduces the symmetry to 	E ,v
. �c� An
electric field E in the x direction, along the line connecting the
magnetic centers, reduces the symmetry to 	E ,h
. �d� In an inho-
mogeneous staggered electric field E, the reduced symmetry group
is 	E ,Ry,�
.
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��D�
��J�

�
�D�
�J�

, �76�

so that the modification of the Dzyalozhinsky-Moriya vector
D→D+�D is weaker. However, in the molecules in which
the modifications of J are inefficient in inducing the spin-
electric coupling, as, for example, in the spin-1 /2 pentagon,
the modifications of D may eventually provide the main con-
tribution to the spin-electric coupling.

Electric field pointing in a generic direction breaks the
C2v symmetry of the bridge and allows further modification
of the Hubbard and spin Hamiltonian parameters that do not
obey all the symmetry constraints in Eqs. �58�–�66�. With the
relaxed constraints, both the direction and intensity of P1,2,
as well as the spin-independent hoppings t1,2 become field
dependent. This observation can be used in the search for
molecules that show strong spin-electric coupling. The en-
ergy cost of changing the distance between the localized or-
bitals may be significantly higher than the cost of modifying
the shape of the bridge orbital. In order to investigate this
dependence, we study the effective spin Hamiltonian de-
scription of a bridge with all possible residual symmetries.

1. Residual �v symmetry

An electric field E=Eez normal to the bond’s plane re-
duces the initial C2v symmetry down to 	E ,v
. This reduc-
tion of the symmetry also happens when a molecule is de-
posited on the surface parallel to the bond plane. While the
constraints in Eq. �66� hold, this reduction in symmetry im-
plies the appearance of nonzero in-plane components of P1,2.
We parametrize the most general Hubbard model parameters
t1,2 and P1,2 consistent with the symmetry as

t1 = t2 = t , �77�

P1,x = P2,x = pxy cos 	 , �78�

P1,y = − P2,y = pxy sin 	 , �79�

P1,z = − P2,z = pz. �80�

The effective low energy spin Hamiltonian, derived by
Schrieffer-Wolff transformation up to fourth order in t /U,
and �P� /U is given by Eq. �57�, with the nonzero parameters,

J =
1

12U3 �pxy
4 − 2pxy

2 pz
2 + 3pz

4 − 8t2�pxy
2 + 5pz

2� + 48t4

− 8pxy
2 �pz

2 − 4t2�cos 2	 + 2pxy
4 cos 4	� , �81�

Dy = −
pxy

U3 �pz cos 	 + 2t sin 	��− pz
2 + 4t2 + pxy

2 cos 2	� ,

�82�

Dz = −
1

2U3 �4tpz − pxy
2 sin 2	��pz

2 − 4t2 − pxy
2 cos 2	� ,

�83�

�xx = −
1

6U3 �pxy
2 �1 − cos 2	� + 2pz

2��8t2 + pxy
2 �1 + cos 2	�� ,

�84�

�yy =
1

12U3 	− pxy
4 + 8pxy

2 pz
2 + 32t2�pxy

2 − pz
2�

+ pxy
2 �8�pz

2 − 4t2�cos 2	 + pxy
2 cos 4	 + 48tpz sin 2	�
 ,

�85�

�yz = �zy =
pxy

U3 �pz cos 	 + 2t sin 	��− 4tpz + pxy
2 sin 2	�

�86�

�zz = − �xx − �yy . �87�

In the lowest order in spin-orbit coupling the spin interaction
consists of the isotropic exchange with J�4t4 /U3, and
the Dzyalozhinsky-Moriya interaction with D
�−8t3�pxy sin 	ey + pzez� /U3.

As a matter of principle, the spin-orbit coupling mediated
hopping P does not have to be much weaker than the spin-
independent hopping t. In this case, all the nonzero terms in
Eqs. �81�–�87� are of comparable size, and the variation in
spin Hamiltonian with the angle 	 becomes significant. Note
that the angle 	 describes the directions of spin-orbit cou-
pling induced hopping parameters P1,2, and that it is not
directly connected to the bond angle between the magnetic
sites and the bridge site. However, for the bridge orbital
without azimuthal symmetry, the angle 	 does depend on the
bond angle. For the molecules in which the full symmetry
allows only for the spin-electric coupling mediated by the
spin-orbit interaction, this effect is important.

With these assumptions, the dependence of the effective
spin Hamiltonian on pxy suggests that the strength of induced
in-plane Dzyalozhinsky-Moriya vector will be sensitive to
the angle 	 that is determined by the angular dependence of
the bridge and magnetic center orbitals. In turn, for a fixed
symmetry of the bridge orbital, this dependence directly
translates into the dependence of the spin-electric coupling
constant on the bridge bond angle.

In the presence of electric field E=Eez, the hopping pa-
rameters will change from their initial values that satisfy the
constraints implied by the C2v symmetry, into a set of values
that satisfy those implied by v only. The resulting change in
the spin-Hamiltonian parameters reads

�J =
1

3U3 �4t0�12t0
2 − 5pz0

2 ��t + pz0�− 20t0
2 + 3pz0

2 ��pz� ,

�88�

�Dy = −
1

U3 �4t0
2 − pz0

2 ��2t0 sin 	 + pz0 cos 	��pxy , �89�

�Dz =
2

U3 �pz0�12t0
2 − pz0

2 ��t + t0�4t0
2 − 3pz0

2 ��pz� , �90�
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��xx = ��yy = −
1

2
��zz = −

16

3U3 t0pz0�pz0�t + t0�pz� ,

�91�

��yz = ��zy = −
4

U3 t0pz0�2t0 sin 	 + pz0 cos 	��pxy .

�92�

The v-symmetric variations in Hubbard parameters oc-
cur when an external electric field is applied along the z
direction to a C2v symmetric bond. Again, the variations in
the parameters is generically linear in the field strength, �t
=�t,vEz, �pxy =�pxy,vEz, and �pz=�pz,vEz, where the � pa-
rameters depend on the modification of the bridge orbital in
the electric field. As opposed to the case of the field along the
y direction that maintains the bonds C2v symmetry, the �
parameters for the field along the z axis vanish in zero field
since the z component of a vector has no matrix elements
between the relevant C2v-symmetric states. The linear expan-
sion is valid when the field is strong enough to distort the
bridge orbital. Alternatively, the expansion is valid for a
bond with lower symmetry in zero electric field, e.g., when
the bond is close to a surface.

2. Residual �h symmetry

In an electric field that lies in plane of the bond, with E  x̂,
the only residual symmetry transformation is the reflection
about the xy plane �h�. Within this reduced symmetry, the
two magnetic sites are no longer equivalent, but the spin-
dependent hopping parameters P1,2 still point along the z
axis,

t1 � t2, P1 = p1ez � p2ez = P2. �93�

In the fourth order in hopping parameters t and P, the
resulting low energy spin Hamiltonian is again given by Eq.
�57�, with the following nonzero coupling constants:

J =
1

12U3 �32t1t2p1zp2z − 4�t1
2p2z

2 + t2
2p1z

2 � + 48t1
2t2

2 + 3p1z
2 p2z

2 � ,

�94�

D = −
1

U3 �t1p2z − t2p1z��4t1t2 + p1zp2z�ez, �95�

�xx = �yy = −
�zz

2
= −

2

3U3 �t1p2z − t2p1z�2. �96�

Similar to the case of full C2v symmetry, the spin Hamil-
tonian consists of the isotopic exchange J, Dzyalozhinsky-
Moriya vector D=Dzẑ normal to the bond plane, and diago-
nal tensor � isotropic in the bond plane ��xx=�yy�. We stress
that the dependence of the effective spin Hamiltonian param-
eters on those entering the spin Hubbard Hamiltonian is dif-
ferent for these two symmetries, and so is the response to the
applied electric field. On one hand, the C2v preserving elec-
tric field induces the transitions in the lowest-energy multi-
plet in the lowest order. On the other hand, the electric field

that reduces the bond symmetry to 	E ,h
 does not alter the
coupling of spins in the lowest order since the deformation
of the molecule requires some coupling to the field.

As in previous case, we expand the h symmetric spin
Hamiltonian around the C2v symmetric case. We introduce a
perturbation of the parameters Hubbard parameters in the
electric field consistent with the residual symmetry: t1= t0
+�t1, t2= t0+�t2, p1z= pz0+�p1z, and p2z=−pz0+�p2z. As a
consequence, the spin Hamiltonian parameters are incre-
mented by

�J =
1

6U3 �4t0�12t0
2 − 5pz0

2 ���t1 + �t2� + pz0�− 20t0
2 + 3pz0

2 �

���p1z − �p2z�� , �97�

�Dz =
1

U3 �pz0t0�12t0 − pz0���t1 + �t2�

+ t0�4t0
3 − 3pz0

2 ���p1z − �p2z�� , �98�

��xx = ��yy = −
��zz

2
= −

8

3U3 t0pz0�pz0��t1 + �t2�

+ t0��p1z − �p2z�� . �99�

As for the case of v residual symmetry, there is no spin-
electric effect of the first order in electric field, and the cru-
cial condition for coupling to the electric field in this direc-
tion is weak splitting of the bridge orbitals in the molecular
field.

3. Residual Ry,� symmetry

Reduction in the symmetry of the bond, from the full C2v
to the group 	E ,Ry,�
, does not occur for any vector pertur-
bation. In terms of electric fields, this reduction in the sym-
metry would correspond to an inhomogeneous electric field
that points in the ez direction at the position of one of the
magnetic centers, and in the −ez direction at the position of
the other. This symmetry breaking can also happen when the
localized orbitals on the magnetic centers have lobes of op-
posite signs extending in the z direction and oriented oppo-
site to each other.

The most general Hubbard model parameters consistent
with the residual symmetry are

t1 = t2 = t , �100�

P1x = − P2x = pxy cos 	 , �101�

P1y = P2y = pxy sin 	 , �102�

P1z = P2z = pz. �103�

After the fourth-order Schrieffer-Wolff transformation,
the effective low-energy spin Hamiltonian has form �57�
with nonzero parameters,

J =
1

12U3 �pxy
4 − 2pxy

2 pz
2 + 3pz

4 − 8t2�pxy
2 + 5pz

2� + 48t2

+ 8pxy
2 �pz

2 − 4t2�cos 2	 + 2pxy
4 cos 4	� , �104�
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Dx =
1

U3 pxy�− 2t cos 	 + pz sin 	��pz
2 − 4t2 + pxy

2 cos 2	� ,

�105�

Dz = −
1

2U3 �4tpz + pxy
2 sin 2	��pz

2 − 4t2 + pxy
2 cos 2	� ,

�106�

�xx =
1

12U3 �− pxy
4 + 8pxy

2 pz
2 + 32t2�pxy

2 − pz
2�

+ pxy
2 �− 8�pz

2 − 4t2�cos 2	 + pxy
2 cos 4	

− 48tpz sin 2	�� , �107�

�zx = �xz =
1

U3 pxy�2t cos 	 − pz sin 	��4tpz + pxy
2 sin 2	� ,

�108�

�yy =
1

6U3 �pxy
2 �1 + cos 2	� + 2pz

2��pxy
2 �− 1 + cos 2	� − 8t2� ,

�109�

�zz = − �xx − �yy = −
1

6U3 	− pxy
4 + 2pxy

2 pz
2 + 8t2�pxy

2 − 4pz
2�

+ pxy
2 �− 2�pz

2 − 4t2�cos 2	 + pxy
2 cos 4	 − 24tpz sin 2	�
 .

�110�

The expansion from the C2v symmetric case gives �see the
discussion of the v residual symmetry in Sec. III D 1,

�J =
1

3U3 �4t0�12t0
2 − 5pz0

2 ��t + pz0�− 20t0
2 + 3pz0

2 ��pz� ,

�111�

�Dx =
1

U3 �4t0
2 − pz0

2 ��2t0 cos 	0 − pz0 sin 	0��pxy ,

�112�

�Dz =
2

U3 �pz0�12t0
2 − pz0

2 ��t + t0�4t0
2 − 3pz0

2 ��pz0� ,

�113�

��xx = ��yy = −
1

2
��zz = −

16

3U3 pz0t0�pz0�t + t0�pz� ,

�114�

��zx = ��xz =
4

U3 t0pz0�2t0 cos 	0 − pz0 sin 	0��pxy .

�115�

As in the case of v symmetry, the resulting interaction of
the spins on magnetic centers becomes dependent on the

angle 	 between the two P parameters. This dependence is
pronounced in the case of strong spin-orbit coupling and can
lead to the dependence of spin-electric effects on both the
geometry of the bond and the shape of the bridge orbital.

E. Bond modification and symmetries

Spin-electric coupling induced by the superexchange
through bridge atoms depends on the symmetry of the bridge
and the direction of the electric field. This symmetry reflects
on the resulting coupling of spins in an MN. In this section,
we combine the results of the Hubbard model study of the
individual bonds with the previous symmetry considerations
and provide rough estimates of the most promising spin-
electric coupling mechanism in the triangular and pentagonal
molecules.

The spin-electric coupling via superexchange is most sen-
sitive to the electric fields that does not break the initial C2v
local symmetry of the bond. This symmetry corresponds to
the electric field that lies in the plane of the molecule and
normal to the bond. All the other couplings require modifi-
cation of the bridge orbitals and are suppressed by a factor
d�E� /Ud, where Ud is on-site repulsion on the bridge. Assum-
ing that this repulsion is strong, we can model the spin elec-
tric coupling as a set of modifications of the spin interactions
�Hjj+1 between the neighboring magnetic centers, with
�Hjj+1� �E�

bond�, where E�
bond is the projection of the electric

field normal to the bond and lying in the molecule’s plane.
In the triangle, the strongest effects of electric field is

modification of exchange couplings �Jjj+1=�J0 cos�2j� /3
+�0�, where the angle �0 describes the orientation of the
in-plane component of the electric field, and �J0 is a
molecule-dependent constant. This modification leads to a
specific coupling of the in-plane components of chirality to
the electric field He−d

eff =dE� ·C, see Eq. �7�. Other types of
coupling are suppressed either due to weaker influence of
electric field on the bonds or due to the symmetry of the
molecule. If the spin-electric coupling is mediated by the
spin-orbit interaction, the suppression is by a factor of the
order �D� /J, and if the coupling is mediated by electric field,
the suppression factor is d�E� /J. Assuming the simplest case,
the modification of exchange coupling is the most promising
mechanism for spin-electric coupling in triangular mol-
ecules.

In the pentagons, the modification of spin-spin interaction
�Hjj+1 preferred by the superexchange mechanism is ineffi-
cient in inducing the spin-electric coupling of the molecule.
The pattern �Jjj+1 of exchange coupling constants induced by
an external electric field does not couple the states within the
lowest energy manifold. In order to couple the spins in the
pentagon to an external field, another mechanism is needed.
The modification of the Dzyalozhinsky-Moriya vectors
�Djz=�Dz0 cos�2j� /5+�0�, where �Dz0 is a molecule-
dependent constant, and �0 describes the orientation of the
in-plane component of the electric field, are preferred by the
superexchange bridge model. In the symmetry analysis, we
have found that this form of modification of spin-orbit cou-
pling does not induce spin-electric coupling. The same ap-
plies to the modifications of in-plane components Djj+1,x�y�.
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The main effect that gives rise to spin-electric coupling is the
modification of the exchange interactions �Jjj+1 in the pres-
ence of the original spin-orbit interaction Djj+1,z. Compared
to a triangle composed out of identical bonds, this interaction
will be weaker by a factor of �D j j+1� /Jjj+1.

In summary, within our model of the superexchange-
mediated spin-electric coupling, the most promising candi-
dates for the spin manipulation via electric field are triangu-
lar molecules. In pentagons, the best candidates are
molecules with strong spin-orbit interaction, and weakly split
bridge orbitals.

IV. EXPERIMENTAL SIGNATURES OF THE
SPIN-ELECTRIC COUPLING

Coherent quantum control of spins in an MN using elec-
tric fields can be achieved by resonant driving of the transi-
tions between the chirality eigenstates.42 At present, how-
ever, little is known about the effects of electric fields on the
spin states of molecular magnets. As a preliminary step, it is
thus useful to identify possible signatures of such a coupling
that are observable in the experiments routinely used to char-
acterize these systems.

In this section, we study the ways in which the spin-
electric coupling can be detected in electron spin resonance
�ESR�, in nuclear magnetic resonance �NMR�, and in the
thermodynamic measurement of an MN.

A. Electron spin resonance

ESR investigates transitions between states belonging to a
given S multiplet and having different spin projections M
along the magnetic field direction.67 This technique provides
information on the anisotropies of the spin system, as well as
on the chemical environment, and the spin dynamics.29 In the
following, we show how the effects of an external electric
field can show up in the ESR spectra of antiferromagnetic
spin rings by affecting both the frequency and the oscillator
strength of the transitions.

1. Triangle of s=1 Õ2 spins

We start by considering the simplest case of interest,
namely, that of a triangle of s=1 /2 spins with D3h symmetry.
The lowest energy eigenstates of the spin triangle, given in
Eq. �3� form an S=1 /2 quadruplet. The effective Hamil-
tonian Heff of the molecule in the presence of electric and
magnetic fields within this quadruplet is given by Eq. �15�.

We first consider the case of a static magnetic field per-
pendicular to the molecule’s plane �B  ẑ�. The eigenvalues of
Heff are then given by



� = �B + ���SO

2 + E2�1/2� , �116�

where E�d�E� ẑ�, B=�B
�g

2Bz
2+g�

2 B�
2 , = �1 /2 is the ei-

genvalue of Sz, and �= �1 is the eigenstate chirality in the
limit of vanishing electric field. In fact, �


��E=0 coincides
with �� ,� up to a phase factor. In the presence of electric
field, the eigenstates read

�

�� = 	2��SO + ��E2 + �SO

2 �1/2��+ 1,� + Ee−i��− 1,�
/D�,

�117�

where D�= 	E2+ ��SO+��E2+�SO
2 �1/2�2
1/2.

Electron spin resonance induces transitions between such
eigenstates. The transition amplitudes are given by the abso-
lute values of matrix elements of x component of the total
spin, taken between the states that the transition connects,

�
−1/2
� �Sx�
+1/2

−� � = − E2/D+1D−1, �118�

�
−1/2
� �Sx�
+1/2

� � =
�SO��SO + ��E2 + �SO

2 �1/2�
�D��2 . �119�

The corresponding frequencies are given by


+1/2
� − 
−1/2

−� = B , �120�


+1/2
� − 
−1/2

� = B + ��E2 + �SO
2 �1/2. �121�

As an illustrative example, we plot the frequencies and am-
plitudes of the ESR transitions as a function of the electric
field �Fig. 7�. While for E=0, these transitions can only take
place between states of equal Cz �red and green symbols
online, transitions with the larger amplitude at low fields, in
the figure and in the inset�, the electric field mixes states of
opposite chirality, thus transferring oscillator strength to two
further transitions, whose frequencies are independent of E
�blue symbols online, constant frequency transition in the
figure�. In the limit dE�Dz, the eigenstates of the spin
Hamiltonian tend to coincide with those of S12

2 , and ESR
transitions take place between states of equal S12. While the
eigenstates depend on the in-plane orientation of the electric
field, no such dependence is present in the frequencies and
oscillator strength of the ESR transitions. Besides, these
quantities are independent of the exchange coupling J and

FIG. 7. �Color online� Energy ��� of the ESR transitions in a
triangle of s=1 /2 spins as a function of the applied electric field E
that lies in the molecule’s plane so that d�E�=dE=E. The magnetic
field is B  ẑ and �0=g�BB, see Eqs. �120� and �121�. The diameter
of the circles is proportional to the transition amplitudes ����Sx�����,
Eqs. �118� and �119�. Here, ��� are the eigenstates of H in the
lowest energy S=1 /2 multiplet. Inset: eigenvalues �in units of Dz�
as a function of E=d�E�, in units 3Dz /4.
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depend on the value of the applied magnetic field only
through an additive constant ��0�.

The dependence of the ESR spectrum on the applied elec-
tric field is qualitatively different if the static magnetic field
is applied in-plane �e.g., B  x̂ and the oscillating field ori-
ented along ẑ�. In this case, the eigenvalues of Heff are

�
� = ���SO

2 + �E + �B�2�1/2, �122�

where = �1 /2 is the value of �Sx� in the limit of large
magnetic field �B�E ,�SO� and �= �1. The corresponding
eigenstates read

��
�� = 	ei���SO + �

����+ 1,+ 1/2� − �− 1,− 1/2��

+ �B + �E���+ 1,− 1/2� − �− 1,+ 1/2��
/D
�,

�123�

where

D
� = �2���SO + �

��2 + �B + �E�2�1/2. �124�

The expectation values of the total spin along the magnetic
field for each of the above eigenstates are given by the fol-
lowing expressions

��
��Sx��

�� = 2���SO + �
���B − �E��/�D

��2, �125�

which are independent of the in-plane direction of the elec-
tric field. The ESR transitions between such eigenstates in-
duced by a magnetic field that oscillates along the z direction
are given by the expressions

��
��Sz���

−�� =
��SO + �

����SO + ��
−�� + �E2 − B2�

D�D−� ,

��
��Sz���

� � = 0. �126�

Therefore, the application of the electric field shifts the en-
ergy of the transitions between states of opposite �, thus
removing their degeneracy; however, unlike the case B  ẑ, it
does not increase the number of allowed transitions.

In the case of tilted magnetic fields, the dependence of the
ESR spectrum on the applied electric field presents qualita-
tively different features �Fig. 8�. In particular, the spectrum is
dominated by two pairs of degenerate transitions that anti-
cross as a function of the electric field. Away from the anti-
crossing, the transitions with the largest oscillator strength
display frequency dependence on the electric field.

2. Pentagons of s=1 Õ2 spins

Triangles of s=3 /2 spins �not shown here� display the
same qualitative behavior as the one discussed above. In
contrast, chains including an odd number N�3 spins behave
differently. This is mainly due to the fact that the spin-
electric coupling �H does not couple directly the four eigen-
states of H belonging to the lowest S=1 /2 multiplet: such
coupling only takes place through mixing with the higher S
=1 /2 multiplet. As a consequence, the effects of the spin-
electric coupling tend to be weaker as compared to the case
of the triangle; besides, unlike the above case of the spin

triangle, they depend on the exchange coupling J. Illustrative
numerical results are shown in Figs. 9 and 10 for the cases of
a perpendicular and in-plane magnetic field, respectively. In
the former case, both the frequencies and amplitude of the
ESR transitions are hardly affected by the electric field in the
same range of physical parameters considered in Fig. 7. In
the case of an in-plane magnetic field, instead, a relatively
small shift in the transition energies is accompanied by a
strong transfer of the oscillator strength for values of the
spin-electric coupling exceeding the Dzyalozhinsky-Moriya
coupling constant.

FIG. 8. �Color online� Energy ��� of the ESR transitions in a
triangle of s=1 /2 spins as a function of the applied in-plane electric
field E so that d�E�=dE=E, and in the presence of the in-plane
magnetic field B  x̂. The diameter of the circles is proportional to
����Sz�����, Eqs. �120� and �121�. The states ��� are the eigenstates
of H in the lowest S=1 /2 multiplet. Inset: eigenvalues �in units of
Dz� as a function of d�E�=E, in units 3Dz /4.

FIG. 9. �Color online� Energy ��� of the ESR transitions in a
pentagon of s=1 /2 spins as a function of the electric field applied
in the molecule’s plane d�E�=dE=E. The Zeeman splitting, �0

=g�BB is set by the magnetic field B  ẑ, orthogonal to the mol-
ecule’s plane. The considered transitions are those between eigen-
states ����� belonging to the S=1 /2 multiplet of the spin Hamil-
tonian �figure inset�. Unlike the case of the spin triangle, these are
coupled to each other by the electric field via eigenstates belonging
to other multiplets, and therefore depends also on the exchange
constant J �here J /�SO=100�. The diameter of the circles is propor-
tional to ����Sx�����, and therefore to the transition amplitude.
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B. Nuclear magnetic resonance

The spin-electric Hamiltonian �H0 modifies nonuniformly
the superexchange couplings between neighboring spins.
This might not affect the projection of the total spin �as in the
case B  ẑ, see above�, but it generally affects the moment
distribution within the spin chain. Such effect can be inves-
tigated through experimental techniques that act as local
probes in molecular nanomagnets, such as NMR �Ref. 68� or
x-ray absorption.69 In NMR, the expectation value of a given
spin within the cluster can be inferred through the frequency
shift induced on the transitions of the corresponding nucleus.
The shift in the nuclear resonance frequency for the nucleus
of the i-th magnetic ion is ��=�A�sz,i�, where A is the con-
tact hyperfine interaction constant at the nuclear site. The
constant of proportionality A depends on the spin density at
the position of the nucleus and can be extracted from the
experiment by considering the polarized ground state M =S
at high magnetic fields.68 As in the case of ESR, the depen-
dence of the NMR spectra on the applied electric field quali-
tatively depends on the orientation of the static magnetic
field B with respect to the molecule. Unlike the case of ESR,
however, it also depends on the in-plane orientation of the
electric field, i.e., on the way in which the E breaks the
symmetry of the molecule.

1. Spin triangles

Let us start by considering a spin s=1 /2 triangle, with a
magnetic field applied perpendicular to the molecule plane
�B  ẑ�. In this case, the distribution of the spin projection
along z is given by the following expression:

�

��si,z�


�� = /3 + f
��E�cos�� + ��5/3 − i�� , �127�

where

f
��E� �

4E��SO + ���SO
2 + E2�1/2�

3�D��2 . �128�

Here, the expressions of the eigenstates �

�� and of D� are

given in Sec. IV A. For E=0, the three spins are equivalent
and �
�1/2

� �si,z�
�1/2
� �= �1 /6. If the electric field is finite and

oriented along one of the triangle sides �e.g., E r12, corre-
sponding to �=0�, then expectation values along z of spins 1
and 2 undergo opposite shifts, whereas that of spin 3 is left
unchanged: �E�s1,z�=−�E�s2,z�, where �E�si,z���si,z�E
− �si,z�E=0. This is shown in Fig. 11 for the ground state of the
spin Hamiltonian, but the above relations hold for any of the
four eigenstates �


�� belonging to the S=1 /2 quadruplet. If
the NMR frequency shifts ��i are larger than the correspond-
ing line widths, the single line at E=0 splits into three equi-
spaced lines, with intensity ratios 1:1:1. If, instead, the elec-
tric field is applied along a symmetry plane of the triangle
�e.g., E�r12, corresponding to �=� /2�, spins 1 and 2 re-
main equivalent and their magnetic moments display the
same electric field dependence, while the shift of the third
one is opposite in sign and twice as large in absolute value:
�E�s1,z�=�E�s2,z�=−�E�s3,z� /3. The intensity ratios of the
two NMR lines are, correspondingly, 1:2. The expectation
values for the remaining eigenstates can be derived by the
following equations: �E�
−1/2

� �si,z�
−1/2
� �=−�E�
+1/2

� �si,z�
+1/2
� �

and �

1 �si,z�


1�=−�E�

−1�si,z�


−1�. Therefore, at finite tem-
perature, the shifts in the expectation values of the three
spins are given by

FIG. 10. �Color online� Energy ��� of the ESR transitions in a
pentagon of s=1 /2 spins as a function of the applied in-plane elec-
tric field E so that d�E�=dE=E. The Zeeman splitting is set by an
in-plane magnetic field B  x̂, and �0=g�BB. The considered transi-
tions are those between eigenstates ����� belonging to the S=1 /2
multiplet of the spin Hamiltonian �figure inset�. Unlike the case of
the spin triangle, these are coupled to each other by the electric field
via eigenstates belonging to other multiplets and therefore depends
also on the exchange constant J �here J /�SO=100�. The diameter of
the circles is proportional to ����Sz�����, and therefore to the transi-
tion amplitude.

FIG. 11. �Color online� Expectation values of the z component
of s=1 /2 spins in a triangular molecule as a function of applied
electric field. The magnetic field is perpendicular to the ring plane
�B  ẑ�; the electric field is parallel and perpendicular to r12 in the
upper and lower panel, respectively. In the electric field along one
of the bonds �lower panel�, the spins that lie on that bond have the
same out-of-plane projections. The shadings �colors online� denote
the different spins.
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�E�si,z�
�E�
−1/2

+1 �si,z�
−1/2
+1 �

=

�
�

� cosh�
−1/2
�

kBT
�

�
�

cosh�
−1/2
�

kBT
� . �129�

If the field is oriented along the molecule plane �B  x̂�, the
expectation value of the three spins corresponding to each of
the eigenstates are given by the following expressions:

��
��si,x��

�� = g
��E� + �1/3�cos�� − 2i�/3� , �130�

where

g
��E� �

2

3

��SO + �
���B + �E�

�D��2 . �131�

If the magnetic field is parallel to the triangle plane, the
in-plane electric field can modify the total spin expectation
value along B. The changes that E induces in the magneti-
zation distribution within the triangle at zero temperature are
less varied than in the previous case �Fig. 11�. In fact, the
magnitude of the �E�si,z� is much smaller, and all the spins
undergo shifts of equal sign and slope. The NMR line, which
is slitted into three lines already for E=0, is rigidly shifted
by the applied electric field.

If the triangle is formed by half-integer spins s�1 /2, an
analogous dependence of the expectation values �si,z� on the
electric field is found. As an illustrative example, we report
in Fig. 12 the case of s=3 /2.

2. Pentagon of s=1 Õ2 spins

Spin chains consisting of an odd number of half-integer
spins present analogous behaviors but also meaningful dif-
ferences with respect to the case of the spin triangle. In par-
ticular, the spin-electric Hamiltonian �H0 does not couple
states belonging to the lowest S=1 /2 quadruplet directly

�i.e., matrix elements �i��H0�j�=0 for i , j�4�; these cou-
plings are mediated by states belonging to higher S=1 /2
multiplets that are higher in energy by a quantity �J. There-
fore, the effect of the electric field tends to be significantly
smaller than in the case of a triangle with equal Dz and E �see
Fig. 13� and depends also on the exchange coupling J.

C. Magnetization, polarization, and susceptibilities

The spin-electric coupling shifts the energy eigenvalues of
the nanomagnet, thus affecting thermodynamic quantities,
such as magnetization, polarization, and susceptibilities. In
the following, we compute these quantities in the case of the
s=1 /2 spin triangle as a function of the applied magnetic
and electric fields. Under the realistic assumption that the
exchange splitting J is the largest energy scale in the spin
Hamiltonian, and being mainly interested in the low-
temperature limit, we restrict ourselves to the S=1 /2 quadru-
plet, and use the effective Hamiltonian Heff in Eq. �21�.

The eigenenergies of the lowest S=1 /2 sector in the pres-
ence of electric and magnetic fields are

E�,� = ���B2 + �SO
2 + E2 + 2�E0

2, �132�

with B=�B
�g

2H
2+g�

2 H�
2 , E0= ��Bz�SO�2+��BE�2��1/4, and

Bz=�BgH. Note that these energies are the generalization
of the ones in the previous section, which were valid for
in-plane magnetic field only, and that the magnetic field Bi
��0Hi, with i=x ,y ,z. The partition function for N identical
and noninteracting molecules is Z=Z1

N, with Z1
=��,� exp�−�E�,�� being the partition function for one mol-
ecule, and �=1 / �kBT�. The free energy reads

F � − 1/� ln Z = − NkBT ln�2�
�

cosh��E��� , �133�

with E��E1/2,�. From this, we can derive different thermo-
dynamic quantities like the magnetization Mi=−�F /�Hi, the

FIG. 12. �Color online� Expectation values of the z component
of s=3 /2 spins in a triangular molecule as a function of applied
electric field. The magnetic field is perpendicular to the ring plane
�B  ẑ�; the electric field is parallel and perpendicular to r12 in the
upper and lower panels, respectively. The shadings denote the dif-
ferent spins.

FIG. 13. �Color online� Expectation values of the z component
of s=1 /2 spins in a pentagon as a function of applied electric field.
The magnetic field is perpendicular to the ring plane �B  ẑ�; the
electric field is parallel ��=0� and perpendicular ��=� /2� to r12 in
the upper and lower panel, respectively. The shadings �colors on-
line� denote the different spins.
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electric polarization Pi=−�F /�Ei, the heat capacity C=
−� /�T�� ln�Z� /���, and the corresponding susceptibilities:
�EiEj

=�Pi /�Ej =�2F /�Ei�Ej—the electric susceptibility,
�BiBj

=�Mi /�Hj =�2F /�Hi�Hj—the spin susceptibility, and
�EiBj

=�Pi /�Mj =�2F /�Ei�Hj—the spin-electric susceptibil-
ity. For the electric polarization components Pi we get

Pi =
NdEi

4 �
�=�1

cosh��E��
�

�=�1

sinh��E��
E�

��1 + �
B2

E0
2��1 − �i,z� , �134�

while for the magnetization components Mi we get

Mi =
Ngi�BBi

2 �
�=�1

cosh��E��
�

�=�1

sinh��E��
E�

��1 + �
�SO

2 �i,z + E2

E0
2 � , �135�

where again i=x ,y. Making use of the above expressions, we
can obtain the above defined susceptibilities

�EiEj
=

Pi

Ej
�ij − �PiPj +

Nd4EiEj

2 �
�=�1

cosh��E��

� � �
�=�1

�E� cosh��E�� − sinh��E��
2E�

3 �1 + �
B2

E0
2�2

+ �
B4

E0
6

sinh��E��
E�

� = �EjEi
, �136�

�BiBj
=

Mi

Bj
�ij − �MiMj +

Ngi
2gj

2BiBj

2 �
�=�1

cosh��E��
�

�=�1
� ��SO

2 �i,z + E2���SO
2 � j,z + E2�

E0
6

sinh��E��
E�

+
�E� cosh��E�� − sinh��E��

2E�
3

��1 + �
�SO

2 �i,z + E2

E0
2 ��1 + �

�SO
2 � j,z + E2

E0
2 �� = �BjBi

, �137�

�BiEj
= − �MiPj +

Ngi
2d2BiEj

2 �
�=�1

cosh��E��
�

�=�1
��

��SO
2 �i,z + E2���SO

2 � j,z + E2�

E0
6

sinh��E��
E�

+
�E� cosh��E�� − sinh��E��

2E�
3

��1 + �
�SO

2 �i,z + E2

E0
2 ��1 + �

B2

E0
2���1 − � j,z� = �EjBi

. �138�

The polarization P, magnetization M, and susceptibilities �,
Eqs. �134�–�138�, all depend on the spin-electric coupling
constant d. In the following, we analyze the details of this
dependence and identify the conditions suitable for extract-
ing the value of d from the measurable quantities.

1. Polarization and magnetization

The in-plane polarization of the molecule as a function of
the magnetic field is illustrated in Figs. 14 and 15. The po-
larization is a growing function of the magnetic field
strength, and it gets reduced by the normal component of the
field.

The low-temperature, kBT��SO, thermodynamic proper-
ties of a molecule with spin-electric coupling show a simple
dependence on the strength of external electric and magnetic
fields in the special cases of in-plane and out-of plane mag-
netic fields. We focus only on effects in leading orders in
electric field under the realistic assumption that the electric
dipole splitting is small compared to the SO splitting, i.e.,

E��SO. Also, we analyze two limiting cases: �i� kBT�E,
i.e., low-temperature regime, and �ii� kBT�E, i.e., high tem-
perature regime. However, we assume all temperatures �in
both regimes� to satisfy kBT��SO so that the spin-orbit split
levels are well resolved. In the first case �i�, we obtain for the
polarization

Pi ��
ndEiB
4E�B

for E � B

nd�SO
2 Ei

4�B
3

for E � B ,� �139�

while for the second situation �ii� we obtain

Pi �
nd�SO

2 Ei

4�B
3 �1 +

B2

�SO
2 ��B� , �140�

with �B=�B2+�SO
2 and n=N /V the density of molecules in

the crystal. We see that, for low temperatures, the electric
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polarization Pi ranges from being independent of the magni-
tude of the electric field �E�B� to a linear dependence on
the applied electric field E for large fields �E�B�. Also, the
polarization is strongly dependent on the magnetic field �lin-
ear in B� for low E fields, thus implying strong magnetoelec-
tric response.

We now switch to the other special case, namely, when
the external magnetic field is applied perpendicularly to the
spin triangles. The electric polarization now reads

Pi =
ndEi

4�E
tanh���E� , �141�

with �E=��SO
2 +E2. The polarization Pi does not depend on

the magnetic field B, and there are no spin-electric effects
present for this particular case.

Our results suggest that the spin-electric coupling can be
detected by measuring the polarization of the crystal of tri-
angular single molecule antiferromagnets that lie in parallel
planes in the in-plane electric and magnetic fields.

The out-of plane component Mz of the molecule’s magne-
tization is rather insensitive to the electric fields since any
effect of the applied in-plane electric field has to compete
with the spin-orbit coupling induced zero-field splitting �SO.
Since we expect to find weak coupling to electric field and
small coupling constant d, it would require very strong elec-
tric fields to achieve the regime d�E���SO. The in-plane
components of magnetization Mx and My, on the other hand,
show clear dependence on electric fields, Fig. 16. At low
magnetic fields the in-plane component of polarization ap-
pears and grows with the strength of in-plane electric fields.
However, the electric field dependence becomes less pro-
nounced when an additional magnetic field is applied normal
to the triangle’s plane.

In the dependence of the magnetization on electric fields,
and for the case of an in-plane magnetic field, we find the
same two main regimes as in the study of the polarization:
E�kBT �i� and E�kBT �ii�. In the first case �i� we obtain

Mi �
ngi�BBi

4�B
�1 +

E�SO
2

B�B
2 � , �142�

while for the second case �ii� we get

Mi =
ng��BBi

4�B
�1 −

3E2�SO
2

2�B
4 �1 −

��B
3

�� . �143�

The magnetization shows a strong dependence on the electric
field E, especially for E�B where this is linear in E field.
For low electric fields, however, the magnetization shows
only a weak dependence on the electric field, both at low and
high temperatures.

For the magnetization �along z� in the presence of a per-
pendicular �also along z� magnetic field we obtain

Mz =
ngz�B

4
tanh��B� , �144�

which is manifestly independent of the spin-electric coupling
constant d.
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FIG. 14. �Color online� Electric polarization Px �x component�
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nal electric field in the z direction. The plot is for the temperature
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2. Susceptibilities

The effects of spin-electric coupling on the polarization of
a molecule show up in the electric susceptibility and the
spin-electric susceptibility. In Figs. 17 and 18, we plot the xx
and xy components of the electric susceptibility tensor as a
function of electric field for various strengths and orienta-
tions of an additional magnetic field. Both susceptibilities
show a high peak in the region of weak electric fields that is
suppressed by in-plane magnetic fields. The peaks are pro-
nounced at low temperatures and vanish as the temperature
exceeds the splitting of the two lowest-energy levels, kBT
�d�E�.

In the case of in-plane magnetic field, and weak coupling
to the electric field d�E���SO, we can calculate the electric
�EiEj

and spin-electric �EiBj
susceptibilities in the two limit-

ing cases �i� and �ii� defined above, with i=x ,y. For the
electric susceptibility we obtain

�EiEj
��

nd2B�E2�ij − EiE j�
4E3�B

for E � B

nd2�SO
2 �ij

4�B
3

for E � B� �145�

in the first case �i�, and

�EiEj
�

nd�SO
2 �ij

4�B
3 �1 +

B2

�SO
2 ��B� . �146�

in the second case �ii�. We see that for low E fields, the
electric susceptibility �EiEj

depends strongly on the applied
electric field, and even vanishes if the field is applied, say,
along the x or y directions. For large E fields instead, the
electric susceptibility becomes independent of the electric
field itself and, for low magnetic fields �i.e., for B��SO� this
reduces to a constant value �EiEj

=�ijnd2 /4�SO. At finite
�large� temperatures the electric susceptibility is still inde-
pendent of the electric field, but it is enhanced by thermal
effects �1 /T.

For the electric susceptibilities �EiEj
in perpendicular

magnetic field, we obtain

�EiEj
=

nd2

4�E
��ij −

EiE j

�E
� , �147�

where we assumed �SO�kBT, as in the previous section. As
expected, there is no dependence of �EiEj

on the B field, and
for vanishing electric field the electric susceptibility reduces
to a constant �EiEj

=�ijnd2 /4�SO.
The quantity of most interest in the present spin system is

the spin-electric susceptibility �EiBj
, i.e., the magnetic re-

sponse �electric response� in electric fields �magnetic fields�.
The nonzero spin-electric susceptibility allows for the elec-
tric control of magnetization and magnetic control of polar-
ization in the crystals of triangular MNs, even in the case
when the coupling between the molecules is negligible. In
addition, �EiBj

is nonzero only in the presence of spin-electric
coupling, i.e., when d�0.

The spin-electric susceptibility shows a characteristic
peak in weak electric fields which vanishes in an external
magnetic field, see Figs. 19 and 20. The peak in the diagonal
xx component, �ExBx

, moves toward the higher electric fields
and broadens as the magnetic field Bx increases. The peak in
the off-diagonal component �ExBz

, on the other hand, shifts
toward the lower electric fields and narrows as the in-plane
magnetic field increases. Both peaks disappear at high tem-
peratures, kBT��SO.

For in-plane magnetic fields and weak spin-electric cou-
pling the spin-electric susceptibility �EiBj

is

�EiBj
�

ndgj�BEiB j�SO
2

4EB�B
3 �148�

for the low temperature case �i�, while for the second case
�ii� we obtain
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FIG. 17. �Color online� Electric susceptibility �xx component�,
Eq. �136�, as a function of the electric field in x direction. The three
lines correspond to various values of the external magnetic field in
the x direction. The plot is for the temperature kBT=0.001�SO. In
the inset, the same quantity is plotted at a higher temperature,
kBT=0.1�SO.
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�EiBj
� −

3n�SO
2 dgj�BEiB j

4�B
5 �1 −

��B
3

� . �149�

By inspecting the above expression, we can infer that for low
temperatures and low E fields the spin-electric susceptibility
shows no dependence on the absolute value of the electric
field E and only a weak dependence on the applied magnetic
field B. Moreover, when both fields are applied along one
special direction, say, along x, and assuming also B��SO,
the spin-electric susceptibility becomes �ExBx

=ndgi�B /4�SO,
i.e., it reaches a constant value. The finite temperature ex-
pression shows that the spin-electric response is reduced, as
opposed to the electric response where temperature increases
the response. Thus, for strong spin-electric response one
should probe the spin system at low temperatures �kBT
��SO� �Fig. 21�.

The diagonal out-of-plane component of the magnetic
susceptibility, �BzBz

, in the presence of an external magnetic
field in the x direction decays strongly in the applied electric

field along the x direction, Fig. 22. In electric fields, the �BxBx
component shows a peak that is reduced by the application
of the magnetic field in the x direction, Fig. 23.

We can derive the magnetic susceptibilities in the two
regimes. In the first case �i� we obtain �assuming now only
linear effects in E field�

�BiBj
=

ng�
2 �B

2

2�B
��ij −

BiB j

�B
2 +

E�SO
2

B�B
2 ��ij −

�3B2 + �B
2 �BiB j

B2�B
2 �� ,

�150�

with i , j=x ,y, while

�BzBz
=

ngz
2�B

2

2�B

�SO
2

BE
�151�

for Bz�SO�BE. At low temperatures the in-plane magnetic
susceptibility shows a linear dependence on the applied elec-
tric field E, thus allowing for a simple estimate of the electric
dipole parameter d from magnetic measurements. Note that
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FIG. 19. �Color online� Linear magnetoelectric tensor �xx com-
ponent� in Eq. �138� as a function of the electric field in the x
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nal magnetic field in the x direction. The plot is for the temperature
kBT=0.001�SO.
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for strong electric fields �E�B�, the magnetic susceptibility
can vanish since the magnetization does not depend on the
magnetic field anymore. However, such a regime would not
help to identify the electric dipole coupling strength d from
susceptibility measurements directly. The perpendicular
magnetic susceptibility shows a strong electric field depen-
dence �BzBz

�E−1 and can be used as an efficient probe for
extracting the electric dipole parameter d. In the second case
�ii� we obtain

�BiBj
=

ng�
2 �B

2

2�B
��ij −

BiB j

�B
2 −

E2�SO
2

�B
4 �3

2
��ij +

BiB j

�B
2 �

− ��B��ij +
4BiB j

�B
2 ��� , �152�

when i , j=x ,y, and

�BzBz
=

ngz
2�B

2B2

2�B
3 �1 + ��B

�SO
2

B2 � . �153�

The magnetic response increases with temperature. Also, in
this limit the dependence of the magnetic susceptibility on
the applied electric field is rather weak ��BiBj

�E��E2�, thus
this regime is also not suitable for observing spin-electric
effects.

For the magnetic susceptibility in the perpendicular mag-
netic field we find

�BzBz
=

�ngz
2�B

2

4
sech��B� , �154�

while for the in-plane magnetic susceptibility �Bx�y�Bx�y�
we

obtain

�Bx�y�Bx�y�
=

ngz
2�B

2�SO

2�B2 − �SO
2 �� B

�SO
�1 −

E2

B2�tanh��B� − 1�
�155�

in the limit B ,kBT��SO. We mention that for B perpendicu-
lar to the molecular plane there is no electric field E �mag-

netic field B� dependence of the magnetization Mi �electric
polarization Pi�. Thus, in order to see spin-electric effects
one needs to apply magnetic fields which have nonzero in-
plane components.

D. Heat capacity

Next we investigate the dependence of the heat capacity
on the applied electric and magnetic fields in different
regimes. The heat capacity is defined as C
=−� /�T�� ln�Z� /��� so that we obtain

C =
NkB�2

4 �
p=�1

�E1 + pE−1�2

cosh2���E1 + pE−1�
2

� . �156�

We consider the cases of perpendicular B field and in-plane
B field in the limit �SO�kBT. In the first case, i.e., for B  z
we obtain

C � NkB�2��E
2e−2��SO + B2e−2�B, B � kBT

�E
2e−2��SO +

B2

4
, B � kBT . �

�157�

The heat capacity C shows a quadratic dependence on the
applied electric field for the entire range of E-field strengths.
On the other hand, the magnetic field dependence of C is
nonmonotonic and shows a maximum for some finite B-field
strength Bmax�kBT. In the second situation, i.e., for B�z we
get

C � NkB�2�
B2E2

�B
2 e−2��BE/�B� + �B

2 e−2��B, E � kBT

B2E2

4�B
2 , E � kBT .�

�158�

As in the previous case, the dependence of the heat capacity
C is linear in E field for low E fields. However, for large E
fields the dependence is nonmonotonic and thus shows a
maximum for some finite electric field strength Emax�kBT.
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FIG. 24. �Color online� Heat capacity, Eq. �156�, as a function
of temperature in various electric fields.
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Note that in this case also the dependence on the magnetic
field is nonmonotonic, and thus we obtain a second maxi-
mum for Bmax�kBT. The effects of the spin-electric coupling
on the heat capacity are illustrated in Figs 24 and 25. We can
conclude from the above expressions that the strongest de-
pendence of the heat capacity on the electric field is when the
magnetic field is applied in plane, and then it is mostly qua-
dratic.

For the derivation of all the thermodynamic quantities
presented in the previous sections, we have restricted our-
selves to the contributions arising from only the lowest four
states, even though the spin system spans eight states in total.
This description is valid if the splitting between the energies
of S=1 /2 and S=3 /2 states is much larger than the tempera-
ture kBT. This splitting varies strongly with the applied mag-
netic field for B=3J /4 one of the S=3 /2 states �M =−3 /2�
crossing the M =1 /2 of the S=1 /2 states and, even more,
for B�3J /2 the M =−3 /2 becomes the spin system ground
states. Thus, for large magnetic fields our effective descrip-
tion in terms of only the S=1 /2 states breaks down and one
have to reconsider the previous quantities in this limit.

V. CONCLUSIONS

Electric fields can be applied at very short spatial and
temporal scales, which makes them preferable for quantum
information processing applications over the more standard
magnetic fields. Molecular nanomagnets, while displaying
rich quantum dynamics, have not yet been shown to respond
to electric fields in experiments. We have investigated theo-
retically the possibility of spin-electric coupling in molecular
nanomagnets using symmetry analysis and found that the
spin-electric coupling is possible in antiferromagnetic
ground-state manifolds of spin-1 /2 and spin-3 /2 triangles, as
well as in spin-1 /2 pentagon. The spin-electric coupling in
the triangle can exist even in the absence of spin-orbit cou-
pling, while the coupling in the pentagon requires the spin-
orbit interaction in the molecule. We have characterized the
form of the spin-electric coupling in all of these molecules
and presented the selection rules for the transitions between
the spin states induced by electric fields.

While the symmetry can predict the presence or absence
of the spin-electric coupling, it cannot predict the size of the

corresponding coupling constant. In order to find a molecule
suitable for electric manipulation, it is necessary to have an
estimate of the spin-electric coupling strength. For this pur-
pose, we have described the molecular nanomagnets in terms
of the Hubbard model and related the coupling constants of
the symmetry-based models to the hopping and on-site en-
ergy parameters of the Hubbard model. We have found that
the modification of the Hubbard model parameters due to the
electric field produces a spin-electric coupling of the same
form as predicted by the symmetry analysis. However,
within the Hubbard model, the coupling constants have a
clear and intuitive meaning in terms of the hopping and on-
site energies of the localized electrons. We have also studied
the superexchange interaction of the spins on the magnetic
centers through the bridge. If we assume that the interaction
of the localized spins is a property of the bridge alone, the
spin-electric coupling can be calculated by ab initio analysis
of the bridge alone, and not of the entire molecule.

Finally, we analyzed the role of spin-electric coupling in
standard experimental setups typically used for the charac-
terization of molecular nanomagnets. We find that the spin-
electric coupling can be detected in the ESR and NMR spec-
tra that probe the local spins. Also, thermodynamic
quantities, like the polarization, magnetization, linear mag-
netoelectric effect, and the specific heat, show signatures of
spin-electric coupling in the triangular molecules. Thus, our
results set a path toward finding suitable molecules that ex-
hibit spin-electric effects and how they can be identified ex-
perimentally.

In this work, we have focused on the spin rings with an
odd number of magnetic centers �odd spin rings�, whose
low-energy spectrum is dominated by frustration effects. The
odd spin rings, due to frustration, possess a fourfold degen-
erate ground state multiplet, which can be split by electric
fields. As opposed to the odd spin rings, the ground states of
even-spin rings is usually a nondegenerate S=0 state, sepa-
rated from the higher energy states by a gap of the order of
exchange coupling J. Coupling of the electric field to these
states can thus proceed only via excited states, and the cou-
pling strength is reduced by d�E� /J. Similarly, in odd-spin
rings where the spin frustration is removed by a lowered
symmetry, the ground-state multiplet consists of an S=1 /2
Kramers doublet, which cannot be split by electric fields.
Therefore, the odd spin rings with equivalent magnetic cen-
ters seem to be the most suitable candidates for observing the
spin-electric coupling and using it for quantum control of
spins.
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APPENDIX A: SPIN STATES IN TERMS OF THE c�
†

OPERATORS

In this appendix, we show the expressions for the three-
electron symmetry-adapted states ���

i,� in Eqs. �29� and �37�
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FIG. 25. �Color online� Heat capacity, Eq. �156�, at low tem-
perature as a function of external electric field.
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in terms of the symmetry adapted creation operators c�,
† .

Making use of Eq. �46� we obtain
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where  stands above for sign��.

APPENDIX B: HSO, He−d
0 , AND He−d

1 MATRIX ELEMENTS

For the SOI matrix elements we obtain

��A1�
2�HSO��A2�

1� =
2i
SO
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��E
��
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while the remaining terms are equal to zero. For the electric
dipole matrix elements we obtain
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