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We present a quantization of the hydrodynamic model to describe the excitation of plasmons in a single-
walled carbon nanotube by a fast point charge moving near its surface at an arbitrary angle of incidence. Using
a two-dimensional electron gas represented by two interacting fluids, which takes into account the different
nature of the � and � electrons, we obtain plasmon energies in near-quantitative agreement with experiment.
Further, the implemented quantization procedure allows us to study the probability of exciting various plasmon
modes, as well as the stopping force and energy loss spectra of the incident particle.
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I. INTRODUCTION

Plasmon excitations in carbon nanotubes �CNTs� continue
to attract attention for a variety of applications, e.g., in the
context of their optical response.1–3 On the other hand, plas-
mon excitations are most effectively probed by fast-moving
charged particles, such as in electron energy loss spectros-
copy �EELS� using a scanning transmission electron micro-
scope. This technique has proven to be a powerful tool for
investigating the dynamic response of CNTs �Refs. 4–7� and,
more recently, graphene.8,9 Moreover, plasmon excitations
were observed to play an important role in electronic excita-
tions of CNTs exposed to ion bombardment.10 On the theo-
retical side, in addition to ab initio calculations,6,11 simpler
models have been also used to study plasmon excitations in
carbon nanostructures, such as the empirical dielectric
tensor12 and the hydrodynamic model.13

Since carbon nanostructures present physical realizations
of one-atom-thick layers of an electron gas, it is no surprise
that a two-dimensional �2D� version of the hydrodynamic
model was used early on in studying plasmon excitation in
CNTs.14–16 We note that a planar 2D hydrodynamic model of
the electron gas was pioneered by Fetter17,18 in 1973. This
model has subsequently been used to gain qualitative under-
standing of plasmon excitations in various quasi-2D elec-
tronic structures, including semiconductor inversion layers,
quantum wells, and thin metallic films. Such a model as-
sumes that all electrons belong to a single fluid characterized
by two parameters only, the equilibrium surface density n0
and the effective electron mass m�. Owing to its simplicity
and versatility in handling difficult geometric constraints,
multilayered structures, and the presence of dielectric envi-
ronment, the single-fluid version of the 2D hydrodynamic
model has been used in a significant number of applications
of CNTs and Fullerene molecules.19–27

However, treating the four valence electrons per atom in
carbon nanostructures as belonging to the same fluid fails to
capture significant differences in their bonding. Three of
these valence electrons are involved in the strong � bonds

characterizing the sp2 hybridization within a layer of carbon
atoms. At the same time, one electron occupies a weakly
bound � orbital that is largely responsible for the conductiv-
ity properties of carbon nanostructures. While the � electron
bands make graphene a zero-gap semiconductor, the so-
called graphene nanoribbons, as well as CNTs may exhibit
metallic or semiconducting character depending on the sym-
metry of their underlying atomic structure. On the other
hand, the � electron bands exhibit a large gap that gives rise
to a characteristic high-frequency feature in the absorption
spectra in various allotropic forms of carbon.

Consequently, inspired by the empirical model of
Cazaux,28 Barton, and Eberlein29 proposed a two-fluid ver-
sion of the 2D hydrodynamic model. Their model treats the
� and � electrons as two classical fluids with equilibrium
densities n�

0 =3nat and n�
0 =nat �where nat�38 nm−2 is

graphene’s atomic density�, respectively, which they super-
imposed on the surface of a C60 molecule. By introducing an
empirical restoring frequency for the � electron fluid, the
two-fluid 2D hydrodynamic model of Barton and Eberlein
was shown to give rise to two groups of plasmons. This
explained well the two dominant absorption features in the
frequency ranges of 5–10 and 15–30 eV, in both Fullerene
molecules29,30 and single-wall CNTs �SWCNTs�.31

On the other hand, Mowbray et al.32 introduced the quan-
tum, or Fermi pressure in the � and � electron fluids, and
reformulated the two-fluid 2D hydrodynamic model without
invoking any empirical parameters. They found that the elec-
trostatic interaction between the fluids gives rise to two
groups of high- and low-frequency plasmons for both
SWCNTs �Ref. 32� and multiwall CNTs �Ref. 33� in similar
ranges as those obtained by Barton and Eberlein.29 Versatility
of this version of the two-fluid 2D hydrodynamic model was
further exploited in studying the interactions of CNTs with
dielectric media,34,35 as well as in applications to the propa-
gation of electromagnetic radiation through CNTs.36–38

In the present paper, we perform a second quantization of
the two-fluid 2D hydrodynamic model for electron gas con-
fined on the surface of an infinitely long cylinder represent-
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ing a free SWCNT, and use it to analyze the spectra of plas-
mon excitations induced by a classical nonrelativistic
charged particle, passing by the nanotube under an arbitrary
angle of incidence. This approach enables us to study the
effects of multiple plasmon excitations by external particle
beams, similar to the EELS studies of thin metallic films on
solid surfaces.39 Such a study can help elucidate which plas-
mon modes are most effectively excited depending on the
incident projectile trajectory. Besides obvious applications in
the EELS studies of CNTs, the results of this work may help
to understand the role of electronic channels in energy depo-
sition in carbon nanostructures during ion irradiation.10

After describing the model and outlining its second quan-
tization in Sec. II, we shall discuss our results for the plas-
mon excitation spectra, total energy loss, and the stopping
force on the external charge in Sec. III. Our concluding re-
marks will be followed by a description of the statistical
properties of plasmon excitations in Appendix A, a discus-
sion of the relation to the semiclassical model in Appendix
B, and an outline of how the results for planar 2D electron
gas may be obtained from the formalism for cylindrical ge-
ometry in Appendix C. We shall use the Gaussian electro-
static units unless otherwise indicated.

II. BASIC THEORY

A. Hydrodynamical two-fluid Hamiltonian

The total Hamiltonian, H, for the � and � electron fluids
can be written as

H = �
�=�,�

� d2rsn��rs,t�� 1

2m�
� �p��rs,t��2 +

��
2

�x��rs,t��2

+ V�rs,t�� + �
�=�,�

� d2rsn��rs,t�

�	��2

2m�
�n��rs,t� − e2� 32

9�
n��rs,t��1/2


+
e2

2 �
�=�,�

�
��=�,�

� � d2rsd
2rs�

n��rs,t�n���rs�,t�

�rs − rs��
, �1�

where rs��r=R ;� ,z is a position on the surface of a
single-wall carbon nanotube of radius R aligned with the z
axis of a cylindrical coordinate system with coordinates r
= �r ,� ,z, whereas n�, p�, x�, m�

�, and �� are, respectively,
the number density per unit area, the fluid momentum field,
displacement field, effective mass, and the restoring-force
constant for the �th electron fluid, with �=� ,�. Note that the
first term in Eq. �1� may be interpreted as the kinetic energy
of a classical fluid � moving at the velocity u��rs , t�
�p��rs , t� /m�

�= ẋ��rs , t�, where the dot stands for time de-
rivative. The second term represents the restoring �R� effects
on the fluid displacement due to electron binding in har-
monic approximation, giving rise to restoring frequency
��r���� /m�

�. Further, the potential energy per electron, V
=Vgr+Vext, consists of the ground state energy due to the
positive-ion background, Vgr�rs�, and the energy due to the
time-dependent external perturbing potential, Vext�rs , t�. The

next two terms represent, respectively, the Thomas-Fermi
�TF� and the Dirac’s �D� exchange interactions in the local-
density approximation for the electron fluid �, whereas the
last term in Eq. �1� represents Coulomb interactions among
electrons.

A few additional comments on the Hamiltonian in Eq. �1�
may be in order. While restoring frequencies ��r play the
role of empirical parameters that are usually determined by
fitting to experimental data,5,12,28,29 their physical motivation
is to take into account the effects of the electronic band
structure of carbon nanostructures in a manner analogous to
that invoked in devising the Drude-Lorentz dielectric func-
tion for carbon materials.40 So, invoking the high mobility of
the � electrons in metallic nanotubes and considering that
the � electron bands exhibit a gap of about 12 eV, we adopt
the restoring frequencies of ��r=0 eV and ��r=16 eV,
which have been used by previous authors.29–31 Next, we
note that the TF and D terms are written in the Hamiltonian
in Eq. �1� in a form commensurate with a planar 2D electron
gas. This may be justified by considering a quasi-free 2D
electron gas with the number density per unit area n, occu-
pying the surface of a cylinder with radius R, where curva-
ture effects were found negligible when RkF	1, where kF

=�2�n is the Fermi wave number of the corresponding pla-
nar 2D electron gas.34,41 Finally, we note that a Hamiltonian,
which is similar in form to the one in Eq. �1�, was used by
van Zyl and Zaremba42 who included the so-called von
Weizsäcker, or gradient-correction term of the form

HvW = �
�=�,�


vW
�2

8m�
�� d2rs

��n��rs,t��2

n��rs,t�
. �2�

This provides an approximate correction for the nonlocal ef-
fects in the TF interaction in a planar 2D electron gas. How-
ever, there is considerable uncertainty regarding the exact
form of such a term. In fact, it was confirmed recently that
the von Weizsäcker factor 
vW in Eq. �2� should vanish in a
strict planar case.43 Nevertheless, it has become quite com-
mon to use the von Weizsäcker correction with 
vW=1 in
many recent studies of CNTs,20,21,32,36 even though the ef-
fects of curvature on this term are not known at present.
Fortunately, the von Weizsäcker correction was found to only
affect plasmon dispersion at very short wavelengths.34 Such
wavelengths are comparable to the interatomic spacing
where the hydrodynamic model is likely to break down any-
way so we shall neglect such a contribution to the Hamil-
tonian in Eq. �1�.

We further assume that the interaction with the external
particle can be considered as a small perturbation. Hence, we
can expand the Hamiltonian in Eq. �1� to the second order
with respect to the perturbation by declaring Vext=
Vext and
writing u��rs , t�=
�ẋ��rs , t�+O�
2� and n��rs , t�=n�

0

+
�n��rs , t�+O�
2�, where n�
0 is the ground-state electron

density in the �th fluid. We can further express the perturbed
electron density in terms of the displacement field in a man-
ner that will automatically satisfy the linearized continuity
equation by writing �n��rs , t�=−n�

0�s ·�x��rs , t�. Here the
gradient �s differentiates only in the directions tangential to
the surface of the cylinder r=R. Moreover, by restricting

MOWBRAY et al. PHYSICAL REVIEW B 82, 035405 �2010�

035405-2



consideration to electrostatic phenomena, the velocity field
will be irrotational. This will be ensured by defining a poten-
tial function for the displacement field, ���rs , t�, such that
�x��rs , t�=−�s���rs , t�. We can now write the second-order
Hamiltonian in terms of the function ���rs , t� alone

H2 = �
�

n�
0� d2rs	m�

�

2
���s�̇��2 + ��r

2 ��s���2�

+ Vext�rs,t��s
2��
 + �

�
� d2rs���2

2m�
� −

e2

�2�n�
0�

��n�
0�s

2���2 +
e2

2 �
�,��
� � d2rsd

2rs�
n�

0n��
0

�rs − rs��
�s

2���s
2���.

�3�

Before proceeding, it is worth mentioning that, while quan-
tum treatment generally requires a second-order
Hamiltonian,44 as in Eq. �3�, such an approximation for the
Hamiltonian yields semiclassical equations of motion for the
electron gas that correspond to the linearized hydrodynamic
model. To illustrate this point, we note that one can derive
from H2 a Lagrange’s equation of motion for the potential
function ���rs , t� as follows:

�̈� + ��r
2 �� − s�

2�s
2�� =

1

m�
� �Vext�rs,t� − eind�rs,t�� , �4�

where we have defined the speed of propagation of density
disturbances in the �th fluid, s�, by

s�
2 =

2

m�
����2

2m�
�n�

0 − e2� n�
0

2�
� . �5�

Here ind�r , t� is the induced potential in the system due to
polarization of the electron fluids, satisfying the Poisson
equation in three dimensions

�2ind�r,t� = 4�e��r − R� �
�=�,�

n�
0�s

2���rs,t� , �6�

where we have used the fact that the induced density in the
�th fluid is given by �n�=n�

0�s
2�� to the first order. It is in-

teresting to note that the effect of the Dirac term in Eq. �5� is
to reduce the adiabatic limit of the speed due to the TF term,
which can be written as sTF�=vF� /�2 with vF�

= �� /m�
���2�n�

0 being the Fermi speed for the �th fluid in
equilibrium. It can be shown that, in a hydrodynamic model
without the Dirac correction,19,20,32 the high-frequency ex-
pression for the speed due to the TF interaction should be
corrected so that sTF�= ��3 /2�vF�.

45 However, including this
effect in the present model would require using a relaxation
approximation for the kinetics of the electron gas, rendering
second quantization of the model unsuitable.45

We make further progress by seeking a Fourier series rep-
resentation of the potential function ���rs , t������ ,z , t� for
its dependence on coordinates on the nanotube’s surface.
This will give rise to a change in variables �� ,z� �m ,k for
all quantities of interest, with m and k defining the modes of
plasmon propagation around the nanotube’s circumference

and in its axial direction, respectively. We initially assume
that the nanotube has a finite length L, so that its total area is
A=2�RL and k is a discrete variable, taking values k= 2�

L �
with � being an integer. Thus, defining the Fourier coeffi-
cients as

�̃��m,k,t� = R�
−�

�

d��
−L/2

L/2

dze−im�−ikz����,z,t�

� � d2rse
−im�−ikz���rs,t� �7�

we may write

���rs,t� =
1

A �
m=−�

�

�
k

eim�+ikz�̃��m,k,t�

→
1

2�R
�

m=−�

� �
−�

� dk

2�
eim�+ikz�̃��m,k,t� , �8�

where the limiting expression involves a Fourier transform in
the axial direction that arises in the limit L→�, when k
becomes a continuous variable. We note that, while the
present formalism is most clearly developed by using sum-
mation over k for a nanotube of finite length, our final results
will be computed by integration over k, corresponding to the
limit of an infinitely long nanotube. In this way we neglect
any end effects on plasmon excitation spectra, which may be
justified by invoking a typically high aspect ratio for CNTs,
L /R	1.

One can now express H2 in Eq. �3� as

H2 =
1

A�
m,k

�m2

R2 + k2��hmk
�0� + hmk

�int�� �9�

with the unperturbed part of the Hamiltonian given by

hmk
�0� = �

�

n�
0m�

�

2
���̇̃��2 + ��r

2 ��̃��2 + s�
2�m2

R2 + k2���̃��2�
+

e2

2
Rgmk�m2

R2 + k2��
�,��

n�
0n��

0
�̃�

��̃�� �10�

and the interacting part by

hmk
�int� = − �

�

n�
0
R��̃�

�Ṽext , �11�

where we have suppressed the dependencies on �m ,k , t� in �̃�
and its complex conjugate �̃�

�. Here, gmk
�4�Im��k�R�Km��k�R� is the Green’s function for the Poisson
equation in cylindrical coordinates evaluated at the nano-
tube’s surface, with Im and Km being the modified Bessel
functions of integer order m, of the first and second kind,

respectively. Moreover, Ṽext� Ṽext�R ;m ,k , t� is the Fourier
transform with respect to coordinates of the external poten-
tial Vext�rs , t��Vext�R ;� ,z , t�, evaluated on the nanotube’s
surface. In particular, for a point charge eZ moving on a
trajectory r0�t�= �r0�t� ,�0�t� ,z0�t� that remains external to
the nanotube at all times, r0�t��R, we obtain
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Ṽext�R;m,k,t� = − e2ZRgmk�R,r0�t��e−im�0�t�−ikz0�t�, �12�

where gmk�R ,r0�=4�Im��k�R�Km��k�r0�.
We now proceed to diagonalize hmk

�0� in the subspace of
interacting � and � fluids for fixed m and k. �The procedure
is similar to that followed by Gorokhov et al.30 in their treat-
ment of C60 plasmon excitation with a quantized two-fluid
model�. To this end, we define the factors

f� =
n�

0m�
�

n0m�

= �
3

4

m�
�

m�

for � electrons

1

4

m�
�

m�

for � electrons,� �13�

where n0=n�
0 +n�

0 is the total areal density of valence elec-
trons in graphene, with relative weights 3

4 and 1
4 correspond-

ing to the sp2 hybridization,40 and m� is a suitably defined
mean effective electron mass �see below�. Thus, we can re-
write Eq. �10� as

hmk
�0� = n0

m�

2
�f����̇̃��2 + ��

2 ��̃��2� + f����̇̃��2 + ��
2 ��̃��2�

+ ��f�f���̃�
��̃� + �̃�

� �̃��� , �14�

where we have defined plasma frequencies of noninteracting
fluids, �� and ��, by

��
2 = ��r

2 + �s�
2 + e2Rgmk

n�
0

m�
���m2

R2 + k2� �15�

while their coupling is defined by

�2 = e2Rgmk� n�
0

m�
�

n�
0

m�
� �m2

R2 + k2� . �16�

One can diagonalize the Hamiltonian hmk
�0� by substituting

�f��̃� = A1 cos � − A2 sin � , �17�

�f��̃� = A1 sin � + A2 cos � �18�

into Eq. �14� and by choosing the angle � so that oscillations
with amplitudes A1 and A2 are decoupled. This is achieved

when cot�2��=
��

2−��2

2�2 so that the noninteracting part of the
Hamiltonian can be written as a sum of decoupled oscillators

hmk
�0� = n0

m�

2 �
j=1

2

�Ȧjmk
� �t�Ȧjmk�t� + � jmk

2 Ajmk
� �t�Ajmk�t�� ,

�19�

where we have restored the dependencies on �m ,k , t� and
defined the eigenfrequencies, � jmk�0, of the decoupled os-
cillators by

� jmk
2 =

��
2 + ��

2

2
�����2 − ��

2

2
�2

+ �4 �20�

with j=1,2 for the positive and negative signs, respectively.
For the interacting Hamiltonian, we substitute Eqs. �17�

and �18� into Eq. �11� and obtain

hmk
�int� = −

1

2

n�
0

�f�
��A1 cos � − A2 sin ��Ṽext

� + c.c.�

−
1

2

n�
0

�f�
��A1 sin � + A2 cos ��Ṽext

� + c.c.� , �21�

which can be written in a more compact form if we define m�

to be a weighted harmonic mean of the effective masses in
the � and � fluids

1

m�

=
1

n0
� n�

0

m�
� +

n�
0

m�
� � �22�

as follows:

hmk
�int� =

n0

2
��D1mkA1mk�t� + D2mkA2mk�t��Ṽext

� �R;m,k,t� + c.c. ,

�23�

where we have restored the dependencies on �m ,k , t�. Here

Djmk = 	− cos�� − �� j = 1

sin�� − �� j = 2,

 �24�

where the angles � and � are defined, respectively, by

	cos �

sin �

 =

1

�2
�1 �

��
2 − ��

2

�1mk
2 − �2mk

2
�25�

and

cos � =�n�
0m�

n0m�
� , sin � =�n�

0 m�

n0m�
� . �26�

It is worth mentioning that a classical, single-fluid model is
recovered by letting both ��r→0 and s�→0 in Eq. �15� so
that Eq. �20� then gives �=� with �2mk=0 and �1mk corre-
sponding to plasma frequency of a 2D electron gas with sur-
face density n0=n�

0 +n�
0 and an effective mass m� defined via

Eq. �22�.20,32

B. Quantization

Once we have the decoupled Hamiltonian to describe the
system, it is useful to apply a quantum treatment in terms of
creation and annihilation operators. This provides a simple
and clear way to describe the excitation of plasmons �oscil-
lators� due to the interaction with the external particle. Fol-
lowing the quantization procedure described by Arista and
Fuentes,46 we assign to the coefficients Ajmk creation and
annihilation operators as follows:

Ajmk�t� →
� jmk

2� jmk
�âjmk

† �t� + âjmk�t�� , �27�

where the coefficient � jmk is to be determined. The operators
âjmk and âjmk

† satisfy the usual commutation relations

�âj�m�k�, âjmk
† � = � j j��kk��mm�

while their time dependence, âjmk�t�= âjmk exp�−i� jmkt�,
gives â̇ jmk�t�=−i� jmkâjmk�t� so that
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Ȧjmk�t� → i
� jmk

2
�âjmk

† �t� − âjmk�t�� . �28�

With these relations, the �quantized� noninteracting Hamil-
tonian of the mode �m ,k� can be written as

ĥmk
�0� = n0

m�

2 �
j=1

2

� jmk
2 �âjmk

† âjmk +
1

2
� �29�

giving for the full noninteracting Hamiltonian �see Eq. �9��

Ĥ2
�0� =

1

A�
m,k

�m2

R2 + k2�ĥmk
�0� = �

j,m,k
�� jmk�âjmk

† âjmk +
1

2
� .

�30�

This procedure gives the coefficient � jmk to be used in Eq.
�27� as

� jmk =� 2A�� jmk

m�n0�m2

R2 + k2� . �31�

For the �quantized� interacting Hamiltonian of the mode
�m ,k� we obtain

ĥmk
�int� =

n0

2 �
j=1

2
� jmk

2� jmk
Djmk��âjmk

† �t� + âjmk�t��Ṽext
� �R;m,k,t�

+ h.c. �32�

so that the total interacting Hamiltonian reads

Ĥ2
�int� = �

j,m,k
� jmk�t��âjmk

† �t� + âjmk�t�� �33�

with

� jmk�t� =��n0�m2

R2 + k2�
2m�A� jmk

DjmkR�Ṽext�R;m,k,t�� .

�34�

We note that the interacting Hamiltonian in Eq. �33� is given
by a superposition of the linear displacements of plasmons as
quantum oscillators, which is a consequence of using the
second-order approximation for the full Hamiltonian, given
in Eq. �3�.44

We further follow the formalism presented by Arista and
Fuentes,46 and obtain the average number of excited plas-
mons in a given mode �j ,m ,k� as

� jmk = � 1

�
�

t0

t

dt�ei�jmkt�� jmk�t���2

, �35�

where t0→−� and t→+�. Inserting Eq. �34� in Eq. �35�, we
obtain

� jmk = Cjmk�V̆ext�R;m,k,� jmk��2, �36�

where

Cjmk =
n0

A
Djmk

2

2�m�

m2

R2 + k2

� jmk
�37�

and V̆ext�R ;m ,k ,�� is the Fourier transform with respect to

time of the function Ṽext�R ;m ,k , t�

V̆ext�R;m,k,�� = �
−�

�

dtei�tṼext�R;m,k,t� . �38�

The time integral in Eq. �38� can be solved analytically by
using Eq. �12� for the case of a straight-line trajectory with
constant velocity, given by r0�t�= �r0�t� ,�0�t� ,z0�t� with

r0�t� = �rmin
2 + v�

2 t2,

�0�t� = arctan� v�t

rmin
� ,

z0�t� = v�t ,

where rmin�R is the shortest distance between the trajectory
and the nanotube axis, and v� and v� are the components of
the incident particle’s velocity in the directions perpendicular
and parallel to the nanotube’s axis, respectively. Thus, one
obtains34

V̆ext�R;m,k,�� = − 4�e2ZRIm��k�R�Km�k,�� , �39�

where

Km�k,�� = �
e−rmin/v�

��� − kv��2+�kv��2

��� − kv��2 + �kv��2

��� − kv� + ��� − kv��2 + �kv��2

�k�v�

�m

. �40�

Here, the velocity components may be expressed in terms of
the total projectile speed, v, and the incident angle, �, rela-
tive to the nanotube axis as v�=v sin � and v� =v cos �.
Without any loss of generality, one may adopt the range of
angles 0���� /2, so that the direction of projectile motion
is defined by positive values v��0 and v��0, correspond-
ing to the directions of increasing variables � and z, respec-
tively. As a consequence, one can then infer from Eq. �40�
that the propagation direction of plasmon modes �m ,k�,
which is commensurate with the direction of projectile mo-
tion, will be given by positive values, m�0 and k�0.

Finally, using the fact that the plasma excitations by an
external particle are represented by independent quantum os-
cillators of the mode �j ,m ,k�, and that the probability distri-
bution of exciting such an oscillator to the Nth state is Pois-
sonian defined by the mean � jmk, one can deduce several
statistical properties of practical interest. For example, it is
shown in Appendix A that the probability distribution of
plasma excitations in the mode with fixed j and m for arbi-
trary k is also Poissonian, defined by the mean
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� jm = �
k

� jmk →
L

2�
�

−�

�

dk� jmk. �41�

Moreover, we shall derive in Appendix A an expression for
the probability density for energy loss, P��� in Eq. �A7�, as
well as the total energy loss, �Eloss in Eq. �A8�, which can be
compared with experiments or other theoretical approaches.

A few comments may be in order about the projectile
trajectory in relation to plasmon excitations of the nanotube.
The straight-line trajectory presents a good approximation
for a projectile with sufficiently high momentum so that the
effects of the recoil and trajectory bending may be neglected.
On the other hand, a projectile moving at very high speeds
would require inclusion of the retardation effects in the elec-
tron response of the CNT, which is beyond the scope of the
present work. Moreover, our neglect of the end effects on
plasmon excitation may be justified when the projectile
moves on nonparallel trajectories with angles tan �	R /L. In
practice, this condition is satisfied for angles ��1° owing to
the high aspect ratio of CNTs.

The case of parallel trajectory with �=0 deserves special
attention. In that case, one has to assume that the nanotube
length L is finite, but still large enough to allow the neglect
of end effects on plasmon excitation, as indicated in the lim-
iting form of Eq. �8�. On the other hand, it is rigorously
shown in the last paragraph of Appendix B that, when v�

=0, the number of excited plasmons in the mode �j ,m ,k�
becomes proportional to L��� jmk−kv��, and Eq. �36� must be
then evaluated by using Eq. �B16�, rather than Eqs. �39� and
�40�. If L may also be considered short enough, one can
further define the stopping force, or the energy loss per unit
path length, S=�Eloss /L, giving Eq. �B17� for a projectile
moving on a parallel trajectory outside the nanotube. That
result is extended in a straightforward manner in Eq. �B18�
for a particle channeled inside the nanotube.24,25 In either
case, the quantity S may be considered independent of L if
the total energy loss �Eloss in a finite-length nanotube is
much smaller than the initial kinetic energy of the particle on
a parallel trajectory.

III. RESULTS AND DISCUSSION

We first compare in Fig. 1�a� the effects of R, TF, and D
interactions in Eq. �1� on the dispersion relations � jm�k�,
defined in Eq. �20�, for modes j=1,2 with m=0 in a CNT
with radius R=7 Å, assuming that the effective masses are
all equal to the free electron mass. We note that setting all
these interactions to zero causes the two fluids to collapse
into a single classical electron fluid �SF� with surface density
n0=4nat, giving rise to the �+� electron plasma
oscillations.20 Introducing either the R interaction or the TF
�with or without the D� interaction terms causes splitting of
the plasmon dispersions into the high-frequency �j=1 or �
+�� branch, which is very close to the single-fluid branch,
and the low frequency �j=2 or �� branch. The main differ-
ence between the splitting of plasmon branches due to the R
interaction as opposed to the TF�D� interaction is that, in the
latter case, both the upper and the lower plasmon dispersions
� j0k vanish as k→0 while the � branch is markedly acoustic.

On the other hand, inclusion of the R interaction renders the
� plasmon branch quasiacoustic, with an almost constant
slope for k�0.1 Å−1, in close agreement with the experi-
mental data.4,6,7 It is also seen in Fig. 1�a� that the inclusion
of the D interaction both lowers the upper branch to some
extent and reduces the slope of the lower branch, as expected
from Eq. �5�.

Since in the rest of this work we use a “complete” two-
fluid hydrodynamic model, which includes R, TF, and D in-
teractions, we compare in Fig. 1�b� its modes with m=0, 1,
2, 3, and 4 for both the upper �j=1 or �+�� and lower �j
=2 or �� plasmon branches with the experimental data.4,6,7

This semiquantitative agreement with experiment, particu-
larly for the narrow group of lower plasmon branches, indi-
cates that the inclusion of both the R and D interactions
improves the present, complete hydrodynamic model in
comparison to the previous two-fluid model, which only in-
cluded the TF interaction.32

In the remaining calculations we consider a particle with
Z=�1 �proton or electron�, passing by a SWCNT of radius
R=7 Å at a minimum distance rmin=10.5 Å �unless indi-
cated otherwise�.

Figures 2 and 3 show the average number of excited plas-
mons, � jmk, as a function of k for �m�=0, 1, 2, 3, and 4 with
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FIG. 1. �Color online� Plasmon energies �� in electron volt
versus longitudinal momentum k in Å−1 of a SWCNT with radius
R=7 Å for �a� angular momentum m=0 from SF �Ref. 20, the
lowest �solid green� curve in the upper group�, two-fluid TF �Refs.
28 and 35, solid light gray �yellow� pair of curves�, two-fluid TFD
�dashed pair of curves�, two-fluid R �Ref. 29, dotted pair of curves�,
two-fluid TFR �dash-dotted pair of curves�, and two-fluid TFDR
�solid black pair of curves� models, and �b� two-fluid TFDR model
for angular momenta m=0, 1, 2, 3, and 4. Experimental results from
Ref. 4 �dots�, Ref. 6 �diamonds�, and Ref. 7 �squares� are provided
for comparison.
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j=1 ��a� and �c�� and j=2 ��b� and �d��, for two total speeds,
v=5 a.u. ��a� and �b�� and v=10 a.u. ��c� and �d��, and for
two incident angles, �=90° �Fig. 2� and �=45° �Fig. 3�. Note
that, for normal incidence, � jmk is an even function of wave
number so only positive k values are shown in Fig. 2. We
observe that, for low �k� values, the low-frequency branches
�j=2� dominate over the high-energy modes �j=1� in both
Figs. 2 and 3 but this trend seems to be reversed for increas-
ing values of �k�, increasing speed, and oblique incidence. In

particular, the singular behavior of the mode j=2, m=0 as
k→0 in Figs. 2 and 3 stems from the way how its dispersion
relation vanishes in the long wavelength limit in Fig. 1,
which may be approximated by a one-dimensional plasmon
dispersion for the � electron fluid, �20k

�k�4�Re2�n�
0 /m�

� �ln�1.123 /kR� for k�0.1 Å−1.41 At ob-
lique incidence the � jmk curves are no longer even functions
of k and the observed dominance in Fig. 3 of the values with
k�0 indicates that the preferential direction for propagation
of the plasmon coincides with the direction of the longitudi-
nal velocity component of the projectile, v��0. In addition,
one notices in Fig. 2 that the modes with m�0 �black lines�
are generally excited with much higher probabilities than the
modes with m�0 �light gray �orange� lines� indicating that,
for normal incidence, plasmon waves tend to propagate
around the nanotube circumference in the direction of pro-
jectile motion. However, the situation is reversed for oblique
incidence so that the modes with m�0 tend to dominate
over those with m�0 for increasing k�0 values in Fig. 3.

Figure 4 shows the dependence of the average number of
excited plasmons, � jm, which is obtained after integration of
the curves in Figs. 2 and 3 over k, on the total particle speed
v for �=90° ��a� and �b�� and �=45° ��c� and �d��, for the
branches j=1 ��a� and �c�� and j=2 ��b� and �d��. One can
say that, globally, the mode j=2, m=0 dominates for any
speed or direction of the incident particle, displayed in Fig.
4, but we also observe that the relative contributions of the
other modes change with increasing v. For higher speeds of
the incident particle, the relative importance of the modes
with j=1 increases, especially for m=0 and m=1. Moreover,
one notices that the modes with m�0 are generally sup-
pressed compared to the modes with m�0 at lower speeds
but they tend to regain some importance as the speed in-
creases. We also notice that there exist velocity thresholds
for the excitation of the different nonacoustic modes �all j
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FIG. 2. �Color online� Average number of excited plasmons
L

2�R� jmk as a function of longitudinal momentum k in Å−1 on a
SWCNT with R=7 Å for ��a� and �c�� �+� modes �j=1� and ��b�
and �d�� � modes �j=2� with angular momenta �m�=0 �——�, 1
�¯¯�, 2 �– – –�, 3 �– · –�, and 4 �– ·· –�, shown by black lines when
m�0 and light gray �orange� lines when m�0, due to a proton
with rmin=10.5 Å, incident at angle relative to the SWCNT axis of
�=90° with speed ��a� and �b�� v=5 a.u. and ��c� and �d�� v
=10 a.u.
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FIG. 3. �Color online� Average number of excited plasmons
L

2�R� jmk as a function of longitudinal momentum k in Å−1 on a
SWCNT with R=7 Å for ��a� and �c�� �+� modes �j=1� and ��b�
and �d�� � modes �j=2� with angular momenta �m�=0 �——�, 1
�¯¯�, 2 �– – –�, 3 �– · –�, and 4 �– ·· –�, shown by black lines when
m�0 and light gray �orange� lines when m�0, due to a proton
with rmin=10.5 Å, incident at angle relative to the SWCNT axis of
�=45° with speed ��a� and �b�� v=5 a.u. and ��c� and �d�� v
=10 a.u.
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FIG. 4. �Color online� Average number of excited plasmons � jm,
defined in Eq. �41�, on a SWCNT with R=7 Å for ��a� and �c��
�+� modes �j=1� and � modes �j=2� with angular momenta �m�
=0 �—�, 1 �¯¯�, 2 �– – –�, 3 �– · –�, and 4 �– ·· –�, shown by black
lines when m�0 and light gray �orange� lines when m�0 as a
function of the total speed v in atomic unit of a proton with rmin

=10.5 Å at an angle relative to the SWCNT axis of ��a� and �b��
�=90° and ��c� and �d�� �=45°.
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=1 modes and the j=2 modes with m�0�. We remark that
finite values of the average number � jm for the mode j=2,
m=0, which extend down to low speeds in Fig. 4, are likely
a consequence of the singular behavior of the corresponding
number � jmk as k→0 seen in Figs. 2 and 3, but they are not
in violation of the conservation of energy for slowly moving
projectiles, as documented by the total energy loss at low
speeds in Fig. 7.48

The dependence of � jm on the incidence angle � is dis-
played in Fig. 5 for the modes with j=1 ��a� and �c�� and j
=2 ��b� and �d�� for two total speeds: v=5 a.u. ��a� and �b��
and v=10 a.u. ��c� and �d��. In general, the relative impor-
tance of various modes is similar to that seen in Fig. 4 ex-
hibiting dominance of the mode j=2, m=0. One notices that
the modes with m�0, which are suppressed at finite angles
of incidence, become equal to the modes with m�0 in the
limit of grazing incidence, �→0, as expected from symme-
try considerations. Furthermore, the overall increase in the
number of all excited modes with decreasing angle � may be
ascribed to increasing interaction time with an otherwise in-
finite nanotube, which should become proportional to
cosec � for angles � smaller than several degrees. In particu-
lar, it is interesting to note that, while in Figs. 2–4 the aver-
age numbers of excited plasmon modes are generally small,
and even the most dominant mode j=2, m=0 hardly exceeds
unity, the number of plasmons excited in the mode j=2, m
=0 is seen in Fig. 5 to greatly exceed unity for, e.g., ��5°.

From the results of previous section it is possible to obtain
a statistical description of energy loss of the incident particle
�see Appendix A�. One of the most useful quantities is the
probability density, P���, for losing a given amount of en-
ergy, �, which can be related to the energy loss spectra with
peaks corresponding to the excitation of various plasmon
modes. In Fig. 6 we show the product �P��� for several
incident speeds of a particle traveling perpendicular �a� and

with an inclination angle of 45° �b� with respect to the tube
axis. We can see two distinct groups of peaks, indicating
excitation of the two branches of plasmons, � and �+�,
shown in Fig. 1. At low speeds �v�1–2 a.u.�, only the low-
energy plasmons are excited,49 which is commensurate with
the demonstrated ability of the low-energy EELS technique
to probe the � plasmon excitation in graphene.9 On the other
hand, as the incident speed increases, we notice in Fig. 6
excitation of both �+� and � plasmons, as observed in the
high-energy EELS experiments.6–8 Even though we do not
pursue here the problem of plasmon excitations at relativistic
projectile speeds, one may infer from Fig. 6 that the excita-
tion probabilities of both groups of plasmons decrease as the
speed exceeds a value on the order of 20 a.u. with the low-
energy plasmon peaks being almost diminished and the high-
energy peaks still visible at v�50 a.u..

Looking into details of the spectra in Fig. 6, one notices
that, as the speed increases, there are changes not only in the
overall intensity of the peaks but also in the relative weight
of each mode. At lower speeds, modes m=2,3 , . . . give large
contributions in both branches while at higher speeds their
weights are suppressed. It is interesting to notice that the
mode j=1, m=0 only appears at the speeds v�10 a.u. as a
broad feature just above the restoring frequency of 16 eV of
the � fluid. When the incidence is oblique, we observe
broadening of all peaks, especially at low speeds, which is
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FIG. 5. �Color online� Average number of excited plasmons � jm,
defined in Eq. �41�, on a SWCNT with R=7 Å for ��a� and �c��
�+� modes �j=1� and � modes �j=2� with angular momenta �m�
=0 �—�, 1 �¯¯�, 2 �– – –�, 3 �– · –�, and 4 �– ·· –�, shown by black
lines when m�0 and light gray �orange� lines when m�0 as a
function of the angle relative to the SWCNT axis � in degrees for a
proton with rmin=10.5 Å at the total speed of ��a� and �b�� v
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clarity. The position of the k→0 plasmon modes � jm0 are provided
for comparison.

MOWBRAY et al. PHYSICAL REVIEW B 82, 035405 �2010�

035405-8



due to an increase in the high-k contributions to the excita-
tion of various plasmon modes �cf. Figs. 2 and 3�.

By integrating the curves shown in Fig. 6, one can obtain
the total energy loss, �Eloss, suffered by the incident particle.
This is shown in Fig. 7 versus the particle speed v for two
angles of incidence, �a� �=90° and �b� �=45°, and for sev-
eral values of rmin. For the smallest rmin, the energy loss
presents a large maximum around the speed of v=2.5 a.u.,
and a smaller peak at a speed v�1 a.u. The physical reason
for the appearance of two peaks is likely due to the relatively
broad gap between the low-energy and high-energy groups
of peaks seen in Fig. 6. As expected, the two peaks in Fig. 7
decrease in magnitude as the minimum distance rmin in-
creases, and they broaden and move towards higher speeds
so that the smaller peak turns into a shoulder around v
�1–2 a.u.. It is also interesting to notice that there is a
threshold for energy loss on the order of v�0.3 a.u., which
is remarkably independent of the angle of incidence in Fig.
7. While such a threshold could not be anticipated from the
behavior of the average number of the lowest-energy � plas-
mon mode j=2, m=0 in Fig. 4, it is perhaps noteworthy that
this threshold speed correlates with the slope of the disper-
sion curve for the mode j=2, m=0 when k�0.1 Å−1 in Fig.
4.

In the limit of grazing incidence, �=0, the particle travels
parallel to the nanotube at a constant radial distance rmin. In
that case, we can consider both internal �rmin�R� and exter-
nal �rmin�R� particle trajectories and define the stopping
force acting on the particle, as described in the last paragraph
of Appendix B. Figure 8 shows the results for stopping force
at different positions �a� inside and �b� outside a SWCNT.
We observe that this force exhibits a peak structure which is
quite similar to that observed in Fig. 7 for the total energy

loss with similar trends as the particle moves away from the
nanotube wall. This can be rationalized by the fact that the
shapes of the curves for energy loss in Fig. 7 are largely
independent of the angle of incidence and by considering the
stopping force as the energy loss of a particle per unit path
length in the limiting case of oblique incidence when �
→0°.

IV. CONCLUSIONS

The formulation developed in this work represents a di-
rect but more realistic continuation of the works presented
previously by us35,46 related to plasmon excitation by exter-
nal charges moving paraxially in hollow cylindrical nano-
structures. We applied a quantization procedure46 to the two-
fluid hydrodynamic model developed by Mowbray et al.,32 in
order to obtain the average number of plasmons excited, and
the total energy loss suffered by a fast charged particle pass-
ing near the surface of a single-walled carbon nanotube with
an arbitrary angle of incidence.

One of the most important results of this version of the
hydrodynamic model is due to the inclusion of the restoring
interaction, which causes the �+� electron collective mode
to oscillate at finite frequency in the limit of vanishing wave
number, and changes the quasiacoustic dispersion of the �
plasmon so that it agrees well with the available EELS data.
On the other hand, quantization of these modes allowed us to
obtain several quantities in terms of the average number of
excited plasmons, such as the stopping force, energy loss
spectra, and total energy loss. We studied these quantities as
functions of various parameters: the total speed of the inci-
dent particle, its minimum distance to the nanotube surface,
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and the inclination angle of its trajectory with respect to the
nanotube axis.

In addition, we have discussed �in Appendix B� a relation
between the quantized and semiclassical approaches. The lat-
ter approach presents the possibility of including the effects
of plasmon damping and hence enables a more direct com-
parison with the available experimental energy loss data,
which is left for future work.
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APPENDIX A: STATISTICS OF PLASMON EXCITATIONS
ON CARBON NANOTUBES

In this appendix we use the methods of classical statistics
to discuss energy losses of a fast charged particle due to
electron plasma excitations on a carbon nanotube. We have
seen that the quantization approach in the main text repre-
sents plasma excitations as a pool of independent quantum
oscillators, or plasmons of mode q= �j ,m ,k� with an eigen-
frequency �q=� jmk.

According to Carruthers and Nieto,47 the probability of
exciting N plasmons of any given mode q is given by a
classical Poissonian distribution

Pq�N� = e−�q
�q

N

N!
, �A1�

where �q=� jmk is the mean number of plasmons excited in
mode q. For further consideration, it is convenient to define
the characteristic �or moment-generating� function associated
with the probability Pq�N�

Gq��� � �ei�N�q = �
N=0

�

eiN�Pq�N� = e�q�ei�−1�. �A2�

It is sometimes of practical or theoretical interest to discuss
marginal probability distribution Pjm�N� for having N plas-
mons excited in modes with given j and m values while the
longitudinal wave number k takes a full range of allowed
values. Because of the statistical independence of plasmons
of mode q, the excitation of plasmons with fixed �j ,m� can
be imagined as a subensemble consisting of independent os-
cillators with different values of k. Then, the characteristic
function associated with the marginal probability Pjm�N� can
be written as a product of the characteristic functions Gq���
for each member of this subensemble

Gjm��� = �
k

Gq��� = �
k

e�q�ei�−1� = e�jm�ei�−1�, �A3�

where � jm��k�q. By expanding the final result in Eq. �A3�
in a series of powers of the factor ei�, we find that the prob-
ability of exciting N plasmons in the mode �j ,m� is also a
Poissonian distribution

Pjm�N� = e−�jm
� jm

N

N!
�A4�

with the average number of plasmons, � jm, given in Eq. �41�.
Further, assuming that Nq is the number of plasmons ex-

cited in the mode q with frequency �q, one can express the
probability density P��� for losing energy � as an ensemble
average taking into account the above mentioned statistical
independence of plasmons of mode q

P��� = ���� − ��
q

Nq�q��
= �

−�

� d�

2��
e−i��/��

q
�eiNq�q��q

� �
−�

� d�

2��
exp�− i

��

�
+ �

q
�q�ei�q� − 1�� , �A5�

where the last step was derived by the use of Eq. �A2�. By
expanding the final result in Eq. �A5� in a power series of the
factor ei�q�, we obtain the probability density as

P��� = �
q
�q��� − ��q� . �A6�

This can be written in a more explicit form by invoking Eq.
�36� and using the delta function in Eq. �A6� to replace �q
�� jmk→� /�, as

P��� = �
jmk

��� − �� jmk�Cjmk�V̆ext�R;m,k,
�

�
��2

→ �
m=−�

�
L

2�
�

−�

�

dk�V̆ext�R;m,k,
�

�
��2

��
j=1

2

Cjmk��� − �� jmk� , �A7�

where Cjmk is given in Eq. �37� whereas V̆ext�R ;m ,k ,�� is
given in Eqs. �38�–�40� for a straight line trajectory.

Finally, we note that the above result for probability den-
sity of energy loss can be used to evaluate the total energy
loss as the mean value, �Eloss=�d��P��� so that

�Eloss = �
q
��q�q → �

j=1

2

�
m=−�

�
�L

2�
�

−�

�

dk� jmk� jmk.

�A8�

It will be shown in the Appendix B that the above results for
P��� and �Eloss have a close relation with a semiclassical
approach based on the hydrodynamic model.

APPENDIX B: SEMICLASSICAL MODEL OF PLASMON
EXCITATIONS ON CARBON NANOTUBE

A semiclassical, two-fluid 2D hydrodynamic model of
plasmon excitations on a carbon nanotube can be obtained by
using the equation of motion Eq. �4� for the function
���rs , t������ ,z , t� augmented by the friction
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m�
���̈� +  ��̇� + ��r

2 �� − s�
2�s

2��� = Vext�rs,t� − eind�rs,t� ,

�B1�

where  ��0 are friction coefficients for the �th fluid, which
can be used to describe plasmon damping in a phenomeno-
logical manner.

The system of equations Eq. �B1�, coupled with the Pois-
son equation Eq. �6� for the induced potential on the nano-
tube surface, can be solved by using the Fourier transform
with respect to coordinates and time, �� ,z , t→ �m ,k ,� so
that

�̆��m,k,�� = �
−�

�

dtei�t�̃��m,k,t� �B2�

with �̃��m ,k , t� defined in Eq. �7�. Using the fact that the total
induced number density of electrons per unit area is �n
=n�

0�s
2��+n�

0 �s
2��, we can write its Fourier transform as

�ñ�m,k,�� = − !�m,k,��V̆ext�R;m,k,�� , �B3�

where the density response function of a carbon nanotube is
given by

!�m,k,�� =
!0�m,k,��

1 + 4�e2RIm��k�R�Km��k�R�!0�m,k,��
�B4�

with !0=!�
�0�+!�

�0�, where the noninteracting response func-
tion of the �th fluid is given by

!�
�0��m,k,�� =

n�
0

m�
��k2 +

m2

R2 �
s�

2�k2 +
m2

R2 � + ��r
2 − ��� + i ��

. �B5�

It may be worthwhile quoting the final expression for
!�m ,k ,�� in terms of the quantities defined in Eqs. �15�,
�16�, and �22� and finite friction coefficients

!�m,k,�� =

���
2 − i� ��

n�
0

m�
� + ���

2 − i� ��
n�

0

m�
� − �2 n0

m�

− �2� n�
0

m�
�

n�
0

m�
�

���
2 − ��� + i ������

2 − ��� + i ��� − �4 �k2 +
m2

R2 � . �B6�

We define the total energy loss as the work done by the
induced force on the external charge as it moves along its
entire trajectory r0�t� with velocity v0�t�= ṙ0�t�

�Eloss = − �
−�

�

dtv0�t� · Find�r0�t�,t� , �B7�

where

Find�r0�t�,t� = − eZ �ind�r,t��r=r0�t�. �B8�

On substituting Eq. �B8� in Eq. �B7� and using the chain
rule, d

dt =v0�t� ·�+ �
�t , we can eliminate the conservative part

of the time integral in Eq. �B7�, thus arriving at

�Eloss = − eZ�
−�

�

dt� �

�t
ind�r,t��

r=r0�t�

= �
−�

� d�

2�i
��

−�

�

dte−i�t̂ind�r0�t�,�� , �B9�

where ̂ind�r ,�� is the Fourier transform of the induced po-
tential with respect to time only

̂ind�r,�� = �
−�

�

d�ei�tind�r,t� , �B10�

which can be obtained at arbitrary points outside the nano-
tube from

ind�r,t� =
− e

2� �
m=−�

� �
−�

� dk

2�
eim�+ikzgmk�r,R��ñ�m,k,t� ,

�B11�

with gmk�r ,R�=4�Im��k�R�Km��k�r�.
Finally, by combining Eqs. �B3� and �B9�–�B11�, and re-

ferring to the definitions in Eqs. �12� and �38�, we can write
the total energy loss as

�Eloss =
1

�R
�

m=−�

� �
−�

� dk

�2��2

��
0

�

d���V̆ext�R;m,k,���2I�!�m,k,��� ,

�B12�

where we have used the property that the real and imaginary
parts of the density response, !�m ,k ,��, are an even and an
odd function of frequency �, respectively. Since the total
energy loss can be written as a first moment of a semiclassi-
cal version of the probability density for energy loss �=��

�Eloss = �
0

�

d��Psc��� �B13�

by comparison with Eq. �B12�, one can deduce
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Psc��� =
1

�R
�

m=−�

� �
−�

� dk

�2���2

��V̆ext�R;m,k,
�

�
��2

I�!�m,k,
�

�
�� . �B14�

It can be shown that the expression in Eq. �B14� reduces to
the limiting expression in Eq. �A7�, which is obtained using
the quantization of plasma excitations, i.e., when the plas-
mon damping is neglected. Namely, when both friction co-
efficients in the semiclassical hydrodynamic model are van-
ishingly small,  �→0+, we obtain for the imaginary part of
the nanotube’s response function at positive frequencies, �
�0

I�!�m,k,��� =
�

2

n0

m�

m2

R2 + k2

�
�
j=1

2

Djmk
2 ��� − � jmk�

�B15�

with the coefficient Djmk defined in Eqs. �24�–�26�. Using
Eq. �37�, this can be written as I�!�m ,k ,���
=��A� jCjmk���−� jmk�, which, when substituted in Eq.
�B14�, gives the probability density of energy loss Eq. �A7�
of the quantization approach. Of course, unlike the quantiza-
tion approach, it is possible, and even desirable to study the
effects of plasmon damping on energy-loss distributions by
using finite values for  � in the present semiclassical ap-
proach.

Moreover, the result in Eq. �B15� can also be used to
show that the semiclassical result for the total energy loss,
Eq. �B12�, is equivalent to the result Eq. �A8� of the plasma
quantization approach, in the limit of vanishing plasmon
damping. Of particular interest here is the case when the
external perturbing charge moves parallel to a nanotube with
speed v� �while v�=0� at fixed distance r0�R so that �0
=0 and z0�t�=v�t. We initially assume that the nanotube has a
finite length L and hence the traversal time of the external
particle is T=L /v�. Using the expressions Eqs. �12� and �38�,
we obtain in the limit L→�

�V̆ext�R;m,k,���2 = �e2ZRgmk�R,r0��2��
−T/2

T/2

dtei��−kv��t�2

� 2�
L

v�

�e2ZRgmk�R,r0��2��� − kv��

�B16�

allowing us to derive from Eqs. �B12� the average stopping
force for the external particle, S=�Eloss /L, as

S = 8R�e2Z�2�
m
�

0

�

dkkIm
2 ��k�R�Km

2 ��k�r0�I�!�m,k,kv��� ,

�B17�

when r0�R, as shown in Fig. 8�b�. On the other hand, when
the perturbing charge is inside the SWNT, r0�R, we obtain
an analogous expression for the stopping force of

S = 8R�e2Z�2�
m
�

0

�

dkkIm
2 ��k�r0�Km

2 ��k�R�I�!�m,k,kv��� ,

�B18�

as shown in Fig. 8�a�. It should be noted that these expres-
sions for the stopping force are identical to those previously
derived from semiclassical models of carbon nanotubes.32,34

APPENDIX C: PLANAR CASE

We outline here how the formalism of the main text can
be adapted to describe plasmon excitation in a planar 2D
electron gas by an external charge moving on a specularly
reflected trajectory based on the two-fluid model. There may
be some interest for this outline in view of possible applica-
tions to EELS experiments on free-standing graphene.8,9

The planar case is simply retrieved by assuming that the
nanotube radius grows indefinitely, R→�, in such a manner
that the position along the nanotube circumference can be
defined by a Cartesian coordinate y=R� whereas the radial
distance from the nanotube wall can be defined by the Car-
tesian coordinate x=r−R. Similarly, with the longitudinal
wave number k renamed kz, the ratio m /R becomes a quasi-
continuous variable, ky, corresponding to a wave number for
collective modes propagating around the nanotube’s circum-
ference. Consequently, the d� integral and the m summation
in Eqs. �7� and �8� become, respectively,

R�
−�

�

d�¯ → �
−�

�

dy ¯ , �C1�

1

2�R
�

m=−�

�

¯ → �
−�

� dky

2�
¯ �C2�

indicating that we are using a 2D Fourier transform in the
plane of the electron gas that maps �y ,z→ �ky ,kz�K. Ac-
cordingly, the generic expression m2 /R2+k2 appearing in the
equations of the main text is mapped to K2=ky

2+kz
2 and the

Green’s function becomes

Rgmk�R,r� →
2�

K
e−K�x� �C3�

to the leading order in 1 /R.
Next, we define a specularly reflected trajectory for the

incident particle in Cartesian coordinates by

r0�t� = �x0�t�,y0�t�,z0�t�

= �r0�t� − R,R�0�t�,z0�t�

→ �xmin + V��t�,V�yt,V�zt ,

where xmin�0 is the minimum distance from the planar elec-
tron gas and V� is the normal component of the projectile
velocity. Then, Eq. �12� gives in the limit R→�

Ṽext�R;m,k,t� → − e2Z
2�

K
e−K�xmin+V��t��−iK·V�t, �C4�

where V� = �V�y ,V�z is the parallel component of the projec-
tile velocity. As a consequence, Eq. �38� gives
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V̆ext�R;m,k,�� → − e2Z
4�

K
e−Kxmin

KV�

�� − K · V��2 + �KV��2

�C5�

so that the average number of plasmons in the mode
�j ,m ,k�→ �j ,K� finally follows from Eq. �36� as

� jmk →
2n0

�m�

DjK
2

� jK
�e2Z�2e−2Kxmin

�KV��2

��� jK − K · V��2 + �KV��2�2 ,

�C6�

where DjK is given by Eqs. �24�–�26�, in which plasmon
frequencies are to be used from Eqs. �15�, �16�, and �20�
upon the replacements

��
2 → ��r

2 + 2�e2 n�
0

m�
�K + s�

2K2 �C7�

and

�2 → 2�e2� n�
0

m�
�

n�
0

m�
� K . �C8�

It is worth mentioning that, if one lets both ��r→0 and s�
→0 in Eq. �C7�, the planar version of Eq. �20� no longer
gives rise to plasmon splitting, but rather one recovers �2K

→0 and �1K→�2�e2 n0

m�
K describing the familiar plasmon

dispersion of a single-fluid model for planar 2D electron gas
with surface density n0=n�

0 +n�
0 and an effective mass m�.17
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