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A two miniband model for electron transport in semiconductor superlattices that includes scattering and
interminiband tunnelling is proposed. The model equations for Wigner functions in a basis spanned by Pauli
matrices include electron-electron scattering in the Hartree approximation and modified Bhatnagar-Gross-
Krook collision terms. For strong applied fields, balance equations for the electric field and the miniband
populations are derived using a Chapman-Enskog perturbation technique. These equations are then solved
numerically for a dc voltage biased superlattice. Results include self-sustained current oscillations due to
repeated nucleation of electric field pulses at the injecting contact region and their motion toward the collector.
Numerical reconstruction of the Wigner functions shows that the miniband with higher energy is empty during
most of the oscillation period: it becomes populated only when the local electric field �corresponding to the
passing pulse� is sufficiently large to trigger resonant tunneling.
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I. INTRODUCTION

Consider a n-doped semiconductor superlattice �SL� un-
der a sufficiently large vertical voltage bias so that electron
transport is due to resonant tunneling between minibands.
For small voltage values, electron transport chiefly involves
the lowest miniband and there are many appropriate kinetic
theory descriptions: semiclassical Boltzmann-type
equations,1–5 density-matrix formulations,6,7 transport equa-
tions for the nonequilibrium Green’s function �NGF�,8 and
Wigner-Poisson �WP� equations.9 Semiclassical equations
are easier to handle and, in particular, can be used to describe
space-charge instabilities such as self-sustained oscillations
of the current �SSOC� in dc voltage biased SLs due to the
formation and dynamics of electric field domains.10 SSOC
can be found by deriving and solving a drift-diffusion system
from the semiclassical kinetic equation5 or by a direct nu-
merical solution of the latter.11 Quantum transport descrip-
tion based on NGFs are still limited to spatially homoge-
neous electric fields and therefore cannot be used to describe
properly space-charge phenomena.8 WP equations can be
used to derive nonlocal drift-diffusion systems exhibiting
SSOC provided collision terms are of Bhatnagar-Gross-
Krook �BGK� type.9

In contrast to work in one-miniband SL, much less is
known about first-principles space-charge transport involv-
ing resonant tunneling in SL.10 Most of the work on resonant
tunneling SL assume a large separation between time scales
such that electron density and electric field can be assumed
to be constant in each SL period and the tunneling current
across barriers can be assumed to be stationary. Then expres-
sions for the stationary current in an infinitely long SL under
a constant electric field can be calculated by any quantum
kinetic method and inserted in discrete balance equations.10

The resulting models have been vastly useful to understand
nonlinear electron transport in SL but they have not been
derived from first principles. Recently, we have found a con-
sistent perturbation method to derive nonlocal drift-diffusion
systems from WP descriptions of two-miniband SLs with

Rashba spin-orbit interaction.12 However, coupling between
minibands in that work does not contemplate resonant tun-
neling between them for the underlying physical description
of the SL is too simple.

Some time ago, Morandi and Modugno studied a variant
of the standard k-p theory in which interband coupling terms
depend on the applied electric field and used it to study
wave-function dynamics of a resonant-tunneling diode.13 For
the same system, multiband Wigner function approaches
have also been considered.14–17 Unlu et al.14 use a nonequi-
librium Green’s-function formulation that includes scattering
due to weak coupling to a phonon bath to derive equations
for the multiband Wigner functions. A treatment of space-
dependent but time-independent NGF and Wigner functions
in metal-oxide-semiconductor field-effect transistor can be
found in Ref. 18. The other works focused their attention in
coherent transport under an external field and near the semi-
classical limit, thereby ignoring scattering.15–17 In this paper,
we present a simplified model of a two-miniband SL using a
field-dependent coupling between minibands similar to that
introduced for resonant-tunneling diodes.13 We consider the
corresponding WP system with BGK collision terms that in-
clude collision broadening and decay between minibands due
to scattering. Electron-electron scattering is treated in the
Hartree approximation through the Poisson equation. We are
interested in the hyperbolic limit in which electric field ef-
fects, including field-dependent interminiband transitions,
are as strong as the BGK collision terms and dominate elec-
tron transport. By using the Chapman-Enskog perturbation
method, we derive nonlocal balance equations for the elec-
tron population of the minibands and the electric field that
inherit the nonlocality of the quantum Wigner equation. Nu-
merical solutions of these nonlocal equations allow us to
reconstruct the time-resolved Wigner matrix and they exhibit
resonant tunneling between minibands and SSOC. During
SSOC, we show that the miniband with higher energy is
practically empty except when the local electric field is suf-
ficiently large to allow resonant tunneling from the miniband
with lowest energy. Our calculations provide a first-
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principles description of SSOC in a resonant-tunneling SL
under dc voltage bias.

The rest of the paper is organized as follows. Section II
contains the Hamiltonian we use as the basis of our kinetic
theory. The governing Wigner-Poisson-Bhatnagar-Gross-
Krook �WPBGK� equations for the Wigner functions are in-
troduced in Sec. III. The derivation of nonlocal balance
equations by the Chapman-Enskog method is given in Sec.
IV. Section V presents numerical results obtained by solving
the nonlocal balance equations with appropriate boundary
conditions for the contact regions and dc voltage bias. In
particular, these solutions include SSOC. Finally Sec. VI
contains our conclusions.

II. MODEL HAMILTONIAN

Let us assume that the total Hamiltonian describing our
system is

Htotal = H + Hsc, �1�

where Hsc represents scattering and H�x ,−i� /�x� is a 2�2
Hamiltonian H corresponding to a SL with two minibands of
widths �1 and �2, gap energy 2g and SL period l,

H�x,k� =�−
�2

2
�1 − cos kl� − eW�x� + g eFl�

eFl�
�1

2
�1 − cos kl� − eW�x� − g� ,

��h0�k� − eW�x���0 + h��k� · �� + eFl��1. �2�

Here we have considered tight-binding dispersion relations
for the minibands and −e�0, W, and −F=−�W /�x are the
electron charge, the electric potential, and the electric field,
respectively. The electric potential W in H describes
electron-electron interaction in a self-consistent Hartree ap-
proximation.

The matrix Hamiltonian H can be written as a linear com-
bination of the Pauli matrices

�0 = �1 0

0 1
	,�1 = �0 1

1 0
	,�2 = �0 − i

i 0
	,�3 = �1 0

0 − 1
	

with coefficients,

h0�k� = − ��1 − cos kl� , h1�k� = 0,

h2�k� = 0, h3�k� = − ��1 − cos kl� + g ,

� =
�2 − �1

4
, � =

�2 + �1

4
.

�3�

The term eFl��1 in Eq. �2� is a field-dependent tunneling
term derived by means of the k-p theory for the evolution of
the Wannier envelope functions �cf. Eq. �33� of Ref. 13 with-
out second-order terms, i.e., with Mnn�=0�. The dimension-
less parameter � is a phenomenological parameter propor-
tional to the interminiband momentum matrix element

� =
�P

2m�gl
, P =

�

l



−l/2

l/2

u2
��u1

�x
dx , �4�

where u1,2 are the periodic parts of the miniband Bloch func-
tions. A related model has been used to describe coherent
transport in a resonant interband tunnelling diode.13,16,17

The miniband energies E��k� are the eigenvalues of the
free Hamiltonian H0�k�=h0�k��0+h��k� ·�� �zero electric po-
tential�, given by

E��k� = h0�k� � h3�k� . �5�

The corresponding spectral projections are

P� =
�0 � �3

2
�6�

so that we can write

H0�k� = E+�k�P+ + E−�k�P−. �7�

III. WIGNER FUNCTION DESCRIPTION

If 	a�x ,y ,z , t�, a=1,2, are the second-quantized wave-
function amplitudes expressed in the Bloch basis, the Wigner
matrix is12

fab�x,k,t� =
2l

S
�

j=−



 

R2

�	a
†�x + jl/2,y,z,t�	b

��x − jl/2,y,z,t�eijkldx�, �8�

where S is the SL cross section. Note that the Wigner matrix
is periodic in k with period 2� / l. It is convenient to write the
Wigner matrix f�x ,k , t� in terms of the Pauli matrices

f�x,k,t� = �
i=0

3

f i�x,k,t��i = f0�x,k,t��0 + f��x,k,t� · �� . �9�

The Wigner components f i�x ,k , t� are real and can be related
to the coefficients of the Hermitian Wigner matrix by

M. ÁLVARO AND L. L. BONILLA PHYSICAL REVIEW B 82, 035305 �2010�

035305-2



f11 = f0 + f3, f12 = f1 − if2,

f21 = f1 + if2, f22 = f0 − f3. �10�

Hereinafter we shall use the equivalent notations

f = � f0

f�
	 =�

f0

f1

f2

f3
� . �11�

The populations of the minibands with energies E� are given
by the moments

n��x,t� =
l

2�



−�/l

�/l

�f0�x,k,t� � f3�x,k,t��dk , �12�

and the total electron density is n++n−.
After some algebra, from the time-dependent Schrödinger

equations for wave functions 	a with the Hamiltonian Htot in
Eq. �1�, we can obtain the following WPBGK equations for
the Wigner components:

� f0

�t
−

�

�
sin kl�−f0 −

�

�
sin kl�−f3 − �1f0 − �2f1 = Q0�f� ,

�13�

� f�

�t
−

�

�
sin kl�−f� −

�

�
sin kl�−f0� + �� f� − �� �f� = Q� �f� ,

�14�

whose right-hand sides contain collision terms Q�f� arising
from Hsc. These terms will be modeled phenomenologically
and described later. Electron-electron collisions are treated in
the Hartree approximation and described by the Poisson
equation for the electrostatic potential

�
�2W

�x2 =
e

l
�n+ + n− − ND� , �15�

where � and ND are the SL permittivity and the two-
dimensional doping density, respectively. In Eqs. �13� and
�14�,

�� =
2�g − �� + � cos kl�+

�
� , � = �0,0,1� , �16�

�1fm�x,k,t� =
el

i�
�

j=−





j�F�x,t� je
ijklf j

m�x,t� , �17�

�2fm�x,k,t� = −
el�

i�
�

j=−





eijklf j
m�x,t�� j

−F�x,t� , �18�

�3fm�x,k,t� =
el�

i�
�

j=−





eijklf j
m�x,t�� j

+F�x,t� , �19�

�� �f� = �1f� + � �2f0

�3f3

− �3f2� . �20�

We have defined the operators

�� j
�u��x,k� = u�x +

jl

2
,k	 � u�x −

jl

2
,k	 �21�

�the subscript is omitted for j=1� and the spatial averages

�F�x,t� j �
1

jl



−jl/2

jl/2

F�x + s,t�ds �22�

=� �W

�x
�x,t��

j

=
�

�x
�W�x,t� j =

� j
−W�x,t�

jl
. �23�

Our collision model is similar to that used in Ref. 12 and it
contains two terms: a BGK term which tries to send the
miniband Wigner function to its local equilibrium and a scat-
tering term that sends electrons from the miniband with
higher energy �whose electron density is n+� to the miniband
with lower energy �whose electron density is n−�

Q0�f� = −
f0 − �0

�
, �24�

Q� �f� = −
f� − ��

�
−

� f0 + f�

�sc
, �25�

�0 =
�+ + �−

2
, �� =

�+ − �−

2
� , �26�

���k;n�� =
m�kBT

��2 

−



 �2�3/�
�4 + �E − E��k��4

�ln�1 + e��−E/kBT�dE , �27�

n� =
l

2�



−�/l

�/l

���k;n��dk . �28�

The chemical potentials of the minibands, �+ and �− are
calculated in terms of n+ and n−, respectively, by inserting
Eq. �27� in Eq. �28� and solving the resulting equations. The
local equilibria �� are the integrals of collision-broadened
three-dimensional Fermi-Dirac distributions over the lateral
components of the wave vector on the plane perpendicular to
the growth direction x.12 As the broadening energy �→0, the
linewidth function in the integrand of Eq. �27� becomes
��E−E��k��.

Our collision model should enforce charge continuity. To
check this, we first calculate the time derivative of n� using
Eqs. �12�–�14�
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�n�

�t
−

�l�−

2��



−�/l

�/l

sin kl�f0 � f3�dk

−
�l�−

2��



−�/l

�/l

sin kl�f3 � f0�dk �
l

2�



−�/l

�/l

�3f2dk

=
l

2�



−�/l

�/l

�Q0�f� � Q3�f��dk = �
n+

�sc
, �29�

where we have employed ��1f0dk=��2f1dk=0. Then we
obtain

�

�t
�n+ + n−� − �−� l

��



−�/l

�/l

sin kl��f0 + �f3�dk� = 0.

�30�

Noting that �−u�x�= l� �u�x�1 /�x, we see that Eq. �30� is the
charge continuity equation. Differentiating in time the Pois-
son Eq. �15�, using Eq. �30� in the result and integrating with
respect to x, we get the following nonlocal Ampère’s law for
the balance of current:

�
�F

�t
−� el

��



−�/l

�/l

sin kl��f0 + �f3�dk�
1

= J�t� . �31�

Here the space-independent function J�t� is the total current
density. Since the Wigner components are real, we can re-
write Eq. �31� in the following equivalent form:

�
�F

�t
+

2e

�
�� Im f1

0 + � Im f1
31 = J�t� . �32�

We are using the notation f j
m for the Fourier coefficients of fm

fm�x,k,t� = �
j=−





f j
m�x,t�eijkl. �33�

IV. CHAPMAN-ENSKOG METHOD AND BALANCE
EQUATIONS

In this section, we shall derive the reduced balance equa-
tions for our two-miniband SL using the Chapman-Enskog
method. Note that if we were to know the Wigner matrix as
a function of n� and the electric field, Eq. �29� and the Pois-
son Eq. �15� would be the sought balance equations and
could be solved directly. As they are now, Eq. �29� is not
closed. However, in a limit in which collisions and electric
potential terms dominate all others in the Wigner equations,
it is possible to use perturbation theory to close Eq. �29�. The
idea is that in this so-called hyperbolic limit, the Wigner
matrix is very close to a local equilibrium �modified by the
electric field� which depends on n� and F. Using two terms
in a Chapman-Enskog expansion, we show below that Eq.
�29� can be closed.

First of all, we should decide the order of magnitude of
the terms in the WPBGK Eqs. �13� and �14� in the hyperbolic
limit. In this limit, the collision frequency 1 /� and the Bloch
frequency eFMl /� are of the same order, say about 10 THz.
Then FM =O�� / �el���. Typically, 2g /� is of the same order

so that the term containing 2g /� in Eq. �14� should also
balance the BGK collision term. The other terms are of order
�l / ��x0�, where x0 is the characteristic length over which the
field varies, and they are much smaller, so that �
=��l / ��x0��1. From the Poisson equation, we obtain x0 / l
=�FM / �eND�=�� / �e2�lND�, and therefore the small dimen-
sionless parameter is

� =
e2�2�lND

��2 . �34�

The scattering time �sc is much longer than the collision time
�, and we shall consider � /�sc=O����1. Equations �13� and
�14� can be written as the scaled WPBGK equations as fol-
lows:

Lf − � = − ���
� f

�t
+ �f	 , �35�

where we have inserted the book-keeping parameter � which
is set equal to 1 at the end of our calculations.5,12 This trick
saves us from rewriting our equations in nondimensional
units. Here the operators L and � are defined by

Lf = f − ��1f − ��2�
f1

f0

0

0
� − ��3�

0

0

f3

− f2
� + �1�

0

− f2

f1

0
� ,

�f = �2� 0

f� + � f0	 −
�

�
sin kl�−��f + �� f3

� f0	�
+

��

�
�cos kl�+ − 2�� 0

� � f�
	 , �36�

where

�1 =
2g�

�
, �2 =

�

�sc
. �37�

To derive the reduced balance equations, we use the fol-
lowing Chapman-Enskog ansatz:

f�x,k,t;�� = f �0��k;n+,n−,F� + �
m=1




f �m��k;n+,n−,F��m,

�38�

�
�F

�t
+ �

m=0




Jm�n+,n−,F��m = J�t� , �39�

�n�

�t
= �

m=0




Am
��n+,n−,F��m. �40�

The functions Am
� and Jm are related through the Poisson Eq.

�15� so that

Am
+ + Am

− = −
l

e

�Jm

�x
. �41�

Inserting Eqs. �38�–�40� into Eq. �35�, we get
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Lf �0� = � , �42�

Lf �1� = −��
� f �0�

�t
�

0
− �f �0�, �43�

Lf �2� = −��
� f �1�

�t
�

0
− �f �1� −��

� f �0�

�t
�

1
, �44�

and so on. The subscripts 0 and 1 in the right-hand side of
these equations mean that we replace ��F /�t �m=J�0m−Jm,
�n� /�t �m=Am

�, provided �00=1 and �0m=0 if m�0. More-
over, inserting Eq. �38� into Eq. �12� yields the following
compatibility conditions:

f0
�1�0 = f0

�1�3 = 0, �45�

f0
�2�0 = f0

�2�3 = 0, �46�

etc.
To solve Eq. �42� for f �0���, we first note that

− ��1� = i �
j=−





� j� je
ijkl, �47�

− ��2� = − i� �
j=−





� je
ijkl� j

−F , �48�

− ��3� = − � �
j=−





� je
ijkl� j

+F , �49�

F �
�el

�
F, � j � j�F j . �50�

Then Eqs. �26� and �42� yield

� j
0 =

� j
+ + � j

−

2
� 1

1 + i� j
− �1�2ZjMj

+�� j
−F�2�

+ i
� j

+ − � j
−

2
�1�2Zj�� j

−F��� j
+F� , �51�

� j
1 =

1

2
�1��1 + i� j�Zj��� j

+ + � j
−�iMj

+� j
−F + �� j

+ − � j
−�� j

+F� ,

�52�

� j
2 = −

1

2
�1��1 + i� j�Zj��� j

+ + � j
−�i� j

−F − �� j
+ − � j

−�Mj
−� j

+F� ,

�53�

� j
3 =

� j
+ − � j

−

2
� 1

1 + i� j
− �1�2ZjMj

−�� j
+F�2�

+ i
� j

+ + � j
−

2
�1�2Zj�� j

−F��� j
+F� . �54�

Here we have used that the Fourier coefficients

� j
� =

l

�



0

�/l

cos�jkl���dk �55�

are real because �� are even functions of k. The coefficients
Zj and Mj

� are defined as

Mj
� �

1

�1
�1 + i� j +

�2�� j
�F�2

1 + i� j
� , �56�

Zj �
1

�1
2�1 + i� j�2�1 + Mj

+Mj
−�

. �57�

The solution f �0�=� given by Eqs. �51�–�54� is essentially
the local equilibrium � given by Eqs. �26�–�28� modified by
the field-dependent terms �i that appear in the Wigner Eqs.
�13� and �14�. This solution yields convective terms in the
balance equations which contain first-order differences. In
the semiclassical limit, these equations become a hyperbolic
system which may have discontinuous solutions �shock
waves�. Then it is convenient to regularize such solutions by
keeping diffusionlike terms �second-order differences� aris-
ing from the next-order Wigner functions f �1�.

The solution of Eq. �43� is f �1��	 with

	 j
0 =

rj
0

1 + i� j
�1 −

�2Mj
+�� j

−F�2

�1�1 + i� j��1 + Mj
+Mj

−�
�

+
i�� j

−F
�1�1 + i� j��1 + Mj

+Mj
−�
�Mj

+rj
1 + rj

2 +
�� j

+F
1 + i� j

rj
3� ,

�58�

	 j
1 =

1

�1�1 + Mj
+Mj

−�
�Mj

+rj
1 +

i�Mj
+� j

−F
1 + i� j

rj
0 + rj

2 +
�� j

+F
1 + i� j

rj
3� ,

�59�

	 j
2 =

1

�1�1 + Mj
+Mj

−�
�Mj

−rj
2 +

�Mj
−� j

+F
1 + i� j

rj
3 − rj

1 −
i�� j

−F
1 + i� j

rj
0� ,

�60�

	 j
3 =

rj
3

1 + i� j
�1 −

�2Mj
−�� j

+F�2

�1�1 + i� j��1 + Mj
+Mj

−�
�

−
�� j

+F
�1�1 + i� j��1 + Mj

+Mj
−�
�Mj

−rj
2 − rj

1 −
i�� j

−F
1 + i� j

rj
0� .

�61�

Here r is the right-hand side of Eq. �43�.
The balance equations can be found in two ways. We can

calculate Am
� for m=0,1 in Eq. �40� by using the solvability

conditions �45� and �46� in Eqs. �43� and �44�, respectively.
More simply, we can obtain the balance equations by insert-
ing the solutions �51�–�54� and �58�–�61� in the balance Eq.
�29� and in the Ampère’s law �Eq. �31��. The result is

�n�

�t
+ �−D��n+,n−,F� = � R�n+,n−,F� , �62�
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�
�F

�t
+ e�D+�n+,n−,F� + D−�n+,n−,F�1 = J�t� , �63�

D� =
� � �

�
Im��1

0 � �1
3 + 	1

0 � 	1
3� , �64�

R =
1

�
��2n+ + 2�F��0

2 + 	0
2�� . �65�

Note that Eq. �63� can be obtained from Eq. �62� and the
Poisson equation. Equations �62�–�65� must be solved to-
gether with the Poisson Eq. �15�, the expression for the local
equilibrium Wigner densities �Eq. �27�� and expression �28�
for n�. The zeroth and first-order Wigner functions � j and 	 j
in Eqs. �64� and �65� can be obtained from Eqs. �51�–�54�
and �58�–�61�, respectively.19 Once these Wigner functions
are obtained, the complete expressions for D� and R can be
found in the Supplementary material for this paper.19

V. NUMERICAL RESULTS

To solve numerically the system of Eqs. �62�–�65�, we
have to add the voltage bias conditions for the electric po-
tential and appropriate boundary conditions at the contact
regions. Note that our equations involve finite differences
and several one-period integral averages. This means that we
need to give boundary conditions over intervals of size 2l
before x=0 and after x=Nl, not just boundary conditions at
x=0,Nl as we would give for semiclassical drift-diffusion
equations. At the injecting region �cathode�, the usual bound-
ary condition is that the electron current density satisfies
Ohm’s law and therefore it is proportional to the electric field
there. We use this condition for each point of the interval
−2l�x�0. Similarly, we also need the electron densities n�

at the cathode. To avoid inconvenient boundary layer effects,
we choose their values for a spatially uniform stationary state
with a given value of the field. The resulting boundary con-
ditions in −2l�x�0 are W=0 and

�
�F

�t
+ �cathodeF = J , �66�

n� = nst
�, �67�

where nst
� are the miniband electron densities corresponding

to a spatially uniform stationary state. The latter can be ob-
tained by equating to zero the right-hand sides of the rate Eq.
�62� and the Poisson Eq. �15�: R�n+ ,n− ,F�=0 and n++n−

=ND, respectively. The result is

nst
� = ND�1

2
�

�2�1 + �1
2 + 4�2F2�

8�2F2 + 2�2�1 + �1
2 + 4�2F2�� . �68�

The boundary conditions in the anode region �Nl�x
�Nl+2l� are W=V and

�
�F

�t
+ �anode�n+ + n−

ND
	F = J , �69�

n+ = 0. �70�

The lower miniband electron density n− in the anode region
is obtained from the Poisson Eq. �15�.

To present numerical results, we have used the parameter
values corresponding to a GaAs/AlAs SL from Table I of
Ref. 20 which has narrow minibands so that resonant tunnel-
ing plays an important role in electron transport. Our param-
eter values are dB=1.5 nm, dW=9 nm, l=dB+dW
=10.5 nm, ND=2.5�1010 cm−2, �=0.0556 ps, �sc
=0.556 ps,21 V=9 V, N=200, �cathode=1.4 �−1 m−1,
�anode=0.7 �−1 m−1, T=5 K, �1=2.6 meV, �2
=13.2 meV, P /�=0.2238 /nm,22 and �=1 meV.12 With
these values, �=2.6 meV, �=3.9 meV, and �=0.12. We
have selected the following units to present our results
graphically: FM =� / �el��=11.28 kV /cm, x0=�FMl / �eND�
=31.4 nm, t0=� /�=0.25 ps, and J0=�eND /�=1.58
�104 A /cm2.

Figure 1�b� illustrates the resulting stable self-sustained
current oscillations. They are due to the periodic formation
of a pulse of the electric field at the cathode x=0 and its
motion through the SL. Figure 1�a� depicts the electron cur-
rent vs field in a spatially uniform stationary state, with a
local maximum at the field resonant value 2g / �el�. Figure
1�c� depicts the electric field profile at different times during
one self-sustained current cycle. Figure 1�d� shows the tun-
neling transport between minibands when the electric field is
above the resonant value �time �1�� calculated at the middle
point of the SL �x=Nl /2�.

Figure 2 shows the Wigner matrix elements f i, from Eqs.
�51�–�54�, �58�–�61�, and �33�, for the middle SL point �x
=Nl /2� vs k at times marked by �1� in Fig. 1�b� �with tun-
neling transport between minibands� and by �2� �with no
tunneling�. Figures 2�a� and 2�b� illustrate the Wigner matrix
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FIG. 1. �a� Electron current vs field in a spatially uniform sta-
tionary state. �b� Total current density vs time. �c� Electric field
profile at different times of one current self-oscillations cycle. At
time �1� the field is above the resonant value for the middle SL
point x=Nl /2. �d� Electron densities n� / �n++n−� vs time for point
x=Nl /2. When the electric field is above the resonant value �time
�1��, the electron transport between minibands occurs.
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off-diagonal terms f1 and f2, which are responsible for the
tunneling transport between minibands. Figures 2�c� and 2�d�
show f0� f3, which are related with the electron densities
n�.

Figure 3 illustrates the effect of varying the voltage bias
on the total current for a N=60 period SL. Figure 3�a� de-
picts the total current-density average, maximum and mini-
mum values for different voltages. It can be seen that when
the bias is above a critical voltage, the current self-sustained
oscillations appear and their amplitude increases from zero at
the bifurcation point. This circumstance does not depend on
whether the voltage is increasing or decreasing, therefore the
critical voltage corresponds to a supercritical Hopf bifurca-
tion. Figure 3�b� shows that the oscillation frequencies de-
crease as the voltage increases above its critical value. Im-
mediately above the critical voltage, self-oscillations are due
to repeated triggering of small pulses of the electric field that
die near the cathode and before they can reach the end of the
SL. As the voltage increases, the pulses are able to grow and
reach the anode region. Since their average velocity does not
vary that much, the oscillation frequency is correspondingly
smaller. In a transition region between 1.5 and 3 V, the cur-
rent oscillation is somewhat irregular. The region of self-
oscillations ends at a larger voltage of about 5.3 V. Similar
phenomena are observed in models of the Gunn effect in
bulk GaAs. See Chap. 6 in Ref. 23.

If we use parameters corresponding to a weakly coupled
SL with miniband widths below 1 meV �that come from
using wider quantum barriers�, we run into problems of nu-
merical convergence and, possibly, breakdown of the

Chapman-Enskog perturbation scheme. To explore the limit
of weakly coupled SL, a different perturbation scheme based
on smallness of the miniband widths seems necessary. This is
outside the scope of the present paper.

VI. CONCLUSIONS

For strongly coupled SLs having two populated mini-
bands, we have introduced a k-p Hamiltonian that contains a
field-dependent tunneling term and derived the correspond-
ing Wigner-Poisson-BGK system of equations. The collision
model comprises two terms, a BGK term trying to bring the
Wigner matrix closer to a broadened Fermi-Dirac local equi-
librium at each miniband and a scattering term that brings
down electrons from the upper to the lower miniband. By
using the Chapman-Enskog method, we have derived quan-
tum drift-diffusion equations for the miniband populations
which contain generation-recombination terms. As it should
be, the recombination terms vanish if there is no intermini-
band scattering and the off-diagonal terms in the Hamil-
tonian are zero. These terms represent miniband coupling
due to the electric field and originate the resonant-tunneling
transport. For a superlattice under dc voltage bias in the
growth direction, numerical solutions of the corresponding
quantum drift-diffusion equations show self-sustained cur-
rent oscillations due to periodic recycling and motion of
electric field pulses, and resonant tunneling between mini-
bands when the electric field is above the resonant value.
Numerical reconstruction of the Wigner functions during
self-oscillations confirms this picture.
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