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A quantum linear-response theory of the anomalous Hall conductivity based on the properties of single-site
orbitals is presented. Effect of the finite-electron lifetime is modeled by energy fluctuations of atomic-like
orbitals. Transition from the ideal Bloch system for which the conductivity is determined by the Berry-phase
curvatures to the case of strong disorder for which the conductivity becomes dependent on the relaxation time
is analyzed. Presented tight-binding model gives by the unified way experimentally observed qualitative
features of the anomalous conductivity in the so-called good metal regime and that called as bad metal or
hopping regime.
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I. INTRODUCTION

It has been known for more than a century that ferromag-
netic materials exhibit, in addition to the standard Hall effect
when placed in a magnetic field, an extraordinary Hall effect
which does not vanish at zero magnetic field. The theory of
this so-called anomalous Hall effect has a long and confusing
history with different approaches giving in some cases con-
flicting results. While more recent calculations have some-
what unified the different approaches and clarified the situa-
tion, it is still an active topic of research, see, for example,
the recent review by Nagaosa et al.1

It is generally accepted that anomalous Hall effect is in-
duced by spin-orbit coupling. It was first suggested by Kar-
plus and Luttinger2 in 1954 to explain anomalous Hall effect
observed on ferromagnetic crystals. Their analysis leads to
the scattering-independent off-diagonal components of the
conductivity, which are attributed to the so-called “intrinsic”
effect. Later, theories of this effect based on several specific
models have been developed.3,4 As shown recently, it is ac-
companied by a strong orbital Hall effect.5,6 The conductivity
is affected by scattering, which in the presence of spin-orbit
coupling is basically of two types, the so-called side-jump7

and skew scattering.8–10 They also lead to an anomalous Hall
effect, called “extrinsic.” It has also been argued that in the
anomalous Hall regime a periodic field of electric dipoles
�electric polarizability� is induced by the applied
current.2,11,12 This property has recently been shown to be
related to the so-called orbital polarization moment13 which
is determined by Berry-phase curvature in pure systems.14

The best quantitative agreement with experimental obser-
vations has been obtained by semiclassical transport theory,14

leading to the Berry-phase correction to the group velocity.
For Fe crystals15 it yields an anomalous conductivity
�750 �−1 cm−1 while a value approaching 1000 �−1 cm−1

has been observed. However, up to now, generalization of
this theory to systems with strong disorder or subject to other
types of fluctuations seemed to fail. It is the main aim of this
paper to present theoretical treatment filling this gap.

In contrast to standard transport theories the Hall conduc-
tivity is expressed in terms of local atomic-like orbitals. It is
explicitly derived that for perfect Bloch electron systems this
description coincides with that given by Berry-phase curva-

tures indicating intrinsic, topological, origin of anomalous
Hall effect. Presented view based on atomic-like orbitals al-
lows to include effect of disorder by a local energy fluctua-
tion of these orbitals which is an alternative description of
scattering events. Fluctuations modify the Hall conductivity
and transition from perfect to strongly disordered systems is
analyzed. So-called intrinsic and extrinsic Hall effect are just
treated by an unified way. To test presented view based on
local atomic-like orbitals the two-band model within tight-
binding approach is used. Obtained dependence of the
anomalous Hall conductivity on the relaxation time shows
the observed qualitative features.1,16 Similar features has also
been obtained by the different procedure with relaxation time
being a fitting parameter.17 In contrast to this work the pre-
sented model allows to relate relaxation time to fluctuations
of atomic-like orbitals, i.e., to its microscopic origin. By the
unified way it gives experimentally observed scaling of
anomalous Hall conductivity �xy with diagonal conductivity
component �xx in the region of the so-called good metal for
which �xy ���xx�0 and that of the bad metal for which �xy
���xx�1.6.

The paper is organized as follows. In Sec. II basic prop-
erties of electron systems in crystalline structures with spin-
orbit coupling are summarized while basic expressions for
Hall conductivity derived by using the quantum linear-
response theory are rederived in Sec. III. In Sec. IV an alter-
native expression for Hall conductivity, including on-energy
shell matrix elements only, is derived. Section V is devoted
to perfect Bloch electron systems where conductivity is ex-
pressed in terms of local orbital polarization moments which
are further expressed via the Berry-phase curvature. In Sec.
VI a two-band model in tight-binding approach is presented
to estimate the effect of a finite-electron lifetime to the
anomalous Hall conductivity at zero magnetic field. Pre-
sented theory of anomalous Hall effect is summarized and
commented in the last section.

II. SINGLE-ELECTRON HAMILTONIAN AND
STATISTICAL FLUCTUATIONS

Within a mean-field approach, electron properties are con-
trolled by a single-electron Hamiltonian which we consider
in the following standard form:
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H =
p�2

2m0
+ V�r�� +

�c
2

4�
�� · ��� V�r�� � p�� − �BB� eff · �� . �1�

Here, m0 and �B denote free-electron mass and the Bohr
magneton, respectively, p� is the momentum operator, V�r��
denotes a background potential, and components of �� are
Pauli matrices. The third term on the right-hand side repre-
sents spin-orbit coupling with �c being an effective Compton
length. The last term on the right-hand side describes
Zeeman-type spin splitting due to the exchange-correlation
energy represented by an effective field B� eff which can gen-
erally be position dependent. The corresponding velocity op-
erator reads

v� =
1

i�
�r�,H� =

p�

m0
+

�c
2

4�
�� � �� V�r�� . �2�

Strictly speaking, Hamiltonian H quite well defines prop-
erties of electrons located within a finite volume of charac-
teristic dimensions defined by the electron coherence length.
Within each of such volumes the background potential as
well B� eff can be different. This way, a set of electron systems,
the statistical ensemble, is defined. If time-dependent fluc-
tuations can be treated within an adiabatic approach,18 they
can also be included in this ensemble. However, we should
have in mind that such type of fluctuations, e.g., lattice vi-
brations, affects size of the coherent regions. Measurable
quantities are given by their statistically averaged values. It
is useful to split Hamiltonian H, Eq. �1�, into two parts

H = H0 + �H, H0 � �H�av, �3�

where only �H depends on statistical fluctuations. For crys-
talline solids, to which the present treatment is devoted, sta-
tistically averaged Hamiltonian H0, obeys full crystal sym-
metry and the effective field B� eff can be assumed constant. It
defines the so-called virtual crystal with eigenstates 	n ,k�� of
the energy En�k��, characterized by the band index n and the
wave vector k�. Eigenfunctions are two-component Bloch
spinors,

	n,k�� = �n,k��r�� =
eik�r�


8	3
un,k��r�� ,

H0	n,k�� � �H�av	n,k�� = En�k��	n,k�� , �4�

where un,k��r�� are spinor functions periodic in r� with period
defined by the elementary lattice translations. Velocity matrix
elements are diagonal in the wave vector k� located within the
Brillouin zone,

�n,k�	v� 	n�,k��� = v�n,n��k���k�,k�� �5�

and the expectation values read

v�n�k�� � �n,k�	v� 	n,k�� =
1

�
�� k�En�k�� . �6�

Equilibrium properties are determined by the effective
Hamiltonian, Heff, defined by the statistically averaged
Green’s function,19

�G�z��av �� 1

z − H
�

av
�

1

z − Heff�z�
, �7�

where z is the complex energy variable. It has the full crystal
symmetry and it is diagonal in the representation given by
eigenstates of the averaged Hamiltonian H0, Eq. �4�. Effec-
tive Hamiltonian is non-Hermitian and energy dependent but
it is analytic in both complex half planes, Heff�z��=Heff

+ �z�.
Its standard form reads

Heff�z� = H0 + 
�z�, 
�z� = ��z� − i��z� , �8�

where 
�z� is the energy-dependent self-energy. Inverse
value of its imaginary part represents a finite-electron life-
time.

To include an external magnetic field B� the Hamiltonian
defined by Eq. �1� has to be modified. Both the momentum
operator entering the Hamiltonian, and the velocity operator,
Eq. �2�, have to be replaced by their counterparts, which
include a vector potential A� ,

p� → p� + eA� . �9�

Here, e denotes the electron charge absolute value and the
magnetic field is given as B� =curl A� . Also the value of the
parameter B� eff defining Zeeman-type splitting is modified by
B� . The external magnetic field generally removes translation
symmetry. Exceptions are the so-called rational magnetic
fields for which the problem becomes invariant under trans-
lations with different elementary translations than those
given by the periodic potential.

III. LINEAR-RESPONSE THEORY

In this section the standard linear-response theory will be
described and well-known general formulas derived to sum-
marize basic theoretical assumptions. In accord with the
original work by Kubo20 the external electric field is sup-
posed to be turned on at the time t→− and reach the final
value E� at t=0. Exponential time evolution is considered,
E��t�=E�e�t/�, with ��0 being an infinitesimally small quan-
tity. It gives rise to the Hamiltonian perturbation er� ·E��t� and
corresponding density matrix ��t� has to satisfy the equation
of motion which reads

���t�
�t

+
1

i�
���t�,H + er� · E��t�� = 0. �10�

It can be written in the following way:

��t� = �0�H� + e−iHt/��1�t�eiHt/�, �11�

where �1�t� represents the deviation from the density matrix
in the absence of electric field given by the Fermi-Dirac dis-
tribution function,

�0�H� = �1 + e�H−��/kBT�−1, �12�

where � and kBT are the chemical potential and thermal
energy, respectively. Up to linear terms in the electric field,
�1�t� reaches the following value at t=0,
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�1�0� =
i

�


0

+

e−�t/�e−iHt/���0�H�,er� · E��eiHt/�dt �13�

and the resulting current density reads

j� = − e lim
�→0+

�Tr��1�0�v���av. �14�

Generally, the potential perturbation eE�r� of the Hamil-
tonian is not the only perturbation caused by electric field.
The potential gradient eE� enters the spin-orbit term of the
Hamiltonian, Eq. �1�, as well as the velocity operator, Eq.
�2�, giving rise to additive terms linear in electric field. Re-
sulting contributions to the current density are of a higher
order than �c

2 in the Compton length. For the considered
Hamiltonian H, Eq. �1�, which includes spin-orbit coupling
only approximately up to the order of �c

2, these contributions
thus have to be ignored.

Introducing the �-function operator,

��� − H� = − lim
�→0+

G+��� − G−���
2	i

,

G���� =
1

� − H � i�
, �15�

the time integration, Eq. �13�, can easily be performed. For
the limiting case of the zero temperature in function �0�H�
the components of the conductivity tensor obey the follow-
ing form:

�ij��� �
ji

E j
= − e2

−

�

�Tr���� − H��viG
+rj + rjG

−vi���avd� ,

�16�

where i , j=x ,y ,z. The proper way to treat the limits in Eq.
�14� �due to the electric field time evolution� and Eq. �15�
�regularization of ��H−��� would be to introduce two differ-
ent infinitesimal parameters and treat both of them indepen-
dently, after all other steps are taken. However, our proce-

dure of statistical averaging yields a nonzero imaginary part
of the self-energy, �, entering both averaged operators. Lim-
iting case of the fully coherent system is thus defined by the
physically acceptable limit �→0+. That is why it is suffi-
cient to consider just one infinitesimally small parameter
�→0+ implicitly entering Eq. �16�. Misunderstanding of this
limit has been reason for doubts concerning validity of re-
sulting expressions, especially of the Hall conductivity.

The nonzero temperature smearing effect of the distribu-
tion function yields

�ij��,T� = − 
−

+ d�0���
d�

�ij���d� . �17�

This relation allows to limit our attention to the analysis of
the energy-dependent conductivity given by Eq. �16�. It does
not mean that �ij��� has to be temperature independent since
potential fluctuations as well as some of the Hamiltonian
parameters can be implicitly temperature-dependent quanti-
ties, as is, for example, B� eff representing the exchange-
interaction effect.

Using definition of the velocity operator,

v� =
1

i�
�r�,H� = −

1

i�
�r�,�G�����−1� �18�

and the identity

�G�����2 = −
dG�

d�
, �19�

the Eq. �16� can be rewritten21 in a form including velocity
operators only,

�ij��� = i�e2
−

� �Tr���� − H��vi
dG+

d�
v j − v j

dG−

d�
vi���

av
d� . �20�

It coincides with that obtained by Bastin et al.22 by the use of a different procedure. For diagonal components of the
conductivity tensor the integration by parts gives the well known Kubo-Greenwood formula,23

�ii��� = 	e2��Tr�vi��� − H�vi��� − H���av. �21�

Making use of the following identity:21,24

i� Tr���� − H��vi
dG+

d�
v j − v j

dG−

d�
vi�� =

i�

2

d

d�
Tr���� − H��viG

+���v j − v jG
−���vi�� +

1

2

d

d�
Tr���� − H��riv j − rjvi�� ,

�22�
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the off-diagonal conductivity components can be split into
two parts,25

�xy��� = �xy
�I���� + �xy

�II���� = − �yx��� , �23�

where

�xy
�I���� = e2 i�

2
�Tr���� − H��vxG

+���vy − vyG
−���vx���av

�24�

and

�xy
�II���� =

e2

2
�Tr���� − H��xvy − yvx���av

= − e2�Tr���� − H�yvx��av. �25�

These conductivity formulas are quite general, they include
both the effect of the magnetic field and the spin-orbit
coupling26 since for derivation only general definition of the
velocity operator, Eq. �18�, has been used. Similar treatment,
but formally more complicated, is applicable to other trans-
port coefficients, such as the thermopower and the heat con-
ductivity, allowing to express them via components of the
conductivity tensor.24 For example, the transverse Peltier co-
efficient of ferromagnetic metals is determined by the energy
dependence of the anomalous Hall conductivity. Under the
standard conditions their relation satisfies the Mott rule as
has already been experimentally verified.16

The above expressions for the Hall conductivity �xy���
have been particularly useful for understanding of the
quantum-Hall effect. While the contribution �xy

�I����, called as
Fermi-surface term, vanishes whenever � is located within
an energy gap, the contribution �xy

�II����, called as Fermi-sea
term, can remain finite giving rise to quantized values of the
Hall conductivity.25 Fermi-surface term �xy

�I���� does not van-
ish if the Fermi energy is located within an energy band or
even if it is within the region of localized states. In the later
case it is just canceled by the contribution of localized states
to the Fermi-sea term, �xy

�II����, and the resulting total Hall
conductivity is thus not affected by localized states. Simi-
larly, in the case of the Fermi energy located within an en-
ergy band a non-negligible part of �xy

�I���� is nearly canceled
by part of the �xy

�II����.17,27 It should be thus useful to derive
an alternative form of the expression for the Hall conductiv-
ity suitable for a clear physical interpretation.

IV. HALL CONDUCTIVITY IN TERMS OF
ON-ENERGY-SHELL MATRIX ELEMENTS

Conductivity can directly be measured on samples with
so-called Corbino disk geometry. In the limiting case of the
large disk radii such samples can be approximated by strips
with a rectangular cross section LyLz. Using a proper choice
of the vector potential, periodic boundary conditions along x̂
direction can be considered on the length Lx. This geometry
allows to apply an electric field along ŷ direction, and estab-
lish �yy, and also the Hall current along ŷ direction and con-
sequently �xy. Under these boundary conditions the eigen-
value problem for one particular Hamiltonian of the form

given by Eq. �1� can be solved, at least, in principle. Ob-
tained eigenstates 	�� of energy E� represent one of the sys-
tems belonging to the considered statistical ensemble. A cor-
responding contribution to the Hall conductivity can be
analyzed by using this � representation.

The term given by Eq. �24� reads

�xy
�I���,E� = e2 i�

2 �
�,��

��E − E��

��vx
�,��G��

+ �E�vy
��,� − vy

�,��G��
− �E�vx

��,�� ,

�26�

where vx,y
�,�� denotes velocity matrix elements. Inserting com-

mutation relation, Eq. �18�, for the operator vy, we get

�xy
�I���,E� =

e2

2 �
�,��

��E − E���E� − E���

�� vx
�,��y��,�

E − E�� + i�
+

y�,��vx
��,�

E − E�� − i�
� . �27�

Note that because of the considered strip geometry, matrix
elements of the y coordinate are finite. Since terms for which
E�=E�� vanish, we get

�xy
�I���,E� =

e2

2 �
�,��

��E − E��

��vx
�,��y��,� + y�,��vx

��,���1 − �E��,E�
� . �28�

In � representation the remaining conductivity contribution
given by Eq. �25� can be written as

�xy
�II���,E� = −

e2

2 �
�,��

��E − E��

��vx
�,��y��,� + y�,��vx

��,�� . �29�

Sum of �xy
�I� and �xy

�II� yields the Hall conductivity expressed
in terms of on-energy-shell matrix elements only,

�xy�E� = − e2��
�,��

��E − E��vx
�,��y��,��E��,E��

av

, �30�

where averaging is taken over the � representations of all
elements of the considered ensemble. In the case that the
electron system is fully coherent within the considered
sample volume LxLyLz, the averaging procedure has to be
avoided. Energy dissipation take place within electrical con-
tacts while inside the sample it vanishes, �→0.

The above expression for the Hall conductivity, Eq. �30�,
has clear interpretation for quantum-Hall effect. Let us as-
sume that the Fermi energy is located within region of local-
ized states. From their definition only diagonal matrix ele-
ments of the y coordinate can differ from zero, y��,�

=y�,����,�. Since their velocity expectation values vanish,
contribution of localized states to the Hall conductivity van-
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ishes as has to be. Nonzero contribution can only be given by
chiral edge states giving rise to quantum-Hall effect nonaf-
fected by the presence of localized states.

V. PERFECT BLOCH ELECTRON SYSTEMS

It is of particular interest to apply expression for the Hall
conductivity, Eq. �30�, to systems having translation symme-
try, including those modified by rational magnetic fields. The
basic property of these systems is that the velocity matrix
elements are diagonal in wave vector k�, Eq. �5�. In general,
the probability to find on the Fermi-surface states having the
same k� but belonging to different bands is statistically neg-
ligible, except of the trivial case of band degeneracy. Since
Eq. �30� includes only on-energy-shell matrix elements, in-
terband matrix elements do not affect conductivity of ideal
Bloch electron systems.

To proceed further, let us first discuss the contribution to
the Hall conductivity, Eq. �30�, of states having zero velocity
expectation value along ŷ direction. It is given by

eVws�vx
n,n�k��yn�k�� + vx

n,n�− k��yn�− k��� , �31�

where Vws denotes volume of the Wiegner-Seitz cell. It is a
contribution of the local orbital momentum to the conductiv-
ity. As has been already discussed13,28 it is responsible for
charge polarization in transport regime and that is why it can
be called orbital polarization momentum. States with non-
zero velocity along ŷ direction contribute by the product
−xvy and the Hall conductivity can be written as

�xy�E� = −
e

Vws
�

n

�P� n�E��z, �32�

where the orbital polarization momentum P� n�E� reads

P� n�E�
Vws

� −
e

8	3
BZ

��En�k�� − E�r�n�k�� � v�n�k��d3k . �33�

Here r�n�k�� denotes the expectation value of the radius vector
of the orbital n within the Wiegner-Seitz cell and integration
is limited to the Brillouin-zone volume.

It can be easily shown that P� n�E� can be expressed in
terms of the Berry-phase curvature. Since

��E − En�k��� = −
df0�En�k���

dEn�k��
, �34�

where f0�E� denotes the zero-temperature Fermi-Dirac distri-
bution, we get

P� n�E� = −
e

h

Vws

4	2
BZ

��� k� f0�En�k���� � r�n�k��d3k . �35�

Integration by parts gives

P� n�E� =
e

h

Vws

4	2
BZ

f0�En�k������ k� � r�n�k���d3k . �36�

Using the expression derived in the Appendix for expectation
values of the radius vector,

r�n�k�� = − 
Vws

Im�un,k�
+ �r���� k�un,k��r���d3r , �37�

we finally get

P� n�E�
Vws

=
e

h

1

4	2
BZ

f0�En�k����� n�k��d3k , �38�

where �� n�k�� is just the Berry-phase curvature,14

�� n�k�� = − Im
Vws

��� k�un,k�
+ �r��� � ��� k�un,k��r���d3r . �39�

To conclude, the effect of Berry-phase curvatures is an alter-
native description to the presented effect of the orbital polar-
ization moment, Eq. �33�. It is equivalent to the Berry-phase
correction to the orbital magnetization.29

VI. TIGHT-BINDING APPROACH AND SINGLE-SITE
FLUCTUATIONS

The aim of this section is to present a simple model sys-
tem allowing us to understand the main features of the
anomalous Hall conductivity at zero external magnetic field.
For the sake of simplicity the consideration will be limited to
isotropic systems, like those of the cubic symmetry. A single-
band model Hamiltonian will be considered of the following
form:

H = �
l

	l��Ea + �l��l	 + �
l,m

l�m

	l�tlm�m	 , �40�

where 	l� and 	m� are Wannier functions representing atomic-
like orbitals associated with lattice sites R� l and R� m, respec-
tively. To model fluctuations, a variation �l of atomic-like
orbital energies, Ea, will be considered, while hopping inte-
grals tlm are supposed to be fluctuation-independent quanti-
ties. This so-called diagonal disorder model covers variety of
possible fluctuations representing, for example, alloy compo-
sition or local variation in the effective field Beff which is
supposed to have a fixed orientation independent on fluctua-
tions. As concern thermal fluctuations they can be included
by using deformation-potential approach30 leading to Gauss-
ian distribution of the fluctuation parameter �l. Note that this
approach fails in the low temperature limit.

Instead of considering a specific form of the band disper-
sion for averaged Hamiltonian, H0= �H�av, we shall assume it
gives an elliptical density of states. In accord with
Hubbard,31 its energy dependence normalized per Wiegner-
Seitz volume Vws can be written as follows:

g�E� = 0, 	E − Ea	 � w ,

g�E� =
2

	w2

w2 − �E − Ea�2, 	E − Ea	 � w , �41�

where 2w denotes the bandwidth. The corresponding mean
Fermi velocity reads
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vF =
w2

2�
�	

2
�2/3

ãg��� , �42�

where ã�Vws
1/3 just equals to the lattice constant for the

simple cubic lattice. Note that this model system was already
successfully applied to electron properties of substitutional
alloys.19 Under these simplifying assumptions the single-site
orbital polarization moment defined by Eq. �33� becomes an
energy-dependent quantity, given as

P� l�E� = n�aã2 e

h
�	

2
�2/3ra��l�

ã
�1 − �E − Ea − �l

w
�2� , �43�

where ra��l� denotes the average radius of the considered
atomic-like orbital of the energy Ea+�l and n�a is the unit
vector parallel to its orbital momentum. The only free model
parameter in P� l�E�, and consequently in anomalous Hall con-
ductivity, Eq. �32�, is the orbital radius. For ã�3 Å, and
ra�0� / ã�0.3, the corresponding anomalous Hall conductiv-
ity can reach values of several hundred of �−1 cm−1, similar
to those observed experimentally.

In real structures several overlapping energy bands con-
tribute to the conductivity. Let us for simplicity consider two
bands of the same width originated in atomic-like orbitals of
energies E0��Ea. To model ferromagnetic state we assume
that B� eff= �0,0 ,Beff�, and that electron states belonging to
different bands have opposite spin orientation along ẑ direc-
tion, and opposite orientation of their local orbital moments.
With rising energy of atomic orbitals their radius increases.
Up to the lowest order in energy we get

ra�Ea�
ã

=
r0

ã
�1 + �

Ea − E0

w
� , �44�

where r0 denotes the radius for the orbital state of the energy
E0 and the parameter � represents how the radius changes
with the orbital energy.

Assuming that electron hopping between lattice sites is
independent of their band origin, fluctuations of orbital ener-
gies E0��Ea can be treated as independent. Ensemble av-
eraging can thus be performed separately for each of the
band contributions. Probability distribution of the fluctuation
parameter � depends on the fluctuation origin. Effect of dif-
ferent distribution functions has been tested. It has been
found that the qualitative features of the conductivity tensor
are not affected. For this reason the Lorentzian distribution
allowing simple interpretation in terms of the electron life-
time is considered in the following treatment. It is given as

p��,�� =
1

	

�

�2 + �2 , �45�

where the energy parameter � defines strength of the fluc-
tuations. For the sake of simplicity so-called virtual-crystal
approximation19 is used to establish conductivity. In such a
case the parameter � represents imaginary part of the self-
energy 
 entering the effective Hamiltonian, Eq. �8�, while
the real part of the self-energy equals to zero. It also defines
the electron lifetime, �=� /2�.

Substituting Eq. �43� into Eq. �32� for the anomalous Hall
conductivity, and assuming there is one electron per lattice
site, we get

�xy�� = E0� =
e2

ãh
�	

2
�2/3r0

ã

�
−1

+1

�1 − �2��1 + ���

��p�� + �,�� − p�� − �,���d� , �46�

where the half bandwidth w has been used as the energy unit,
��� /w, ���Ea /w. The resulting conductivity dependence
on the fluctuation strength represented by the parameter �
=� /w is shown on Fig. 1 for the following set of parameters:
ã=3 Å, ra�0� / ã=0.3, �=1, and ���Ea /w=0.6.

The anomalous Hall conductivity dependence on the fluc-
tuation strength � shows the same qualitative features as that
found for multi-d-orbital tight-binding model developed by
Kontani et al.17 In the case of a weak disorder, � /�Ea�1,
conductivity is nearly constant while for strong disorder,
� /�Ea�1, it decreases with a power of the electron lifetime
�=� /�, which for the present example even slightly exceeds
quadratic dependence. In comparison with the procedure
used by Kontani et al. whose evaluation is based on the
conductivity formula including only velocity operators, pre-
sented treatment based on local orbital polarization moments
is much simpler and has a clear interpretation. Ferromagnetic
state, necessary for appearance of anomalous Hall conduc-
tivity, can be characterized by average spin along magneti-
zation axis which is supposed to be parallel with ẑ direction.
In the case of the considered two-band model it is assumed
that each of them is fully spin polarized but in opposite di-
rections, sz= �1 /2. If there are no fluctuations the average
spin per site �sz� reaches a maximum value. Fluctuations of
orbital energies can only lead to suppression of this value.
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FIG. 1. Anomalous Hall conductivity for two-band model as a
function of the fluctuation strength �=� /2�. Used model param-
eters are specified in text. Inset shows corresponding density of
states.
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The dependence of �sz� on the parameter � representing fluc-
tuation strength is presented in Fig. 2 for the same set of
parameters as that used for dependence presented in Fig. 1. It
shows the same qualitative features as the dependence of the
Hall conductivity on �. In the region where �sz� is smaller
than its maximum value the Hall conductivity depends on the
fluctuation strength. It is the region in which fluctuations are
strong enough to weaken ferromagnetic state.

Typical feature of the single-site model fluctuations is that
vertex corrections vanish.32 In the Eq. �21� defining the di-
agonal conductivity component �xx the ensemble averaging
can thus be decoupled, i.e., �GvG�av→ �G�avv�G�av. In
this approximation relaxation time coincides with electron
lifetime �=� /2�. Using virtual-crystal approximation for
the considered two-band model and probability distribution
of fluctuations, Eq. �21�, evaluation of �xx becomes trivial.
In Fig. 3 obtained scaling of the Hall conductivity with
�xx is shown. It reveals typical features observed
experimentally.1,16 Especially the case of the moderate disor-
der �good metal regime� for which 	�xy	���xx�0 and that of
the strong disorder �bad metal/hopping regime� for which
	�xy	���xx�1.6.

VII. CONCLUDING REMARKS

Transport theories of conductivity are traditionally formu-
lated to give expressions containing velocity matrix elements
only allowing standard analysis of the effect of different scat-
tering events including vertex corrections. Their effect on
anomalous Hall effect have been summarized in the review
by Nagaosa et al.1 Unfortunately the effect of the scattering
on the Fermi-sea term, Eq. �25�, has been ignored in their
analysis. Derived alternative general form of the Hall con-
ductivity formula given by Eq. �30� is compact, it does not
separate Fermi-sea and Fermi-surface contributions. Re-
quired eigenfunctions of the coherent regions can be ex-
pressed in terms of matrix elements representing scattering
of Bloch functions on impurities or other type of crystalline
disorder. It is a challenge to perform such theoretical analysis
which could be quite complicated because of the position
operator entering the general formula. Nevertheless, for bet-
ter understanding of the effect of different scattering pro-
cesses such analysis is desirable.

For perfect Bloch electron system the derived alternative
form of the Hall conductivity formula, Eq. �30�, has been
expressed in terms of the orbital polarizability momentum,
Eqs. �32� and �33�, which is a quantity determined by
atomic-like orbitals. It is the part of the orbital magnetization
of Fermi electrons given by the Berry-phase curvatures, Eq.
�38�. To estimate the effect of potential fluctuations the treat-
ment was limited to those that can be modeled by the energy
fluctuations of the local orbitals. Strictly speaking this single-
site approach is applicable if coherent regions are of the di-
mension comparable with the size of atomic-like orbitals. In
this case vertex corrections vanish32 and the used model thus
fails in the weak-scattering limit for which vertex corrections
cannot be neglected. It is thus not applicable to high conduc-
tivity materials at low temperatures for which the most of
different type of scattering events has been analyzed as re-
viewed by Nagaosa et al.1 Especially skew scattering is ex-
cluded by the considered single-site model fluctuations with
supposed fixed orientation of the effective field, B� eff. Also the
effect of the interband side-jump scattering is fully ignored.
The only considered intraband transitions are of the side-
jump character since different Bloch states have different
mass center positions induced by spin-orbit coupling.13

Despite of the model simplicity it correctly describes scal-
ing of the anomalous Hall conductivity �xy with diagonal
conductivity component �xx in the region covering the so-
called good metal regime, 	�xy	���xx�0, and the bad metal
�hopping� regime, 	�xy	���xx�1.6. In the good metal regime
fluctuations only slightly affect the value of the Hall conduc-
tivity which is essentially determined by the value given by
the limit of the perfect Bloch electron system. It is given by
local polarizability moments which are equivalent to the
Berry-phase correction to the orbital momentum, Eq. �38�. In
this case anomalous Hall effect is often called as intrinsic.
The bad metal regime has been identified with the regime in
which fluctuations become strong enough to weaken ferro-
magnetic state. In this regime the obtained scaling, 	�xy	
���xx�1.6, approximately corresponds to that experimentally
observed on number of materials as reviewed by Nagaosa
et al.1
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FIG. 2. Average spin �sz� per site for two-band model as a func-
tion of the fluctuation strength �=� /2�. Model parameters are the
same as that used for the dependence presented in Fig. 1.
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FIG. 3. Scaling of the Hall conductivity �xy with longitudinal
conductivity �xx. Full line is given by the same model parameters as
that used for the dependence presented in Fig. 1 while for dashed
line the parameters � and ���Ea /w have been changed ��=0.5
and �=0.4�. Dashed-dotted line shows the slope 1.6.
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To estimate anomalous Hall conductivity for a real mate-
rial requires knowledge of local orbitals represented by Wan-
nier functions and also the specific form of fluctuations rel-
evant for the studied system. In particular, finite-temperature
spin fluctuations are expected to be essential. It is a challenge
to work out such a procedure based on the first-principles
calculations. Recently developed numerical techniques al-
lowing to establish Wannier functions giving the best tight-
binding model parameters33,34 together with the coherent-
potential approximation32 seem to be a proper way to
establish anomalous Hall effect in real materials.
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APPENDIX

Periodic part of Bloch functions can be expressed via
Wannier functions �n�r�−R� l� as follows:

un,k��r�� =
1


N
�
l=1

N

eik��R� l−r���n�r� − R� l� , �A1�

where by definition Wannier functions are orthonormal with
respect to their mass-center position vector R� l. The expecta-
tion value of the position vector r� reads

r�n�k�� = �n,k�	r�	n,k�� =
1

2
 �un,k�

+ �r��r�un,k��r�� + un,k��r��r�un,k�
+ �r���dr3

= �
l=1

N  un,k�
+ �r��

r� − R� l

2
N
e−ik��r�−R� l��n�r� − R� l�d3r

+ �
l=1

N  un,k��r��
r� − R� l

2
N
eik��r�−R� l��n

+�r� − R� l�d3r

+ �
l,l�=1

N
R� l

2N
 eik��R� l−R� l���n

+�r� − R� l���n�r� − R� l�d3r

+ �
l,l�=1

N
R� l

2N
 eik��R� l�−R� l��n�r� − R� l���n

+�r� − R� l�d3r

=
i

2
 �un,k�

+ �r���� k�un,k��r�� − un,k��r���� k�un,k�
+ �r���d3r +

1

N
�
l=1

N

R� l,

�A2�

where the last constant term represents the center of mass of
the considered electron system. For states with −k� the above
relation gives

r�n�− k�� = Im un,−k�
+ �r���� k�un,−k��r��d3r +

1

N
�
l=1

N

R� l. �A3�

Note that first term on the right-hand sides of Eqs. �A2� and
�A3� are of the same absolute value but they have opposite
sign.

In the summation over Fermi-surface states of the product
r�n�k���v�n�k�� entering Eq. �33� the mass-center position of
the electron system is cancelled out since v�n�k��=−v�n�−k��.
The last term on the right-hand side of the above equation
can thus be excluded from the consideration since it does not
affect the final result.
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