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Recently, Smith and McKenzie �Phys. Rev. B 77, 235123 �2008�� used Boltzmann theory to calculate
expressions for the interlayer resistivity in quasi-one-dimensional and quasi-two-dimensional metals for an
arbitrary elastic collision integral. In this Comment I point out that their treatment of the equations of motion
leads to an error in their expressions, and I derive corrected expressions for the interlayer conductivity in
quasi-one-dimensional and quasi-two-dimensional metals in the presence of anisotropic scattering.
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In recent work, Smith and McKenzie1 have calculated ex-
pressions for the interlayer conductivity in quasi-one-
dimensional and quasi-two-dimensional metals when scatter-
ing is anisotropic in momentum space. Smith and McKenzie
give expressions for the finite frequency and dc resistivity
that generalize existing expressions.2,3 These expressions are
obtained from solving the Boltzmann equation for the elec-
tron distribution function and solving the equations of mo-
tion for the electron velocity in the z direction, and combin-
ing these to calculate the interlayer conductivity. In this
Comment, I point out that the approach taken to the equa-
tions of motion by Smith and McKenzie leads them to derive
incorrect expressions for the conductivity. I provide a deri-
vation of correct expressions for the interlayer conductivity
for both quasi-one-dimensional and quasi-two-dimensional
metals.

In the presence of spatially uniform, but potentially time-
varying fields, the Boltzmann equation can be written as

� f

�t
+ F ·

� f

�p
= I�f� , �1�

where I�f� is the collision integral and f�px , py , pz , t� is the
distribution function. I now discuss the solution of the Bolt-
zmann equation to determine the c-axis conductivity in
quasi-one-dimensional and quasi-two-dimensional metals.

In order to solve the Boltzmann equation for a quasi-two-
dimensional metal, we need to specify the dispersion, which
we take to have the same form as in Ref. 1

� =
1

2m�
�kx

2 + ky
2� − 2tc cos�kzc� , �2�

where m� is the electron effective mass, tc is the interlayer
hopping along the c axis, and c is the layer spacing. For a
quasi-two-dimensional metal tc��F, where �F is the Fermi
energy. For an electron subject to a magnetic field oriented in
the x-z plane, at an angle �B to the z axis, then to lowest
order in tc, the equations of motion are

F =
dp

dt
= �

dk

dt
= �c�− ky,kx, tan �Bky� ,

where �c= eB
m� cos �B. It is convenient to make the change in

variables kx=k cos �, ky =k sin �, and then k is a constant of
the motion, and

d�

dt
= �c.

The equation of motion for kz can be written as

dkz

d�
=

dkz

dt

dt

d�
= k tan �B sin � ,

which has the solution kz���=kz
0−k tan �B cos �, where kz

0 is
a constant of integration. As kz is a function of kz

0 and �, it is
possible to change variables in the distribution function from

�kx,ky,kz� → �k,�,kz
0� .

For tc��F, we can relate k directly to the energy �, and we
can consider f�kx ,ky ,kz , t� as f�� ,� ,kz

0 , t�. Define

g��,kz
0,t� =� d� f��,�,kz

0,t� ,

and integrate the Boltzmann equation over energy. In the
presence of an electric field along the z direction it takes the
form

�g

�t
+ �c

�g

��
− I�g� = − eEz�t�vz��,kz

0� , �3�

where

vz��,kz
0� =

1

�

��

�kz
=

2ctc

�
sin�ckz�

=
2ctc

�
sin�ckz

0 − ckF tan �B cos �� .

Equation �3� highlights a distinction between the calcula-
tion above and that performed in Ref. 1, where the analogous
equation, Eq. �14�, contains only one partial derivative term,
rather than two. �The equations would be equivalent if the
electric field considered in Ref. 1 were time independent as
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the time derivative in Eq. �3� would vanish in the equation
for the steady-state distribution function. In this case, where
the Boltzmann equation is the same, the results still differ.�

The issue that leads to incorrect results in Ref. 1 is the
treatment of the solutions of the equations of motion. The
authors obtain solutions for kz and � in terms of the variable
t and introduce two constants of integration in doing so.
However, the variable t in the equations of motion �as far as
the Boltzmann equation is concerned� should be understood
as a parameter with the units of time, that parametrizes the
motion, rather than the physical time, which enters elsewhere
in the Boltzmann equation. This is not immediately obvious
when starting from a semiclassical point of view but is re-
quired if the Boltzmann equation is to correspond to the
semiclassical limit of the quantum kinetic equation.4

The consequence of this can be easily seen in the case of
a dc electric field, although the same problems persist for
time-dependent electric fields. For time-independent fields,
the steady-state distribution function �which is used to deter-
mine the steady-state current, and hence conductivity� de-
pends only on the independent variables �kx ,ky ,kz�, which,
after changes in variable and integration over energy, lead to
a distribution function g which depends on just two indepen-
dent variables: � and kz

0.5 However, the approach of the au-
thors of Ref. 1 leads to a distribution function g which for a
dc electric field depends on three variables: kz�0�, ��0�, and
t, all of which are treated as independent. This mathematical
issue, in which a function of two independent variables is
represented by a function of three independent variables,
leads to the incorrect results for the conductivity obtained in
Ref. 1. The variables t, ��0�, and kz�0� used in Ref. 1 are
related to � and kz

0 in the presentation I have given above by

t =
� − ��0�

�c
, kz

0 = kz�0� + kF tan � cos���0�� .

Note that t, as used in Ref. 1, plays a similar role to � in the
presentation I have given. This is not uncommon usage in the
literature on magnetic oscillations and interlayer resistance in
layered metals,6,7 and the distinction between t and physical
time is noted by Abrikosov.6 Once the extra independent
variable is introduced into the calculation in Ref. 1, there is
an extra integration in the calculation of the interlayer con-
ductivity over ��0�, which leads to an expression that in-
volves a sum over a product of four Bessel functions rather
than an expression involving a sum over a product of two
Bessel functions, which I derive below.

I now provide a derivation of the conductivity that does
not suffer from the deficiencies identified above. The me-
chanics of the calculation are relatively similar to those in
Ref. 1. For an ac electric field along the z direction I expand
the distribution function g, the collision integral I�g�, and vz
in a similar way to Ref. 1, but using the variables kz

0, �, and
t �note that � and t are independent in my treatment�. The
expansions are as follows:

g�kz
0,�,t� = �

m,n
gmn�t�eimckz

0
ein�, �4�

vz�kz,�� = �
m,n

umneimckz
0
ein�, �5�

I�g� = − �
m,n

�mngmn�t�eimckz
0
ein�. �6�

The coefficients �mn parametrize the anisotropic scattering
and have the same meaning as in Ref. 1. For an electric field
with magnitude Ez at frequency �, one can substitute these
into the Boltzmann equation and find

gmn��� = −
eEzumn

in�c − i� + �mn
,

where �dropping the superscript on kz
0�
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0
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�7�

A standard calculation of the conductivity leads to the
following expressions for real and imaginary parts of the
conductivity:

Re	�zz���
�0�0


 = �
n=−





�n
�Jn�ckF tan �B��2

�n
2 + �� − n�c�2 , �8�

Im	�zz���
�0�0


 = �
n=−




�� − n�c��Jn�ckF tan �B��2

�n
2 + �� − n�c�2 , �9�

where, as noted in Ref. 1,

�0 =
2e2tc

2ckF

	�3vF

1

�0

is the zero-field c-axis conductivity and �n=�
1n. This ex-
pression should be contrasted with the results for the real part
of the conductivity presented in Ref. 1, in which the sums are
over products of four Bessel functions rather than two Bessel
functions. If the frequency � is taken to zero, then the dc
conductivity becomes

�dc

�0�0
= �

n=−




�n�Jn�ckF tan �B��2

�n
2 + �n�c�2 . �10�

In the limit that all of the �n are equal, corresponding to
isotropic scattering, Eq. �10� reduces to the well-known ex-
pression for angle-dependent magnetoresistance oscillations
�AMRO�.8 This is also true of the expression obtained in Ref.
1—the issues raised here only affect calculations of the con-
ductivity for anisotropic scattering.

In a quasi-one-dimensional metal, there is hopping along
both y and z directions, and the dispersion takes the form

� = vF�kx� − 2tb cos�bky� − 2tc cos�ckz� ,

where tb is the hopping in the y direction and b is the lattice
spacing in this direction. The analysis in Ref. 1 of this case
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suffers from the same mathematical problem identified for
the quasi-two-dimensional case above and following through
a similar calculation for the conductivity to that outlined
above, taking into account the fact that the Fermi surface
consists of two sheets,1 one arrives again at an expression for
the conductivity that depends on sums of products of two
Bessel functions, rather than sums of products of four Bessel
functions. The final result for the frequency-dependent con-
ductivity is

Re	�zz���
�0�0


 =
1

2�
�

�
n=−





�n
� ���Jn����2

��n
��2 + �� − n�c�2 , �11�
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1

2�
�

�
n=−




���� − n�c��Jn����2

��n
��2 + �� − n�c�2 , �12�

where �= �2tbc /vF�tan �B, �c= �bevFB /��cos �B, and in the
dc limit the conductivity simplifies to

�dc

�0�0
=

1

2 �
n=−




���n

��Jn����2

��n
��2 + �n�c�2 , �13�

where �=s or d labels the sum and difference contributions
�relating to the two Fermi sheets� as introduced in Ref. 1, and

�s=1+ �−1�n, �d=1− �−1�n, with �n
�=�
1n

� , similarly to the
quasi-two-dimensional case. The constant

�0 =
4e2tc

2c

	b�3vF

1

�0
,

which is in agreement with Ref. 8, correcting a missing fac-
tor of 2 in the expression in Ref. 1.

The expressions in Eqs. �10� and �13� lead to a very natu-
ral way to view the dc resistivity curve, as a sum of peaks
indexed by n, whose width is determined by the parameter
�n /n�c, and whose height and position are determined by the
magnitude and argument of the Bessel function, respectively.
This separation of information, so that the nth peak gives
information almost exclusively about the nth collision pa-
rameter, is actually less complicated than the picture pre-
sented in Ref. 1 and gives different quantitative predictions
for the interlayer resistivity. These quantitative differences
are important if the behavior of anisotropic scattering in
quasi-one-dimensional and quasi-two-dimensional metals is
to be extracted accurately from AMRO experiments for
which momentum-dependent scattering is important.9,10
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