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In a recent Letter �J. M. McMahon, S. K. Gray, and G. C. Schatz, Phys. Rev. Lett. 103, 097403 �2009��, we
outlined a computational method to calculate the optical properties of structures with a spatially nonlocal
dielectric function. In this paper, we detail the full method and verify it against analytical results for cylindrical
nanowires. Then, as examples of our method, we calculate the optical properties of Au nanostructures in one,
two, and three dimensions. We first calculate the transmission, reflection, and absorption spectra of thin films.
Because of their simplicity, these systems demonstrate clearly the longitudinal �or volume� plasmons charac-
teristic of nonlocal effects, which result in anomalous absorption and plasmon blueshifting. We then study the
optical properties of spherical nanoparticles, which also exhibit such nonlocal effects. Finally, we compare the
maximum and average electric field enhancements around nanowires of various shapes to local theory predic-
tions. We demonstrate that when nonlocal effects are included, significant decreases in such properties can
occur.
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I. INTRODUCTION

Interest in the optical properties of metallic nanostructures
has been steadily increasing as experimental techniques for
their fabrication and investigation have become more
sophisticated.1 One of the main driving forces of this is their
potential utility in sensing, photonic, and optoelectronics
applications.1–3 However, there can also be interesting fun-
damental issues to consider, particularly as very small length
scales are approached �approximately less than 10 nm�. In
this limit, quantum-mechanical effects can lead to unusual
optical properties relative to predictions based on classical
electrodynamics applied with bulk, local dielectric values for
the metal.4 In isolated spherical nanoparticles, for example,
localized surface-plasmon resonances �LSPRs� are found to
be blueshifted relative to Mie theory predictions,5 and in thin
metal films anomalous absorption is observed.6,7

Roughly speaking, when light interacts with a structure of
size d �e.g., a nanoparticle size or junction gap distance�,
wave-vector components k, which are related to the momen-
tum p by p=�k, where � is the Planck constant, are gener-
ated with magnitude k=2� /d. These, in turn, impart an en-
ergy of E= ��k�2 /2me, where me is the mass of an electron,
to �relatively� free electrons in the metal. For small d, these
energies can correspond to the optical range �1–6 eV�. This
analysis suggests that such effects should come into play for
d less than approximately 2 nm. In metals, however, some-
what larger d values also exhibit these effects, because elec-
trons in motion at the Fermi velocity can be excited by the
same energy with a smaller momentum increase, due to dis-
persion effects.

A full quantum-mechanical treatment of such structures
would of course be best, but this is not practical for these
sizes. However, it is possible to incorporate some “quantum
effects” within classical electrodynamics via use of a differ-
ent dielectric model than that for the bulk metal. At least four
such effects can be addressed in this way: electron scattering,
electron spill-out, quantum-size effects, and spatial nonlocal-

ity of the material polarization. The additional losses due to
increased electron scattering at the metal surface can be de-
scribed by a size-dependent damping term,8 which will ef-
fectively broaden spectral peaks,9 as we consider below. The
electron spill-out from the metal into the medium, due to the
electron density varying smoothly, can partially be accounted
for by a dielectric layer model. The effect of this is varied,
and depends on a number of details, including the surface
chemistry of the structure10 and its local dielectric environ-
ment. Quantum-size effects due to discrete electronic energy
levels can lead to a size- and shape-dependent conductivity.
At least for metal films,11 this quantity is reduced relative to
the bulk and exhibits peaks for certain film thicknesses. Such
effects can be incorporated directly into classical calculations
for some simple systems, based on rigorous theory. Al-
though, because this effect and electron spill-out are both
highly dependent on system specifics, incorporating them
into a general framework is not straightforward. Therefore,
they will not be considered in this work. The fourth quantum
effect, and the one that is of main interest herein, is the need
of a dielectric model which considers that the material polar-
ization at one point in space depends not only on the local
electric field but also that in its neighborhood.12

In classical electrodynamics, materials are described
through a dielectric function � that relates the electric dis-
placement field D �proportional to both the incident field and
material polarization� to the electric field E at a given fre-
quency of light �. This relationship is usually assumed to be
local in space �i.e., the polarizability of the material at a
point x only depends on E at x�. However, in the more gen-
eral case

D�x,�� = �0� dx���x,x�,��E�x�,�� , �1�

where ��x ,x� ,�� is a spatially dependent �nonlocal� and
frequency-dispersive relative dielectric function. In a homo-
geneous environment �an approximation which we make for
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the finite, arbitrarily shaped structures considered herein�,
��x ,x� ,�� only spatially depends on �x−x��. Therefore, in k
space, Eq. �1� is more simply expressed as

D�k,�� = �0��k,��E�k,�� . �2�

Since the early formulations of nonlocal
electromagnetics,12 applications of k-dependent dielectric
functions have remained limited to simple systems, such as
spherical structures13,14 or aggregates thereof,15–18 and planar
surfaces.19 Nonetheless, this k dependence has been found
experimentally6,7 and proven theoretically13,19 to have impor-
tant consequences. For example, such dependence is respon-
sible for the aforementioned anomalous absorption and
LSPR blueshifting.

In a recent Letter,20 we outlined a method by which the
optical properties of arbitrarily shaped structures with a non-
local dielectric function can easily be calculated. This was
done by deriving an equation of motion for the current asso-
ciated with the hydrodynamic Drude model,21 which we
solved within the framework of the finite-difference time-
domain �FDTD� method.22 The advantage of this approach is
that it can describe the dynamical optical response of struc-
tures that are too large to treat using quantum mechanics yet
small enough such that the application of local continuum
electrodynamics becomes questionable. In this paper, we ex-
pand on that work and detail the full method. We first verify
our results against analytical ones for the cylindrical Au
nanowires that we considered in our previous Letter.20 Then,
as new examples, we calculate the optical properties of one-
dimensional �1D�, two-dimensional �2D�, and three-
dimensional �3D� Au nanostructures.

II. THEORETICAL APPROACH

A. Formulation of the method

The interaction of light with matter in the classical con-
tinuum limit �i.e., many hundreds of atoms or more� is de-
scribed by Maxwell’s equations,

�

�t
D�x,t� + J�x,t� = � � H�x,t� , �3�

�

�t
B�x,t� = − � � E�x,t� , �4�

� · D�x,t� = � , �5�

� · B�x,t� = 0, �6�

where H�x , t� and B�x , t� are the auxiliary magnetic field and
the magnetic field, respectively, and J�x , t� and � are external
current and charge densities. Except for the most simple sys-
tems, such as spheres or metal films, analytical solutions or
simplifying approximations to Eqs. �3�–�6� do not exist.
Therefore, computational methods are often used to solve
them, one of the most popular being FDTD.22 For dynamical
fields, Eqs. �3� and �4� are explicitly solved while Eqs. �5�
and �6� are considered initial conditions that should remain
satisfied for all time.

However, before Maxwell’s equations can be solved, an
explicit form for ��k ,�� in the constitutive relationship be-
tween D�k ,�� and E�k ,�� in Eq. �2� must be specified. Note
that Eqs. �3�–�6� are in terms of x and t but material proper-
ties are often dependent on k and �, which are related to the
former via Fourier transform. Also note that we assume that
there are no magnetic materials present and thus the mag-
netic field constitutive relationship is B�x ,��=�0H�x ,��,
where �0 is the vacuum permeability. Returning to the cur-
rent discussion, the dielectric function of a metal like Au is
well described in the classical continuum limit by three sepa-
rate components,

��k,�� = �	 + �inter��� + �intra�k,�� , �7�

the value as �→	, �	, a contribution from d-band to
sp-band �conduction-band� interband electron transitions,
�inter���, and a contribution due to sp-band electron excita-
tions, �intra�k ,��. The notation in Eq. �7� highlights the k and
� dependencies.

�inter��� can be physically described using a multipole
Lorentz oscillator model,23

�inter��� = �
j


�Lj�Lj
2

�Lj
2 − ��� + i2�Lj�

, �8�

where j is an index labeling the individual d-band to sp-band
electron transitions occurring at �Lj, 
�Lj is the shift in rela-
tive permittivity at the transition, and �Lj is the electron
dephasing rate. Because there are two interband transitions in
Au at optical frequencies �near 3 and 4 eV �Ref. 24��, we
take j=2 in this work.

�intra�k ,�� is responsible for both the plasmonic optical
response of metals and nonlocal effects. Both of these can be
described by the hydrodynamic Drude model,21 which re-
duces to the local Drude expression for electron motion if
k→0,23

�intra�k,�� = −
�D

2

��� + i�� − 
2k2 , �9�

where �D is the plasma frequency, � is the collision fre-
quency, and for a free-electron gas �i.e., one with only kinetic
energy� 
2=CvF

2 /D, where vF is the Fermi velocity �1.39
�106 m /s for Au�, D is the dimension of the system, and
C=1 at low frequencies and 3D / �D+2� at high
frequencies.25,26 We note, in passing, that other analytical
forms for �intra�k ,�� could also be used with the following
approach, such as those inferred from representative
quantum-mechanical electronic structure calculations.27

Inserting Eqs. �2� and �7� �using Eqs. �8� and �9�� into the
Maxwell-Ampère law in k space for a time-harmonic field,
−i�D�k ,��= ik�H�k ,��, leads to

− i��0�	E�k,�� + �
j

JLj�k,�� + JHD�k,�� = ik � H�k,�� ,

�10�

where the JLj�k ,�� are polarization currents associated with
Eq. �8�,
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JLj�k,�� = − i��0

�Lj�Lj

2

�Lj
2 − ��� + i2�Lj�

E�k,�� �11�

and JHD�k ,�� is a nonlocal polarization current associated
with Eq. �9�,

JHD�k,�� = i��0
�D

2

��� + i�� − 
2k2E�k,�� . �12�

�Note that the current densities in Eqs. �11� and �12� are
unrelated to the external current density J�x,t� in Eq. �3�,
which has been assumed to be zero.� Equations of motion
�i.e., partial differential equations in terms of x and t� for the
currents in Eqs. �11� and �12� can be obtained by multiplying
through each by the appropriate denominator and inverse
Fourier transforming �ik→� and −i�→� /�t�,

�2

�t2JLj�x,t� + 2�Lj
�

�t
JLj�x,t� + �Lj

2 JLj�x,t�

= �0
�Lj�Lj
2 �

�t
E�x,t� , �13�

�2

�t2JHD�x,t� + �
�

�t
JHD�x,t� − 
2�2JHD�x,t� = �0�D

2 �

�t
E�x,t� .

�14�

Because of the spatial derivatives in Eq. �14�, the equation of
motion for the hydrodynamic Drude model is second order,
unlike the normal Drude model that is first order.22

Equations �13� and �14� can be solved self-consistently
with Eq. �4� and the inverse Fourier-transformed form of Eq.
�10�,

�0�	

�

�t
E�x,t� + �

j

JLj�t� + JHD�x,t� = � � H�x,t� ,

�15�

along with the requirement that Eqs. �5� and �6� are, and
remain, satisfied. Our implementation of Eqs. �4� and �13�–
�15� using standard finite-difference techniques is outlined in
the Appendix.

B. Au dielectric function

To model Au nanostructures, and use the approach out-
lined in Sec. II A, Eq. �7� must first be fit to the experimen-
tally determined dielectric data of bulk Au.24 This is done in
the limit of k→0 in Eq. �9�, which is valid for large struc-
tures, such as those used to obtain the experimental data. To
make sure that the separate terms in Eq. �7� accurately cap-
ture the physics of the problem, it is necessary to fit Eqs. �8�
and �9� over the appropriate energy ranges separately. Using
simulated annealing, we first fit Eq. �9� �also incorporating
�	� over the range 1.0–1.8 eV, where ��0 ,�� is dominated by
sp-band electron motion. Then, keeping the parameters in
Eq. �9� constant �but not �	�, the entire dielectric function in
Eq. �7� was fit over the full range of interest, 1.0–6.0 eV. The
resulting parameters were �	=3.559, �D=8.812 eV, �
=0.0752 eV, 
�L1=2.912, �L1=4.693 eV, �L1=1.541 eV,


�L2=1.272, �L2=3.112 eV, and �L2=0.525 eV.
A plot of calculated dielectric values against those experi-

mentally determined is shown in Fig. 1. The fit is reasonably
good given the simple form of Eq. �7�. For example, features
of the two interband transitions are captured near 3.15 and
4.30 eV, which is evident in imag���0 ,���. Note that �L1 and
�L2 are also close to these values, as expected based on the
discussion in Sec. II A. Although, the fit is not as good as
could be achieved with a more flexible function, such as an
unrestricted fit. However, the present fitting scheme leads to
parameters that are more physically realistic, and this is es-
sential given that we are going to use these local �k=0�
parameters in the nonlocal �k�0� expression. One conse-
quence of this fit, for example, is that the minimum value of
imag���0 ,��� near 1.85 eV is not as small as the experimen-
tal one, which will end up giving broader plasmon reso-
nances near this energy than expected. Fortunately, such dif-
ferences will not play a significant role in the results that we
present.

It is interesting to look at the evaluation of Eq. �7� as a
function of both k and �, Fig. 2. Note that a slice through
k=0 gives the local dielectric data in Fig. 1. When 
k��,
��k ,�� is relatively constant for a given �—i.e., it remains
close to the local value. However, as 
k approaches � from
below, ��k ,�� quickly becomes very negative and then in-
creases and sign rapidly as it passes through 
k��, after
which ��k ,�� is thus no longer plasmonic. Absorption of
light by a system is related to the value of ��k ,�� and the
structure under consideration. For example, for a small
spherical particle in air, the maximum absorption occurs
when real���k ,���=−2 �see Ref. 23�. Figure 2 therefore in-

FIG. 1. �Color online� Fitted dielectric data for bulk Au �solid
red lines�, compared to that experimentally determined �open blue
circles� �Ref. 24�.
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dicates that in addition to the local absorption, additional
�anomalous� absorption will occur when 
k�� 	when the
rapid variation in real���k ,��� occurs
.

Nonlocal effects are very prominent for small structures,20

as we will demonstrate below. In such systems, it is neces-
sary to consider the reduced mean-free path of the sp-band
electrons due to electron-interface scattering. As was briefly
discussed in Sec. I, this can be taken into account by using a
modified collision frequency in Eq. �9�:8 ��=�+AvF /Leff,
where the effective mean-free path is Leff=4V /S in 3D and
�S / P in 2D, where V is the volume of the structure with
surface area S with perimeter P, and A can be considered the
proportion of electron-interface collisions that are totally in-
elastic. Such scattering can also be considered a nonlocal
effect.15,28 In a formal sense, A is related to the translational
invariance at the surface, the full description of which de-
pends on the geometry of the structure, its local dielectric
environment,29 and the dielectric function of the material,
which is ultimately nonlocal in character. Because of these
complex details, correctly choosing the value of A can be
challenging, and large values can have a significant effect.9

Although the general magnitude of A can be arrived at in the
local limit and in a variety of ways,4 for simplicity and con-
sistency with our previous Letter20 we take A=0.1 for the
calculations herein.

III. COMPUTATIONAL CONSIDERATIONS

Computational domains were discretized using a Yee spa-
tial lattice,30 as outlined in the Appendix. The edges of the

domains were truncated using convolutional perfectly
matched layers.31 For the calculations in Sec. IV, variable
grid spacings were used for the discretizations, as will be
discussed, as well as the low-frequency 2D value of 
2 �for
consistency with our previous Letter20�. For the calculations
on metal films in Sec. V A, grid spacings of 0.1 nm were
used for the 2 nm film, and 0.2 nm for the others, as well as
the high-frequency 2D value of 
2. For the nanoparticles in
Sec. V B, grid spacings of 0.2 nm were used for the 4 and 7
nm nanoparticles, and 0.5 nm for the 15 nm one. For all of
the nanowires in Sec. V C, grid spacings of 0.25 nm were
used. In both of these latter cases, the high-frequency values
of 
2 were used.

Optical responses were determined by calculating extinc-
tion cross sections23 �the total amount of power absorbed and
scattered relative to the incident light�, by integrating the
normal component of the Poynting vector around surfaces
enclosing the particles.32,33 In order to obtain accurate
Fourier-transformed fields necessary for such calculations, as
well as field intensity profiles, incident Gaussian damped
sinusoidal pulses with frequency content over the range of
interest �1–6 eV� were introduced into the computational do-
mains using the total-field/scattered-field technique.34 Fur-
thermore, all simulations were carried out to at least 100 fs.

Before leaving this section, we mention that instabilities
have been encountered in some 3D calculations. For ex-
ample, simulations of 1.0 nm Au nanoparticles become un-
stable when grid spacings of 0.05 nm are used. In 2D such
instabilities do not seem to exist. We are currently investigat-
ing this issue.

IV. NUMERICAL VERIFICATION

One way to determine the accuracy of the method pre-
sented in Sec. II A and the Appendix is to compare computed
results to obtainable analytical ones. Such comparisons are
possible for metal films,19 cylindrical wires,35 and spherical
particles.36 In this section, such a comparison is made for a
r=2 nm radius cylindrical nanowire, an example that we
considered in our previous Letter.20

The optical responses calculated using uniform grid spac-
ings 
 in both x and y of 0.2, 0.1, or 0.05 nm are compared
to the analytical result35 in Fig. 3. A number of peaks and
valleys are seen in all of the results, which correspond to the
dipolar LSPR near 2.55 eV and anomalous absorption near
1.61, 2.75, and 3.78 eV. A discussion of these effects was
given in Ref. 20 and will be further elaborated on below. The
calculated and analytical results are found to agree both
qualitatively and quantitatively, providing numerical verifi-
cation of our method. Decreasing the grid spacing leads to
significantly better results, especially for the higher energy
peaks. For example, the additional peak near 3.78 eV con-
verges from 3.53 eV to 3.68 eV to 3.72 eV as 
 is reduced
from 0.2 nm to 0.1 nm to 0.05 nm, respectively. Such con-
vergence is understandable because for a given grid spacing,
there is an uncertainty in r of �
. Since the results appear to
redshift with increasing 
, we can infer that the nanowire
radius is approximately r+
. The convergence of these ef-
fects is much tougher than those in local electrodynamics,

FIG. 2. �Color online� �Real���k ,���� of Au as a function of
both k and �. Below 
k��, ��k ,���0; and above, ��k ,���0.
Note that no specific value is attached to 
2. The condition 
k=� is
shown using a dashed white line.
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where even 
=0.2 nm is sufficient �not shown�. These re-
sults demonstrate the exquisite sensitivity of nonlocal effects
to even minor geometric features.

Grid spacings of 0.05 or 0.1 nm are impractical for most
calculations because of the resulting computational effort re-
quired. At first this appears troublesome, given that the non-
local effects are so sensitive to this parameter. However, the
only real downside is that an uncertainty in the geometry of
�
 must be accepted �which is also the case in local elec-
trodynamics but is less important�. This is because it is found
that for a given grid spacing, the calculated results always
fall between the analytical ones that incorporate the �
 tol-
erance, see Fig. 4. For example, in the case of a r=2 nm
cylindrical nanowire, the calculated results with 
=0.2 are
constrained by the analytical ones with r=1.8 and 2.2 nm.
Results for 
=0.1 and 0.05 nm are shown in Fig. 4 as well
and are also consistent with this analysis.

V. APPLICATIONS

A. Metal films (1D systems)

In this section, we study the transmission, reflection, and
absorption of thin Au films illuminated at normal incidence
�see Fig. 8 for a schematic diagram of the incident polariza-
tion�, which have an effective dimension of one. For simplic-
ity, we take the surrounding medium to be air. Although, it
would be straightforward to introduce other dielectric layers
into the calculations. Because wave-vector components only
exist for the direction normal to the surface, these systems
are ideal for studying and qualitatively highlighting nonlocal
effects. Furthermore, they allow us to draw some connec-
tions with related experimental results.6,7

The transmission, reflection, and absorption spectra for 2,
10, and 20 nm thick films are shown in Figs. 5–7, respec-
tively. In the absorption spectra, narrow additional �anoma-
lous� absorption peaks occur in the nonlocal results, relative
to the local ones. The appearance of these peaks is identical
to theoretical predictions19 and experimental observations6,7

on other thin metal films, where they are the result of opti-
cally excited longitudinal �or volume� plasmons. �The effects
are called such because they are longitudinal to k and are

contained within the volume of the structure, unlike surface
plasmons, which propagate along a metal-dielectric inter-
face.� Not surprisingly, at the anomalous absorption energies
there is corresponding decrease in the transmission. How-
ever, contrary to the initial expectation of a decrease in re-
flection, we find that there can be either an increase or a
decrease, depending on if the corresponding absorption oc-
curs well above �giving an increase� or below �giving a de-
crease� the surface-plasmon energy, which is around 2.65 eV
for the 10 nm film, for example.

Although a little hard to discern from Figs. 5–7, but can
be inferred from previous results,20 the anomalous absorption
peaks redshift as the film thickness is increased. This causes
many more such peaks that were at higher energies to appear
in the optical range. For example, there are only three peaks
for the 2 nm film �Fig. 5� but 12 for the 10 nm one �Fig. 6�.
In addition, their intensities drastically decrease, where by 20
nm, the nonlocal results are almost converged to the local
ones, Fig. 7. We will revisit these points below.

In order to determine whether the anomalous absorption
in these results is actually from the excitation of longitudinal

FIG. 3. �Color online� Convergence of calculated extinction
cross sections to the analytical result �Ref. 35� for a 2 nm radius
cylindrical Au nanowire, with respect to the grid spacing 
.

FIG. 4. �Color online� Extinction cross sections of 2 nm radius
cylindrical Au nanowires, calculated using grid spacings of 

= �top� 0.2, �middle� 0.1, and �bottom� 0.05 nm. The results show
that the calculations �solid black lines�, denoted as FDTD, are al-
ways constrained by the analytical results �broken lines� when tol-
erances for the grid spacings are considered.
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plasmons, intensity profiles of �D�2 at the anomalous absorp-
tion energies for the 2 nm film �1.14 �not shown in Fig. 5�,
3.36, and 5.54 eV� can be examined, Fig. 8. Well-defined
standing-wave patterns of �D�2 are seen inside the films lon-
gitudinal to k, confirming the assumption of their nature. The
wavelengths of these standing waves are found to satisfy the
condition

�L = 2d/m , �16�

where d is the film thickness and m=1,3 ,5 , . . ., which means
that odd numbers of half wavelengths fit longitudinally into
the structures. The wavelengths defined by Eq. �16� will
hereon be referred to as “modes” characterized by m. In Fig.
8, it is the m=1, 3, and 5 modes that are explicitly shown.
These results are significantly different from the local ones,
where relatively uniform �D�2 patterns are found at all ener-
gies �not shown�. Nonetheless, as mentioned above, this
analysis agrees with previous results on analogous
systems,6,7,19 providing further support for the validity of our
method. Based on the observations in Fig. 8 and this analy-
sis, it makes sense that the anomalous absorption features

should redshift with increasing thickness and that their inten-
sity should decrease with increasing m.

From the discussion above, and that in Sec. II B, the ap-
proximate anomalous absorption energies can be predicted.
From Eq. �9�, it is seen that rapid variations in ��k ,�� will
occur when ��
k, which will likely lead to an absorption
condition; and from Eq. �16�, it is seen that longitudinal plas-
mons with wavelength �L are excited inside a structure of
thickness d, which will result in momentum states with mag-
nitude k=2� /�L. Thus, everything needed to predict the ap-
proximate anomalous absorption energies is known: ��
=m
� /d. Using the 2 nm film as an example, this analysis
predicts anomalous absorption at energies of ��=m
�1.44 eV. For the first three m modes, these are 1.44, 4.31,
and 7.19 eV while those rigorously calculated are 1.14, 3.36,
and 5.54 eV �Fig. 5�, respectively. While not exact, the pre-
dictions are reasonably close. Part of these differences can be
attributed to the grid spacing error, as outlined in Sec. IV,
which in this case leads to an uncertainty in d of �0.2 nm.
This analysis could also be applied to related experimental
results.6 However, it is important to keep in mind that this is
a simple approximation, and if appropriate, more accurate

FIG. 5. �Color online� �Top� Transmission, �middle� reflection,
and �bottom� absorption spectra for a 2 nm thick Au film illumi-
nated at normal incidence. Both local �broken red lines� and nonlo-
cal �solid blue lines� calculations are shown.

FIG. 6. �Color online� �Top� Transmission, �middle� reflection,
and �bottom� absorption spectra for a 10 nm thick Au film illumi-
nated at normal incidence. Both local �broken red lines� and nonlo-
cal �solid blue lines� calculations are shown.
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values should be obtained from full calculations or, if pos-
sible, by using rigorous theory.19

B. Spherical nanoparticles (3D systems)

In this section, we study spherical nanoparticles, utilizing
the full 3D nonlocal electrodynamics method outlined in Sec.
II A and the Appendix. The optical responses of nanopar-
ticles with diameters of 4, 7, and 15 nm are shown in Fig. 9.

�The polarization and direction of incident light is irrel-
evant.� Note that for small nanoparticles, such as these, the
optical responses are predominately absorption, as scattering
does not play a significant role for sizes less than approxi-
mately 20 nm. Figure 9 shows that inclusion of nonlocal
effects results in significant anomalous absorption and LSPR
blueshifting for both the 4 and 7 nm nanoparticles. In fact,
these effects are so large that the main LSPRs are hardly
even distinguishable.

As discussed in Sec. V A, the anomalous absorption
peaks arise from the excitation of longitudinal plasmons.
However, unlike the systems discussed in that section, this
effect diminishes much faster as the nanoparticle size is in-
creased, such that at 15 nm the anomalous peaks show up
only as slight indents on the main LSPR. These differences
can be attributed to two effects. First of all, in a spherical
nanoparticle, scattering of the incident light off of the exte-
rior surface generates many k components that can interact
and dephase one another, especially for the high-order m
modes with multiple nodes. Second, scattering of the con-
duction electrons that compose the longitudinal plasmons off
of the interior surface can also lead to dephasing. Each of
these processes causes nonlocal effects to diminish at much

FIG. 7. �Color online� �Top� Transmission, �middle� reflection,
and �bottom� absorption spectra for a 20 nm thick Au film illumi-
nated at normal incidence. Both local �broken red lines� and nonlo-
cal �solid blue lines� calculations are shown.

FIG. 8. �Color online� Normalized �D�2 intensity profiles inside
a 2 nm thick Au film at energies of �left� 1.14, �middle� 3.36, and
�right� 5.54 eV. The polarization and direction of incident light is
indicated; in each image, the sides of the metal film are padded on
the left and right using solid black lines.

FIG. 9. �Color online� Extinction cross sections of spherical Au
nanoparticles with diameters of �top� 4, �middle� 7, and �bottom� 15
nm. Both local �broken red lines� and nonlocal �solid blue lines�
calculations are shown.
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smaller distances in spherical nanoparticles, relative to metal
films.

LSPR blueshifting is most apparent for the 15 nm nano-
particle. This is simply because the anomalous absorption is
low, allowing this peak to be clearly identified. The local
LSPR is seen at 2.57 eV while the nonlocal one is at 2.71 eV.
This effect can be understood by looking at the form of Eq.
�9�. When nonlocal effects are included, the interplay be-
tween � and k causes all effects 	e.g., the absorption condi-
tion of real���k ,���=−2, in this case
 to appear at higher
energies compared to k=0.

Based on the results in Fig. 9, one might wonder why
such strong nonlocal effects have not been experimentally
observed in such systems. Obviously these effects are impor-
tant and have been observed in other cases.6,7 There are
many possible reasons for this. The most probable one is that
experimental measurements are often made on heteroge-
neous collections of nanoparticles. Given that nonlocal ef-
fects are very sensitive to nanoparticle dimensions �see Sec.
IV, for example�, slight heterogeneity could effectively aver-
age them away. Support for this claim comes from an experi-
mental study of isolated Au nanoparticles,5 which clearly
demonstrated the LSPR blueshift and possibly anomalous
absorption features.20 Another possible explanation is that
our choice of 
2 is not optimal �which is directly related to
the strength of nonlocal effects�, as we have recently argued
for metallic nanoshells.9 The hydrodynamic Drude model ne-
glects quantum-mechanical exchange and correlation effects,
which in a local-density approximation would decrease 
2. A
third possible explanation is that our choice of damping pa-
rameter A is too low. Increasing this would smooth all spec-
tral features and the anomalous absorption would not appear
as strong. Support for this comes from a combined theoreti-
cal �local electrodynamics� and experimental study of metal-
lic nanoshells, where values of greater than 1.0 are needed to
describe the results �this corresponds to Leff reduced below
that based on geometric considerations alone�.37

C. Nanowires (2D systems)

In our previous Letter,20 we demonstrated that nonlocal
effects are particularly important in structures with apex fea-
tures, such as triangular nanowires. In such structures, opti-
cal responses can be affected by nonlocal effects for much
larger sizes than for those with smooth geometries, such as
cylindrical nanowires. Additionally, even though far-field op-
tical properties seem to converge to local ones at large sizes
with regard to anomalous absorption and LSPR blueshifting
�to a large extent�, the near-field properties, such as electric
field enhancements, hereon referred to as �E�2 enhancements,
do not.

As a final application of the method presented in Sec. II A
and the Appendix, we study the optical responses and �E�2
enhancements around isolated cylindrical, square, and trian-
gular nanowires with 50 nm diameters or side lengths, com-
mon sizes used in experimental and theoretical studies. �E�2
enhancements from such structures have been studied in the
past.38,39 However, to the best of our knowledge, all previous
studies have been carried out using local electrodynamics �at

least for noncylindrical structures�, except for the aforemen-
tioned discussion in our previous Letter.20

Optical responses of nanowires illuminated with the elec-
tric field polarized along the long axis of each structure are
shown in Fig. 10. �Schematics of the polarization are shown
in Figs. 11 and 12.� Because of their large sizes, these struc-
tures do not exhibit distinct anomalous absorption. Nonethe-
less, many closely spaced longitudinal plasmon modes do
exist �vide infra�, which leads to very minor, closely spaced
“bumps” in the nonlocal results, as well as LSPR blueshift-
ing. These modes can again be confirmed by looking at in-
tensity profiles of �D�2, Fig. 11. Unlike the results in Fig. 8,
the longitudinal plasmons in Fig. 11 form much more com-
plex patterns. These can be attributed to two �related� effects.
One is that the size of the structure along the longitudinal
direction of the incident field is not the same at all positions
�except for the square nanowire�. Therefore, for a given en-
ergy, modes of different order will be sustained at multiple
positions along the structure, at each place where Eq. �16� is
satisfied.20 This is also one of the reasons why nonlocal ef-
fects are so strong in structures with apex features, and why
they can remain important in them for arbitrarily large sizes.

FIG. 10. �Color online� Extinction cross sections of �top� cylin-
drical, �middle� square, and �bottom� triangular Au nanowires with
diameters or side lengths of 50 nm. Each was illuminated with the
electric field polarized along the longest axis of the structure. Both
local �broken red lines� and nonlocal �solid blue lines� calculations
are shown.
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In other words, low-order longitudinal plasmon modes can
always be sustained near the apex. And two, scattering of the
incident field off of a curved nanowire surface generates
many k components, which can excite longitudinal plasmons
along directions other than that of the incident k, creating an
interference pattern. This effect also leads to the dephasing
of longitudinal plasmons, as discussed in Sec. V B.

It is also interesting to look at intensity profiles of �E�2 at
the LSPR energies, near where this quantity is expected to be
maximized,40 Fig. 12. �Note that these energies are slightly
different in the local and nonlocal results due to LSPR blue-
shifting.� In Fig. 12, the �E�2 profiles have been normalized
for each geometry so that relative comparisons between the
local and nonlocal results can be made. Because of this, it is
not possible to directly compare the results for different ge-
ometries. �Such comparisons will be considered below.� In
all cases, the �E�2 values are qualitatively similar, both inside
and around the structures. Quantitatively, however, the non-
local enhancements are clearly lower. This is especially true
for the triangular nanowires.

In order to accurately assess the �E�2 enhancements
around the nanowires, the precise maximum and average val-
ues were determined, Table I. The average values refer to
fields averaged over certain distances from the nanowire sur-
faces. In all cases, decreases in both quantities are seen in the
nonlocal results �as could also be inferred from Fig. 12 and
the discussion above�. However, for the cylindrical nano-

wires, these decreases are negligible. It is also interesting to
note that the average enhancements are higher 1.0 nm away
from the surface than they are at 0.5 nm. For the square
nanowires, the decreases are noticeably larger. There is ap-
proximately a 13% difference at 1.0 nm and an 11% differ-
ence at 2.0 nm in the average values. The decrease in the
difference between average enhancements at a further dis-
tance from the surface is expected, as the near fields that
contribute to this exponentially decay. The decreases in �E�2
enhancements for the triangular nanowires are strikingly
larger than for the other geometries. For example, decreases
of 51% and 38% in the maximum and average values at 0.5
nm are seen, respectively.

Considering that some physical processes are dependent
on �E�4 enhancements,1 such as surface-enhanced Raman
scattering �SERS�, the differences between local and nonlo-
cal electrodynamics could have significant implications for
the interpretations of results. This statement is based on the
fact that the nonlocal calculations are, in principle, more rig-
orous than the local ones. For example, if the actual electro-
magnetic contribution to SERS is smaller than expected on
the basis of local theory, it is possible that chemical effects
play a more important role than has been considered in the
past.41 Such results are also likely to play a large role in the
accurate interpretation of electron energy-loss measurements
for anisotropic nanoparticle structures, which have recently
received attention within the framework of local
electrodynamics.42

FIG. 12. �Color online� Normalized �E�2 intensity profiles at the
LSPR energies in and around �left� cylindrical, �middle� square, and
�right� triangular Au nanowires with diameters or side lengths of 50
nm. Both �top� local and �bottom� nonlocal calculations are shown.
The polarization and direction of incident light is indicated; the
nanowires are outlined in white.

FIG. 11. �Color online� Normalized �D�2 intensity profiles at the
LSPR energies in and around �left� cylindrical, �middle� square, and
�right� triangular Au nanowires with diameters or side lengths of 50
nm. Both �top� local and �bottom� nonlocal calculations are shown.
The polarization and direction of incident light is indicated; the
nanowires are outlined in white.

TABLE I. Maximum and average �E�2 enhancements at the LSPR energies around cylindrical, square, and
triangular nanowires with diameters or side lengths of 50 nm. Each was illuminated with the electric field
polarized along the longest axis of the structure. Distances from the nanowire surfaces over which averages
were obtained are specified.

Nanowire shape Maximum Average at 0.5 nm Average at 1.0 nm Average at 2.0 nm

Cylindrical �local� 8.64 2.42 2.47 2.40

Cylindrical �nonlocal� 7.85 2.32 2.39 2.34

Square �local� 60.58 3.54 3.33 3.01

Square �nonlocal� 39.79 3.02 2.91 2.69

Triangular �local� 145.77 5.49 4.90 4.18

Triangular �nonlocal� 71.40 3.42 3.30 3.01
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VI. SUMMARY AND OUTLOOK

In summary, we detailed our electrodynamics method to
calculate the optical response of an arbitrarily shaped struc-
ture described by a spatially nonlocal dielectric function. The
formulation was based on converting the hydrodynamic
Drude model into an equation of motion for the conduction
electrons, which then served as a current field in the
Maxwell-Ampère law. By discretizing this equation using
standard finite-difference techniques, we incorporated it into
a self-consistent computational scheme along with the stan-
dard equations used in the finite-difference time-domain
method.

Using the example of a cylindrical Au nanowire studied in
our previous Letter,20 we demonstrated the accuracy of our
method through comparisons to analytical results. As new
applications, we calculated the optical responses of thin Au
films, Au nanowires, and spherical Au nanoparticles. These
calculations demonstrated a number of effects that result
from the spatial nonlocality in the dielectric response, includ-
ing anomalous absorption, blueshifting of localized surface-
plasmon resonances, and decreases in electromagnetic field
enhancements.

The results presented demonstrate the importance of in-
cluding nonlocal effects when describing metal-light interac-
tions at the nanometer length scale. It is presently difficult to
compare our results directly with existing experimental stud-
ies, because most of these have involved heterogeneous col-
lections of particles or noncontinuous systems, which in the
small size limit tend to average over nonlocal effects. It is
our hope that these results will motivate new, and more pre-
cise experimental studies, particularly those on isolated
nanostructures, where nonlocal effects are likely to play a
large role.

In the future, we plan to derive more accurate expressions
than the hydrodynamic Drude model. By incorporating ex-
change and correlation effects, we also plan to compare non-
local calculations directly with quantum-mechanical ap-
proaches, such as electronic structure theory. Such
expressions will allow more even more accurate descriptions
of nonlocal optical phenomena than were presented in this
work.
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APPENDIX: NONLOCAL FINITE-DIFFERENCE
EQUATIONS

In this appendix, the finite-difference equations used to
model nonlocal dielectric effects are derived, and their
implementation is discussed.

First, the temporal derivatives in Eqs. �4� and �15� are
discretized using a leapfrog algorithm,22

�0
H�x�n+1/2 − H�x�n−1/2


t
= − � � E�x�n, �A1�

�0�	

E�x�n+1 − E�x�n


t
+ �

j

JLj�x�n+1/2 + JHD�x�n+1/2

= � � H�x�n+1/2, �A2�

where the superscript n denotes a discrete time step. Equa-
tions �13� and �14� are discretized using central finite differ-
ences �necessary because of the second-order derivatives�
centered at time step n,

JLj�x�n+1 − 2JLj�x�n + JLj�x�n−1


t2 + 2�Lj
JLj�x�n+1 − JLj�x�n−1

2
t

+ �Lj
2 JLj�x�n = �0
�Lj�Lj

2 E�x�n+1 − E�x�n−1

2
t
, �A3�

JHD�x�n+1 − 2JHD�x�n + JHD�x�n−1


t2 + �
JHD�x�n+1 − JHD�x�n−1

2
t

− 
2�2JHD�x�n = �0�D
2 E�x�n+1 − E�x�n−1

2
t
. �A4�

Next, update equations for JLj�x� and JHD�x� are obtained
by rearranging Eqs. �A3� and �A4�,

JLj�x�n+1 = �LjJLj�x�n + �LjJLj�x�n−1 + �Lj
E�x�n+1 − E�x�n−1

2
t
,

�A5�

where

�Lj =
2 − �Lj

2 
t2

1 + �Lj
t
, �A6�

�Lj = −
1 − �Lj
t

1 + �Lj
t
, �A7�

�Lj =
�0
�Lj�Lj

2 
t2

1 + �Lj
t
, �A8�

and

JHD�x�n+1 = �HDJHD�x�n + �HDJHD�x�n−1

+ �HD
E�x�n+1 − E�x�n−1

2
t
, �A9�

where

�HD =
4 + 2
t2
2�2

2 + �
t
, �A10�

�HD = −
2 − �
t

2 + �
t
, �A11�
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�HD =
2�0�D

2 
t2

2 + �
t
. �A12�

Note that �HD is an operator, rather than a simple coefficient.
To use Eqs. �A5� and �A9� in Eq. �A2�, JLj�x� and JHD�x� are
centered at time step n+1 /2 by averaging,

JLj�x�n+1/2 =
JLj�x�n+1 + JLj�x�n

2
, �A13�

JHD�x�n+1/2 =
JHD�x�n+1 + JHD�x�n

2
. �A14�

Equations �A2�, �A5�, and �A9� all contain E�x�n+1. To
obtain a consistent update, Eqs. �A13� and �A14� �using Eqs.
�A5� and �A9�� are inserted into Eq. �A2� and rearranged,

E�x�n+1 =
1

�1 + �2
��1E�x�n + �2E�x�n−1 + � � H�x�n+1/2

− JT�x�n,n−1� , �A15�

where

�1 =
�0�	


t
, �A16�

�2 =
1

4
t��j

�Lj + �HD� , �A17�

and

JT�x�n,n−1 =
1

2
�j

���Lj + 1�JLj�x�n + �LjJLj�x�n−1�

+ ��HD + 1�JHD�x�n + �HDJHD�x�n−1� .

�A18�

Rearrangement of Eq. �A1� gives the appropriate update
equation for H�x�,

H�x�n+1/2 = H�x�n−1/2 −

t

�0
� � E�x�n. �A19�

In order to satisfy Eqs. �5� and �6�, a Yee spatial
discretization30 is used for the components of E�x� and H�x�
�i.e., they are offset and circulate one another�. The JLj�x�
and JHD�x� components are centered at the same spatial lo-
cations as the corresponding E�x� components. All of the
spatial derivatives in Eqs. �A9�, �A15�, �A18�, and �A19� are
approximated using central finite differences.

In order to model an arbitrarily shaped structure, the
JLj�x� and JHD�x� components only exist at the grid positions
of the corresponding nonlocal material. By not updating the
currents outside of the structure, the additional boundary
condition of Pekar is imposed43—i.e., the total nonlocal po-
larization current vanishes outside of the structure.

Equations �A5�, �A9�, �A15�, and �A19� form the com-
plete and consistent set necessary to solve Eqs. �3�–�6� for
materials described by the constitutive relationship in Eq. �2�
with the dielectric function given in Eqs. �7�–�9�.
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