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We theoretically study a Luttinger liquid �LL� driven out of equilibrium by injection of high-energy elec-
trons. The electrons are injected into the LL locally at a fixed energy and their spectral properties are detected
at another spatial point some distance away by evaluating the average tunneling current from the LL into a
resonant level with tunable energy. For energies slightly below the injection energy, the dependence of the
detected current on the difference between injection, and detection energies is described by a power law whose
exponent depends continuously on the Luttinger parameter. In contrast, for tunneling into a chiral LL edge of
a fractional quantum-Hall state from the Laughlin sequence, we find that the detected current grows linearly
with energy difference, despite a decreasing density of states.
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Understanding the effects of nonequilibrium on strongly
interacting quantum systems is a challenging problem in
condensed matter physics. Electrons in one dimension are
known to form a strongly correlated phase of matter called a
Luttinger liquid �LL�, whose low-energy excitations are col-
lective density waves, or plasmons, of the electron gas. Over
the last decade, experimental advances in nanostructure fab-
rication have brought a resurgence of interest in the LL
model because of the possibility to test its peculiar
predictions.1–5 Defining signatures of a LL such as spin-
charge separation,6,7 charge fractionalization,8,9 and power-
law suppression of the local electron tunneling density of
states10–14 have been experimentally verified. Recently, many
works have considered LLs driven far from equilibrium15–20

in order to shed light on possible energy relaxation processes
that have not been apparent in the above-mentioned equilib-
rium experiments.

Energy relaxation in a homogeneous LL is not expected
due to a fundamental feature of the model: its integrability.
This precludes thermalization of the system from an arbitrary
excited state. Here we consider injecting electrons far away
from any contacts at a fixed energy. Their spectral properties
are extracted at another spatial point some distance away by
evaluating the average tunneling current from the LL into an
empty resonant level with tunable energy, a technique used
recently to measure the energy distribution function of a chi-
ral Fermi liquid.21 In this work, we consider both standard
�nonchiral� and chiral LLs, which are realized at the edge of
fractional quantum-Hall systems.3,4,12–14

The main thrust of this work is that high energy electrons
injected locally into a homogeneous LL can indeed relax.
The relaxation is possible because the locality of the injec-
tion process allows the injected electrons to emit plasmons in
the vicinity of the tunneling sites through a series of virtual
states. For the standard LL and for probe energies slightly
below the injection energy, we find that the inelastic compo-
nent of the current shows a power-law behavior as a function
of the difference between injection and detection energies
with an exponent that continuously evolves as the interaction
parameter is varied. Here, relaxation is possible due to the
locality of the injection and detection processes which break
translational symmetry. We develop a perturbative approach

to show how injected electrons can relax by emitting plas-
mons inside the wire. For a chiral LL at the edge of a frac-
tional quantum-Hall state from the Laughlin sequence, an
essentially exact calculation shows that the inelastic part of
the electron current increases in a linear fashion as the probe
energy is lowered from the injection energy toward the
chemical potential of the edge state, despite a decreasing
tunneling density of states for electrons. This behavior is
compatible with our result for the standard LL in the limit of
strongly repulsive interactions. For probe energies close to
the chemical potential, the chiral LL is far from equilibrium:
the electron spectral function approaches a finite value, in
striking contrast to the power law decrease toward zero in
equilibrium. In addition to the inelastic contribution to the
probe current, there always is an elastic contribution for a
chiral LL, indicating that a finite fraction of electrons travels
from the injection to the probe site without losing energy.

Electrons with charge e0 are injected into a LL from a
resonant level �source� with energy E1�e0V1�0 at position
x=0 �see Fig. 1�. Energy relaxation is studied by coupling a
second resonant level �probe� with energy E2�e0V2�0 to
the LL at position x=L �downstream for the chiral LL� and
by computing the tunneling electron current between the LL
and that level. The two levels are coupled to the LL via
tunneling amplitudes �1 and �2, respectively. In addition,
source and probe dots are coupled to reservoirs held at
chemical potentials �1 and �2 via tunneling amplitudes �1

FIG. 1. A diagram of the setup considered. Hot electrons are
injected from the source resonant level at x=0 and are collected at
the probe resonant level at x=L. System parameters are set �see
text� so that the source �probe� occupancy is fixed to be full
�empty�. Spectral properties of the injected electrons are extracted
by measuring the tunneling current between the edge and the probe
�indicated by the arrow�.
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and �2. The chemical potential of the LL is taken to be zero.
We assume the level broadening due to tunnel couplings to
be small in comparison to both E1 and E2, and therefore
consider the current in the sequential-tunneling regime. Fur-
ther, we assume �1��1 with �1�E1 so that the source oc-
cupancy is constrained to one and �2��2 with �2�E2 so
that the probe occupancy is fixed at zero. We first focus on
the standard LL and consider spinless electrons, for which
the interaction strength is described by a single parameter K.2

The case K=1 describes noninteracting electrons, K�1 cor-
responds to repulsive interactions, and K�1 to attractive
ones. The system is modeled by the Hamiltonian H=HLL
+Hdot+Htun, where HLL models the LL, Hdot=E1�1

†�1
+E2�2

†�2 the two resonant states, and Htun describes the tun-
neling of electrons between the wire and the two resonant
levels. �1 ��2� are electron operators of the source �probe�
with occupation numbers ��1

†�1�=1 and ��2
†�2�=0. The stan-

dard LL Hamiltonian reads2

HLL =
u

4�K
� dx���x	R�x�	2 + ��x	L�x�	2
 , �1�

where the left- and right-moving boson operators satisfy
�	R�x� ,	R�x��	=−�	L�x� ,	L�x��	= i�K sgn�x−x��. One-
dimensional electron densities are given by 
R,L�x�
= � ��x	R,L�x�	 /2� and u denotes the plasmon velocity. To
simplify the notation, we use the units where �=1 and kB
=1. The tunneling Hamiltonian is given by

Htun = �1�1�†�x = 0� + �2�2�†�x = L� + H.c., �2�

where ��x�=�R�x�+�L�x�. The electron operators can be
bosonized as �R,L�x�=exp�i�K�	R�x�+K	L�x�	
 /�2��
with K�= �K−1�1� /2 and � is the short distance cutoff of
the theory. The expectation value of the current is given by

I= �Tc�Îcl�t1�e−i�cdtHtun�t�
�0, where all operators are written in
the interaction picture with respect to HLL+Hdot. The current
is computed using the nonequilibrium Keldysh technique22

and Tc indicates time ordering of the operators on the time-
loop contour c. The “classical” component of the current
operator is the symmetric combination of the operator on the
forward �+� and backward �−� parts of the Keldysh contour,

i.e., Îcl�t�= �Î+�t�+ Î−�t�	 /2, where Î��t�=−ie0�H� ,�2,�
† �2,�	.

If the propagation time L /u between the dots is much larger
than the maximum of the dwell times �i=1 / ��i

2+�i
2�, pro-

cesses at the probe dot occur at later times than processes at
the source dot, and the time ordering on the Keldysh contour
is fixed accordingly.23 To leading order in �1 and �2, the
steady state current is given by

I = e0�12�22� d3te−iE2t2+iE1t34�iG2�+1
� �− t2�	�iG2�+1

� �t34�	

���1+�
�� − �1+�

�� + ��
�� − ��

�� + 2���
�� − 2���

��
 , �3�

where �=K−
2K, ��= �K−

2 +K−�K, and tij = ti− tj. The factors of
Green’s functions

iG�
��t� = �

1

2��

��T�/u��

�sin �T��/u � it�	� �4�

can be interpreted as the tunneling in and out density of
states and the � matrices

��

� =

G�

�t23�G�

��− t4�
G�


�− t3�G�
��t24�

�5�

describe the propagation of electrons along the wire. We ne-
glect here the term proportional to �22 since, for low tem-
peratures �T�E1 ,E2�, this contribution is exponentially sup-
pressed.

When directly computing the tunneling current, the propa-
gation matrices � contain both left- and right-moving
Green’s functions. In the limit where L�u /�E, all depen-
dence on left-moving Green’s functions cancels out. As a
consequence, all propagators are right moving and only de-
pend on the difference L−ut. Since all propagation times t
are integrated over, the L dependence disappears by shifting
the integration variables appropriately. The fact that the tun-
neling current is finite in the limit of L�u�i ,u /�E is due to
the integrability of the LL model, which implies that the
excitations propagate freely between the dots.

Denoting the energy loss by �E=E1−E2, the leading con-
tribution to the current for small �E�E1 at zero temperature
reads

I = −
2�e0

�

�12�22���E�
u2�2E1�2�1 + ����E1

u�
�4�� ��E/E1�2�−1

��2�� � .

�6�

Here, ��x� is the gamma function and we have reinstated �
for completeness. In the noninteracting limit ��→0� the
quantity in the square brackets is a representation of the delta
function and Eq. �6� reduces to I����E�. When the interac-
tions are turned on, the elastic peak gradually broadens to
give rise to an inelastic contribution which shows a power
law decay as a function of increasing �E with an exponent
that continuously evolves as a function of the interaction
parameter. For strong enough interactions with ��1 /2, the
elastic peak vanishes and the remaining inelastic contribution
monotonically increases with a power law which again
evolves as a function of the interaction parameter. The result
Eq. �6� is plotted in Fig. 2. Broadening of the peak is in-
cluded in the figure to reflect the finite width of the resonant
levels due to the couplings to the reservoirs and the wire.

The physical origin behind the energy relaxation as de-
scribed by Eq. �6� can be developed using lowest order per-
turbation theory in the limit of weak interactions with K
close to 1. Interactions can be decomposed into forward scat-
tering between electrons near the same Fermi point with am-
plitude g4 and between electrons near opposite Fermi points
with amplitude g2. The g4 interaction merely renormalizes
the fermion and plasmon velocities and cannot give rise to
relaxation. In a spatially homogeneous LL, the g2 process
cannot give rise to energy relaxation either due to the simul-
taneous requirement of momentum and energy conservation.
However, because of the local nature of injection and collec-
tion processes considered here, an electron is capable of ex-
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ploring virtual momentum states in connection with tunnel-
ing, and consecutive inelastic processes can both conserve
momentum and produce a final state with the same total
energy as the initial state.

To develop this picture in more detail, we begin by defin-
ing the noninteracting Hamiltonian �H0� and the perturbation
�Hint�. The free Hamiltonian describes the right- and left-
chiral fermions, H0=u�dx��R

†�x�i�x�R�x�−�L
†�x�i�x�L�x�	,

where �R, �L denote right- and left-moving fermions, respec-
tively. The interaction between the two species of fermions is
described by Hg2

=g2�dx�R
†�x��R�x��L

†�x��L�x�. We assume
that the effects of the g4 interaction are encoded in the renor-
malized velocity u. The tunneling between the dots and the
wire is still described by Eq. �2�. The perturbation is then
given by Hint=Htun+Hg2

.
Here, we consider the lowest order inelastic process pro-

portional to ��g2
2 at zero temperature, in which an electron

is transported from the source to the probe while emitting a
single plasmon inside the wire. Initially, the electron in the
source �i�=�1

†0�� tunnels into a right-moving momentum
eigenstate whose energy may be different from E1. In the
second step, a left-moving plasmon with energy �E is emit-
ted via a g2 process and the right-moving electron is scat-
tered into another wire state such that momentum is con-
served. After propagating along the wire, the electron tunnels
into the probe �f�=�2

†bp
†0��. Alternatively, tunneling into the

wire can be elastic and the plasmon can be emitted when
tunneling into the probe. The plasmon creation operator is
defined as bp

† = p−1/2� dk
2��L

†�k+ p��L�k�, where p�0 is the
momentum of the emitted plasmon, and Epl�p�=up is its
energy. The square of the effective matrix element for this
process can be evaluated by third-order perturbation theory

�f i�eff2 = g2
2�1�2

�2
��− p�

4�p��u�4 , �7�

where we took the limit of large interdot separation: for L
�u� /E1 ,u� /E2, the scattering probability still has an oscil-
latory L dependence, sin2��EL /u��, due to interference be-
tween processes with plasmon emission at the source and at
the probe dot, respectively. This interference disappears once

the energy loss �E is averaged over the widths � /�i of the
dot levels. For L /u��i, this energy average leads to a re-
placement of the sin2 factor by its average of 1/2, and the
result Eq. �7� is obtained. We note that the criterion on L for
the disappearance of the oscillatory factor agrees with the
criterion for fixing the time ordering on the Keldysh contour
used to derive Eq. �3�.

Using Fermi’s golden rule, the tunneling current is ob-
tained as I= �−e02� /��� dp

2� �f  i�2u���E−up�. It correctly
reproduces the inelastic component, Iinel�� /�E, of Eq. �6�
to order ��g2

2 / �4�u��2. Finally, we note that the matrix
element in Eq. �7� scales as 1 /��E. This can be understood
by multiplying the matrix element for plasmon emission,
which increases as ��E, with the time available for plas-
mon emission, which diminishes as 1 / �E due to the
energy-time uncertainty principle.

Next, we consider tunneling into a chiral LL at the edge of
a fractional quantum-Hall state from the Laughlin sequence.
We focus on the filling fraction �=1 /3, where the area oc-
cupied by one electron is threaded by three quanta of mag-
netic flux. The current for the chiral LL can be derived in a
similar fashion as in the standard case. First, we note that the
Hamiltonian is analogous to that in Eq. �1�, but with only one
boson field, say 	R, and with K replaced by the filling frac-
tion �. The tunneling Hamiltonian is identical to Eq. �2�, and
the electron operator is now bosonized as ��x�
=ei	R�x�/� /�2��. Using similar steps as above, one finds

I = e0�12�22�
−�

�

dt2dt3dt4e−iE2t2+iE1t34�iG1/�
� �− t2�	

��iG1/�
� �t34�	��1/�

�� − �1/�
��
 . �8�

The correlation functions and the � matrices are again given
by Eqs. �4� and �5�. Performing the time integrals in Eq. �8�
exactly, we obtain

I = − e0
�3�12�22�4�kBT�3

4u6�7 � X1
2eX1/2

cosh�X1/2�
�1 +

X1
2

�2����X�

+
3�Xe�X/2

sinh��X/2��i=1

2
eXi/2

cosh�Xi/2�
�1 +

Xi
2

�2�� . �9�

Here, �X=X1−X2 and Xi=Ei /kBT. At zero temperature, the
expression for the current simplifies to I�E1

4���E�
+6���E��E1

2+E2
2��E. The current, plotted for both zero and

finite temperatures in Fig. 3, has two main contributions:
elastic and inelastic. The peak is due to electrons that were
elastically transported from the source to the probe. Second,
there is a broad inelastic contribution that extends over the
range E2�E1 and that grows monotonically as E2 is low-
ered. For E2�E1, the current increases linearly with �E. We
have confirmed that a similar inelastic contribution to the
current is also present for the Laughlin filling fraction �
=1 /5. In this case, an exact computation at zero temperature
shows again that Iinel��E for E2�E1. This suggests that the
linear upturn in the current below E1 may be a generic fea-
ture at all Laughlin filling fractions.

For a noninteracting chiral Fermi liquid, which describes
the edge excitations of an integer quantum-Hall state, hot

FIG. 2. �Color online� Tunneling current at the probe for the
standard LL at zero temperature and for various interaction param-
eters. It includes the leading contribution in �E /E1. A level broad-
ening of 0.01E1 is used for the elastic peak.
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electrons do not relax. In addition, the weight of the elastic
peak is reduced as the temperature is increased. This reduc-
tion is due to Pauli blocking of states by thermally excited
edge electrons residing above the chemical potential. When
interactions are present, Fig. 3 shows an overall increase in
the elastic current with temperature. This reflects the increase
in the tunneling density of states with temperature and con-
stitutes a clear signature of LL physics.

The setup of Fig. 1 is ideal for directly extracting the
electron energy distribution, f�E�, and spectral function,
A�E�, inside the wire at a spatial point far from the injection
site. With the probe occupancy constrained to be empty, the
tunneling current is given by Iempty= ie0�22G��E�, while a
similar evaluation with probe occupation held full gives
Ifull= ie0�22G��E�.24 Once the two currents are obtained,
both f�E� and A�E� can be extracted by expressing the lesser
and greater Green functions, G��E�= if�E�A�E� and G��E�
=−i�1− f�E�	A�E�, in terms of electron distribution function

and spectral weight. At zero temperature and for �=1 /3,
f�E2�, and A�E2� valid for 0�E2�E1 read

A�E2� =
�2

2u3�4�E2
2 + �E��2�E

E1
� , �10�

f�E2� =
�1 + �E2/E1�2	��E/E1�

�E2/E��2 + ��E/E1�
, �11�

where E�=�6��12�2E1
3 /u3�3 separates two energy re-

gimes. We note that E� can be parametrically larger than the
level widths such that our sequential tunneling approxima-
tion stays valid. In the high-energy regime and for small
energy transfers �E��E2�E1�, f�E2��12��12�2�E /u3�3,
which shows that the linear upturn in the current below E1 is
also reflected in the distribution function. In the same re-
gime, we find that the spectral function does not deviate
strongly from its equilibrium expression �with �1=0�. In the
low-energy regime �0�E2�E��, f�E2� smoothly approaches
one and the spectral function approaches a finite value. The
latter is in stark contrast to the equilibrium case.

In conclusion, we have theoretically addressed how lo-
cally injected electrons can relax inside a LL. For the stan-
dard LL, the locality of the injection and collection processes
allows electrons to tunnel into virtual momentum states and
then to relax through plasmon emission. In chiral LLs, the
tunnel current into the detector quantum dot increases when
lowering the detection energy, in contrast to the decreasing
tunneling density of states, thus providing evidence that the
strength of energy relaxation is determined by many-body
dynamics and not just by density-of-states effects.
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