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The transmission phase through a quantum dot with few electrons shows a complex, nonuniversal behavior.
Here we combine configuration-interaction calculations—treating rigorously Coulomb interaction—and the
Friedel sum rule to provide a rationale for the experimental findings. The phase evolution for more than two
electrons is found to strongly depend on dot’s shape and electron density whereas from one to two, the phase
never lapses. In the Coulomb �Kondo� regime, the phase shifts are significant fractions of � �� /2� for the
second and subsequent charge addition if the dot is strongly correlated. These results are explained by the
proper inclusion in the theory of Coulomb interaction, spin, and orbital degrees of freedom.
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I. INTRODUCTION

Recent experiments by the Weizmann group have stirred
much attention to the phase that electrons acquire when they
traverse a quantum dot �QD� embedded in the arm of a
Aharonov-Bohm interferometer.1,2 These fascinating mea-
surements call for a deeper understanding of electron trans-
port through a strongly interacting object. If many
electrons—say N�10—populate a QD, the transmission
phase � of the tunneling electron displays a much studied3,4

universal behavior: first � increases by � through the con-
ductance peak and then it lapses in the Coulomb valley. Here
we focus on the relatively less studied few-electron regime,
where the phase evolution depends on N. In the samples
studied in Ref. 1, the phase remains constant in the N=1
valley, independently from QD tunings, whereas it lapses in
the Coulomb-blockaded devices of Ref. 2. For N�2, the
phase is not reproducible and shows both increments and
lapses, likely due to QD shape and exchange effects.1

In spite of several explanations of the few-electron
scenario,1,5–14 a clear picture is still missing. Many works
introduced major simplifications, such as spinless
electrons,5,7,8 one-dimensional QDs,9,10 simplified models for
Coulomb interaction,5,6,11,12 or other ad hoc assumptions.13

Even the interpretation of the simplest N=1→N=2 transi-
tion is controversial, being variably attributed to the occupa-
tion of either the same2 or a different1 orbital from that of the
first electron, to the role of excited doorway channels,14 to
electron crystallization.12

In this paper, we compute � by fully including exchange
and correlation effects. The theory is based on the applica-
tion of the Friedel sum rule �FSR� as generalized in Ref. 15
to a multiorbital interacting QD—an exact zero-temperature
result, T=0. Since the FSR holds for nondegenerate ground
states �GSs� only,15,16 it may be applied to either singlet
Kondo GSs at zero field, B=0, or nondegenerate GSs in the
Coulomb-blockade regime �B�0 for singlets and B�0 for
doublets and higher-spin states�.

It is worth recalling that, in the conductance valleys with
odd N at T=0 and B=0, the QD is always in the Kondo
regime. In order to reach the Coulomb-blockade regime by
keeping T=0, one needs to apply the field to the Aharonov-
Bohm ring to destroy dot-lead Kondo correlations, hence re-

moving QD spin degeneracy.17 This condition is reached
when ���BB, with �B being the Bohr magneton and � the
QD level width. In the experiments, the temperature is very
low �T�30 mK� and the field is relatively weak �B
�10 mT�. Therefore, in order to compare measurements
with the theoretical predictions reported in this paper, tiny
widths � are required, which are actually smaller than the
values presently reported.1,2

As anticipated above, the theory relies on the application
of the FSR. The key idea is that the phase variation �� for
the addition of one electron to the QD is given by integrating
the QD spectral density N�	� between two consecutive con-
ductance valleys �with �N=1�. This is evaluated exactly for
an isolated QD via full configuration-interaction �CI�
calculations18 with N
5.

The simulations agree with the Coulomb-blockade results
of Ref. 1: �i� the phase evolution for 2
N
5 strongly de-
pends on the dot’s shape and density. �ii� � never lapses in
the N=1 valley, independently from dot parameters. Addi-
tionally, �iii� in the Coulomb �Kondo� regime, the increment
�� through the conductance peak is significantly smaller
than � �� /2� as a consequence of strong Coulomb correla-
tion.

The theory fails to reproduce the Coulomb-blockade re-
sults of Ref. 2. The reason of this discrepancy is presently
unclear but it is likely related to the significant departure
from the condition ruling the range of applicability of the
theory, i.e., ���BB at T=0. In order to treat the Coulomb-
blockade regime even at B=0, one could compute the ther-
mal Green’s function of the fully correlated system at T
�TK, with TK being the Kondo temperature. We leave for
future work this alternative route, which would immediately
provide the transmission phase � without invoking the
FSR.15

The structure of this paper is as follows. In Sec. II, we set
the theoretical model and illustrate the usage of the FSR to
compute the transmission phase variation �� between con-
secutive conductance valleys. After briefly recalling the full
CI method in Sec. III, we address in Sec. IV the evolution of
the phase in the absence of Coulomb interaction �but taking
into account the spin degree of freedom�. We eventually con-
sider the fully interacting case in Sec. V.
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II. TRANSMISSION PHASE FROM THE
FRIEDEL SUM RULE

We model the experimental setup of Ref. 1 as in Fig. 1�a�.
Electrons flow along x from source �S� to drain �D�, tunnel-
ing through a QD of elliptical shape. The ellipse is the ge-
neric low energy form for a two-dimensional shallow, gate-
defined potential1,2 since the lowest-order nonvanishing
terms of its series expansion are quadratic. The scattering
matrix S� is diagonal in the spin index � in both Kondo and
Coulomb-blockade regimes. In fact, in the Kondo regime
�B=0�, no elastic spin-flip occurs.16,17 On the other hand, in
the Coulomb-blockade regime only one � channel is active
at time for a given energy since B removes spin degeneracy.

Additional, we assume19 mirror reflection symmetry in
the yz plane placed in the QD center, at x=0 �Fig. 1�a��,
hence the stationary scattering states ���x�, eigenstates of S�,
are either even �e� or odd �o� with respect to x→−x reflec-
tion: for �x��R,

�e��x� = e−ik�x� + e2ie�eik�x�

and

�o��x� = sgn�x��e−ik�x� + e2io�eik�x�� .

Here the even and odd outgoing waves are phase shifted by
e� and o�, respectively, k is the wave vector, and R is the
QD nominal longitudinal axis. The left and right traveling
states ��k��x� are superpositions of even and odd states,

��k��x� =
1

2
��e��x� � �o��x�� .

Inside the QD, �x��R, electrons experience two-body Cou-
lomb interactions in addition to the confinement potential �cf.
Eq. �4��.

We first generalize the results of Ref. 20 for spinless,
noninteracting electrons by including spins. The transmission
amplitude t� for traveling states ��k��x� is

t� = �t��iei� = iei�e�+o�� sin�e� − o�� . �1�

Each time sin�e�−o�� appearing in Eq. �1� changes sign,
due to a variation in either e� or o� as a new electron
tunnels into the QD, then a lapse of � occurs for the trans-
mission phase �. Since this happens when t�=0 �cf. Eq. �1��,
the lapse is located in the conductance valley.20,21

We then include all many-body correlations by connecting
the phase shift X� per channel �X ,�� �X=e ,o labels the
parity� to the exact spectral density NX��	� accumulated at
the QD via the FSR �cf. Eq. �20� of Ref. 15�,

1

�

dX��	�
d	

= �NX��	� . �2�

Here NX��	� is the density displaced at the QD by the elec-
tron in the scattering state �X ,�� tunneling at the energy �	
fixed by the chemical potential �=�	. We mimic the action
of the plunger gate in the linear-response regime by varying
the value of � with respect to the QD energy levels.

In practice, to use the FSR we integrate it over the energy
window between two consecutive Coulomb valleys with N
and N+1 electrons in the QD, respectively.22 Whereas this
procedure provides the information on the total phase varia-
tion only, �X�=��NX�=���d	NX��	�, it allows to com-
pute �NX� from the interacting Hamiltonian of the isolated
dot, HQD. This key result is based on the conservation of the
total number of scattering plus QD states both in the pres-
ence and absence of the QD in the arm of the
interferometer.15

The CI evaluation of �X� relies on the formula

�NX� =
�X�

�
= �

�X

�	�0
N+1�c�X�

† ��0
N
�2, �3�

where ��0
N
 is the exact interacting GS of the isolated QD

with N electrons of energy E0
N, HQD��0

N
=E0
N��0

N
, and c�X�
†

creates an electron with spin � in the orbital of given parity
X and further specified by the set of quantum numbers �X.
Equation �3� follows from Eq. �21� of Ref. 15, which was
inferred by connecting the phase shift to the delay time spent
by the electron wave packet in the QD. This delay is ob-
tained by integrating the wave-function square modulus over
both time and space. By orthogonality of QD orbitals, only
terms diagonal in �X indices survive in the formula �3�.

We eventually link the transmission phase variation �� to
�X� through Eq. �1�. In the Coulomb-blockade regime, only
one scattering channel �X ,�� is active at time between two
consecutive valleys with, respectively, N and N+1 electrons.
The active channel is univocally determined by the total
spins and parities of ��0

N
 and ��0
N+1
, as obtained by CI. On
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FIG. 1. �a� Experimental setup. �b� QD single-particle levels for
a /b�1. The number sequence points to the consecutive filling of
six electrons in a noninteracting picture. �c� Transmission phase �
and phase shifts �X� vs N for the filling sequence plotted in �b�.
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the other hand, in the Kondo regime time-reversal invariance
�recall that B=0� implies that �NX↑=�NX↓, evaluated as
half the Coulomb-blockade value given by Eq. �3�. In this
way, we regain at once the result2,16 that ��=� /2 for the
addition of the first electron. In fact, the term on the right-
hand side of Eq. �3� is trivially one when N=0.

III. FULL CONFIGURATION-INTERACTION METHOD

The interacting Hamiltonian of the isolated QD is

HQD = �
i=1

N

HSP�i� +
1

2�
i�j

e2

��ri − r j�
, �4�

where the single-particle �SP� term is

HSP�i� =
pi

2

2m�
+

1

2
m��	0x

2 xi
2 + 	0y

2 yi
2� +

1

2
g��i�BB . �5�

Here �i= �1, � is the dielectric constant, m� is the electron
effective mass, g� is the gyromagnetic factor, and the QD
confinement frequencies in the x and y directions, 	0x and
	0y, have characteristic lengths a= �� / �m�	0x��1/2 and b
= �� / �m�	0y��1/2, respectively �the ratio a /b is related to the
ellipse eccentricity�. In Eq. �4�, the weak B does not affect
orbital degrees of freedom.

To wholly include in our theory Coulomb correlation, we
solve numerically the few-body problem of Eq. �4� by means
of the full CI method �also known as exact diagonalization,
for details see Ref. 18�. The CI few-body GS ��0

N
 is essen-
tially a linear combination of the Slater determinants ��i

N
,

��0
N
 = �

i

ci��i
N
 �6�

with the unknown cis being the output of the calculation.
Here the determinants ��i

N
 are obtained by filling in all pos-
sible ways with N electrons the NSP lowest-energy SP orbit-
als �twofold spin degenerate at B=0�, eigenstates of the SP
Hamiltonian �5�. In the Fock space of these Slater determi-
nants HQD is a large sparse matrix, that we exactly diagonal-
ize by means of the parallel code DONRODRIGO,23 eventually
obtaining the coefficients ci of Eq. �6�.

The diagonalization proceeds in each Hilbert-space sector
labeled by N, the total spin, and the total parity of the few-
body wave function. After we have obtained the GSs ��0

N

and ��0

N+1
, we evaluate �NX� via Eq. �3�, and eventually
infer �� as explained in Sec. II.

In the CI calculations reported in Sec. V, we used NSP
=36 and diagonalized matrices of maximum linear size
2.25�106. The relative error for the energy was less than
10−4 for a /b=1.

IV. SPINFUL NONINTERACTING CASE

To illustrate the effect of the inclusion of the spin degree
of freedom in the calculation of the transmission phase �, let
us consider for the time being only the SP Hamiltonian, HSP,
and neglect Coulomb interaction. The GS is a Slater deter-
minant with the lowest N spin-orbitals filled, ��0

N

=�i=1

N c�i�i

† �0
 ��0
 is the vacuum�. The Aufbau filling se-

quence for 1
N
6 is depicted in Fig. 1�b� for a /b�1. The
first two electrons occupy the s orbital with opposite spin,
then the third and fourth electrons fill in the py orbital, which
is shifted in energy from the px orbital by �=�	0x�1
−a2 /b2�. Note that the first electron entering a new SP level
is always ↑, due to the effect of B. The evaluation of the
phase shift �X� at each electron addition is straightforward
since in Eq. �3�, only one addendum gives a nonzero contri-
bution to �X� /�—exactly one—as a new spin-orbital
��X ,�� is occupied; the other ones vanish due to the orthogo-
nality of the states. Therefore in Fig. 1�b�, one has �NX�

=1 for the sequence �X ,��= �e ,↑�, �e ,↓�, �e ,↑�, �e ,↓�, �o ,↑�,
�o ,↓� of six consecutive electron additions, with the py �px�
orbital even �odd� under x→−x.

The evolution of � for the filling sequence of Fig. 1�b� is
shown in Fig. 1�c�. Both increments and lapses of � are
derived through Eq. �1� �lapse locations in the conductance
valleys with fixed N are arbitrary�. A remarkable feature of
Fig. 1�c� is that � increases by � in both transitions N=0
→N=1 and N=1→N=2 since the first two electrons occupy
the same s orbital with opposite spin. This is fundamentally
different from the spinless case,20 where a total increase in �
by 2� between N=0 and N=2 occurs only if the two elec-
trons occupy orbitals of different parities.

Two lapses of � occur for � in the blockaded regions
with N=2 and N=3 �Fig. 1�c�� as the phases e↑ and e↓
increase more than �, respectively. The whole pattern of �
in Fig. 1�c� up to five electrons coincides with Fig. 4a of Ref.
1, provided that one interprets the N=3→N=4 smooth tran-
sition as a phase lapse �in Sec. V we consider an alternative
interpretation�. This agreement is surprising since in the ex-
periment SP levels have a small energy separation �
�0.5 meV�, if compared to characteristic Coulomb energies
��1–3 meV�,1 and therefore one would expect significant
differences from the noninteracting model of Fig. 1. On the
other hand, the � evolution would be basically the same as
in Fig. 1 if the interacting QD ground state were well ap-
proximated by a single Slater determinant, as in Hartee-Fock
theory where Coulomb interaction is included as a mean
field.

V. ROLE OF COULOMB INTERACTION

When correlation effects beyond the mean-field level24

are relevant, we expect that �NX��1, as suggested in Ref.
15. Since the CI ground states ��0

N
 are superpositions of the
Slater determinants ��i

N
 �cf. Eq. �6��, after expansion on this
basis many cross terms give no contribution to Eq. �3�: the
stronger the correlation, the larger the number of Slater de-
terminants, the smaller �NX�. This seems to be the case in
Ref. 1 for ���3� /4 in the N=1→N=2 transition of Fig.
4b and ���3� /4 for N=6→N=7 in Fig. 5. This could
even be the case for ���0 for N=3→N=4 in Fig. 4a of
Ref. 1, if one excludes the possibility of a phase lapse. Such
interpretation is alternative to the one suggested in the pre-
vious section.

To assess the impact of correlation in the CI results, we
parameterize the electron density n of the circular dot �	0
=	0x=	0y� via the dimensionless radius rs of the circle
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whose area is equal to the area per electron, rs
=1 / �aB

���n�1/2�, where aB
� is the effective Bohr radius and n

is estimated as in Ref. 25. We next focus on the evolution of
� as a function of both rs and ellipse anisotropy ratio a /b.
The first electron addition in the Coulomb �Kondo� regime
always gives ��=� ���=� /2�. Then � remains constant
in the N=1 valley, independently from the values of either rs
or a /b �cf. Fig. 3�. The second electron addition is analyzed
in Fig. 2, plotting in the �rs ,a /b� space the contour map of
�� for N=1→N=2. Here we vary the anisotropy ratio a /b
by keeping the ellipse area �ab fixed so the density remains
constant. The contour lines of Fig. 2 provide the value of ��
in the Coulomb-blockade regime whereas its Kondo counter-
part may be simply obtained by dividing �� by two �cf. also
Fig. 3�. As rs increases, �� monotonously decreases, since
correlation effects become stronger at lower density, as the
Coulomb term in HQD �Eq. �4�� overcomes the SP term. A
similar trend occurs by increasing a /b since a stronger an-
isotropy effectively lowers the dimensionality of the system,
again enforcing correlation effects.26 Note that by overlap-
ping the experimental value ���3� /4 with the plot of Fig.
2, we find rs�4 for a /b=1. This value corresponds to �	0
=1.2 meV for GaAs, which is comparable to the experimen-
tal estimate of 0.5 meV.1

From the analysis of CI data of Fig. 2, we find that the
orbital parities of both the first and second electrons are al-
ways even, independently from rs and a /b. This prediction
agrees with the Wigner-Mattis theorem: the two-electron GS
is always a singlet and the orbital part of its wave function is
nodeless.27 This result conflicts with other explanations,1,14

and it is expected to hold even in the presence of disorder
and/or more complicated potentials.

In Fig. 3, we follow the evolution of � up to five elec-
trons for a significant range of QD anisotropies. At the ex-
perimental density ��	0=0.5 meV�, a slight variation in a /b
is sufficient to alter the phase behavior for N�2. Indeed, the
relative differences between the values of a /b for the third,
fourth, and fifth panels are as small as 5%. Therefore, � is
sensitive to fluctuations of the experimental QD parameters,
as reported in Ref. 1.

The occurrence of alternative scenarios in Fig. 3 is an-
other signature of correlation. In fact, several excited states

lie very close in energy to the GS, as it is the case in the
crossover to electron crystallization.28–30 Hence a small de-
formation of the QD shape easily induces a crossing between
states of different symmetry. We here highlight only the most
relevant features of a rich zoology, focusing on Coulomb-
blockade results �solid lines in Fig. 3�. In a circular QD at
such low density �fourth panel of Fig. 3�, the three-electron
GS is a spin quadruplet as an effect of correlation.18 Because
the two-electron GS is a singlet, the transition N=2→N=3
is spin blockaded, i.e., ��=0 without any lapse as �NX�

=0. A slight deformation of the QD �third and fifth panels�
changes the N=3 GS into a doublet, lifting the spin blockade
����0 between N=2 and N=3�. The N=4 GS is a more
robust triplet since the spin polarization is due to Hund’s rule
—an open shell effect.28 However, a stronger deformation of
the QD �second and sixth panels� breaks the orbital degen-
eracy of the SP levels of the second shell inducing a transi-
tion to a singlet GS. At such anisotropy ratios singlets and
doublets typically alternate for even and odd electron num-
bers, respectively. A further increase in the deformation �first
and seventh panels� changes the filling sequence of higher-
energy orbitals.

In Fig. 3, we also plot � in the Kondo regime �dashed
lines� for those cases such that the QD spin is totally
screened by the cloud of opposite-spin tunneling electrons.31

This excludes high-spin GSs other than singlets an doublets
occurring in the third, fourth, and fifth panels. The hallmark
of correlation is that �� is a fraction of � and � /2 in the
Coulomb-blockade and Kondo regimes, respectively �e.g.,
compare the SP phase evolution of Fig. 1�c� with its corre-
lated counterpart in the second panel of Fig. 3�.

0.3

0.4

0.5

0
.5

0.6

0
.6

0.7

0
.7

0.8

0
.8

0
.9

0
.9

1

rs

a
/b

0 2 4 6 8 10

1

2

3

4

5

FIG. 2. Contour plot of �� in the �rs ,a /b� space, in units of �,
for the N=1→N=2 transition in the Coulomb-blockade regime.
The gray code goes from 0 �white� to 1 �black�. The value in the
Kondo regime is obtained by dividing �� by 2.

0

π

2π

0

π

0

π

0

π

T
ra

ns
m

is
si

on
ph

as
e

0
π

2π

0
π

2π

N

0
π

2π

0 1 2 3 4 5

x

FIG. 3. � vs N for different dot anisotropies a /b. Solid �dashed�
lines refer to the Coulomb-blockade �Kondo� regime. We used
GaAs parameters and �	0=0.5 meV. From top to bottom: a /b
= �1.5�−1, �1.15�−1, �1.05�−1, 1, 1.05, 1.15, and 1.5.

MASSIMO RONTANI PHYSICAL REVIEW B 82, 045310 �2010�

045310-4



VI. CONCLUSION

In conclusion, we highlighted the role of exchange and
correlation in the transmission phase of a few-electron quan-
tum dot. Our findings are relevant for transport experiments
through strongly interacting nanoobjects, including mol-
ecules and carbon-based nanostructures.
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