
Influence of Dresselhaus spin-orbit interaction on the domain wall magnetoresistance of diluted
magnetic semiconductor thin films

V. Fallahi and M. Ghanaatshoar*
Laser and Plasma Research Institute, Shahid Beheshti University, G.C., Evin 1983963113, Tehran, Iran

�Received 28 December 2009; revised manuscript received 1 June 2010; published 22 July 2010�

Domain wall magnetoresistance �MR� of an impure magnetic semiconductor layer is studied theoretically
within the semiclassical approach. The effect of the Dresselhaus spin-orbit interaction is taken into account and
it is shown that this interaction can enhance the domain wall MR. In the absence of Dresselhaus interaction, the
domain wall MR decreases monotonously with the domain wall width but presence of the Dresselhaus cou-
pling prevents this reduction for a range of the domain wall thicknesses. It is also revealed that the Dresselhaus
spin-orbit interaction is more effective than the Rashba term in producing domain wall resistance in a typical
magnetic semiconductor.
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I. INTRODUCTION

Spintronics is an emerging class of electronics that uti-
lizes electron’s spin for significantly enhanced or fundamen-
tally new device functionality. The devices based on giant
magnetoresistance �GMR� and tunneling magnetoresistance
effects are the most prominent examples of spintronic de-
vices that have revolutionized the magnetic sensing and re-
cording industries.1–3 Nearly all devices made so far in spin-
tronics have been based on metallic heterostructures.4 Newly,
semiconductor spintronics has attracted great deal of
attention.5,6 Indeed, the ferromagnetism found in diluted
magnetic semiconductors has opened up a completely new
road to combine magnetism with charge transport in well-
known semiconductor device structures. It is anticipated that
the coupled ferromagnetism and electronic transport would
make the effect of magnetism significantly stronger than the
corresponding phenomena observed in metals. For example,
very large MR has been reported in lateral ferromagnetic
�Ga,Mn�As wires with nanoconstrictions.7

Various spin-dependent scattering mechanisms such as
bulk and interface scattering are responsible for GMR effect.
The bulk scattering originates from local defects, lattice im-
perfections, and foreign atoms residing inside the bulk of the
constituting layers. The contribution of the interface scatter-
ing arises from differences in band structure of adjacent lay-
ers at the interfaces. Besides, it is well known that the nano-
size domain walls in magnetic systems cause spin-flip
scattering via coupling of two spin states and introduce re-
sistance to the flow of currents. For a thick domain wall,
where the magnetization changes in a large scale, depending
on the energy of carriers, the polarization axis of the carriers
may follow the local magnetic moments adiabatically with-
out any relaxation.8 But in sharp domain walls, spin mis-
tracking for the carriers passing through local magnetic mo-
ments causes spin relaxation and leads to a supplementary
resistance. Researchers have recently made numerous efforts
to realize the resistance of magnetic domain walls. The first
attempts of measuring the MR effect resulting from the pres-
ence of the domain wall in a single magnetic film were un-
dertaken by Gregg et al.9 Afterward, in the diffusive regime
proposed by Levy and Zhang, the positive and relatively

small MR in the bulk ferromagnets was demonstrated.10

Then, large domain wall MR in magnetic nanostructures
with a sharp domain wall was exhibited in the theoretical11

and experimental12 analysis on Co nanowires. Alternatively,
both positive13,14 and negative15,16 contributions of domain
walls to the MR have been observed in ferromagnetic semi-
conductors.

In addition to the above-mentioned mechanisms, the
D’yakonov-Perel’ process resulting from the lack of inver-
sion symmetry, leads to spin-flip scattering in both metals
and semiconductors. This mechanism typically dominates
the spin dynamics in III-V semiconductors.17 The spin polar-
ization of the carriers is scattered during transport because of
D’yakonov-Perel’ relaxation caused by both the Dresselhaus
�due to the bulk inversion asymmetry� and the Rashba �aris-
ing out of the presence of structure inversion asymmetry�
spin-orbit interactions. We envisage that in low dimensional
semiconducting systems the domain wall MR is considerably
affected in the presence of the spin-orbit couplings. Through
band-structure calculations for zinc-blende magnetic semi-
conductors, it has been shown that the spin-orbit interaction
can lead to a nonzero domain wall resistance even in the
adiabatic limit.18,19 Recently, the effect of the Rashba spin-
orbit interaction on the domain wall MR has been calculated
by Dugaev et al.20 They demonstrated that the Rashba inter-
action may result in an increase in the MR of a semiconduct-
ing magnetic wire with a domain wall of width d. Such cal-
culations were carried out for the case of a sharp domain
wall. This case corresponds to the limit of kF↑�↓�d�1, where
kF↑�↓� is the magnitude of Fermi vector for the majority �mi-
nority� spins. The effect of the Rashba interaction on the MR
of a smooth domain wall in ferromagnetic metals has been
studied, too. It has been shown that the spin-flip scattering
and consequently the resistivity due to the domain wall in-
creases monotonically as the Rashba interaction strength
increases.21,22

In the present paper, we investigate the effect of Dressel-
haus spin-orbit interaction on domain wall resistance in
heavily Mn-doped GaAs, a p-type ferromagnetic semicon-
ductor. We examine the spin-dependent transport through the
domain wall for current-in-wall �CIW� and current-
perpendicular-to-wall �CPW� geometries. We also take the
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Rashba spin-orbit interaction into account to compare its in-
fluence on the domain wall MR with that of Dresselhaus
spin-orbit term. In this order, we introduce the Hamiltonian
which includes the Rashba and the Dresselhaus terms and
determine the scattering matrices. We consider a two-
dimensional electron-gas �2DEG� system which includes a
linear magnetic domain wall between two ferromagnetic re-
gions in opposite directions. The theory is based on the semi-
classical Boltzmann equation with the relaxation-time ap-
proximation in the elastic regime.

II. THEORETICAL CONSIDERATIONS

We consider a 2DEG containing a 180° Néel-type domain
wall of width d in p-type ferromagnetic semiconductor films,
in which according to Fig. 1, the magnetic moments rotate in
such a manner that a constant angle is maintained between
them. Therefore, the functionality of moment’s rotation angle
can be expressed as ��x�=�x /d.

The Hamiltonian of the system in the presence of the
Dresselhaus and the Rashba spin-orbit couplings can be writ-
ten as

H = H0 + Hex + Him + HR + HD, �1�

where H0 contains periodic potential and kinetic energy, Hex
is the exchange interaction between the holes and the local-
ized moments, Him represents the interaction of the localized
magnetic impurities with the holes, and HR and HD include
the Rashba and the Dresselhaus spin-orbit interactions, re-
spectively. The three first terms of the Hamiltonian can be
expressed as follows:

H0 =
�2

2m
� �2

�x2 +
�2

�z2� + V�x,z� , �2�

where V�x ,z� is the lattice periodic potential,

Hex = − ��̂ · M̂�x,z� �3�

in which � is the spin splitting energy, �̂ denotes the spin

operators in terms of the Pauli spin matrices and M̂ is the
unit vector along the direction of local magnetization,

Him = �
j

�vim − �im�̂ · M̂�x,z����x − xj���z − zj� , �4�

where the summation is over all impurities, �im stands for
the exchange splitting constant between the holes and local-
ized impurities and vim is on-site electrical potential of the
localized impurities. The spin-orbit interactions can be writ-
ten as

HR = i�R��̂x
�

�z
− �̂z

�

�x
� �5�

and

HD = − i�D�� �

Ly
�2 �

�x
+

�

�x

�2

�z2	�̂x

+ i�D�� �

Ly
�2 �

�z
+

�

�z

�2

�x2	�̂z �6�

in which �R and �D are the Rashba and Dresselhaus interac-
tions strengths, respectively.

The eigenstates of H0+Hex for the two-dimensional sys-
tem are as follows:


	k
↑� = 
�kx�

ei�kxx+kzz�

�LxLy

R��x�� 1

i�kx
� , �7a�


	k
↓� = 
�kx�

ei�kxx+kzz�

�LxLy

R��x��i�kx

1
� , �7b�

where �= ��2

4m�d�
, 
�kx�= �1+�2kx

2�−1/2 is the normalization co-
efficient and R�=exp�−i ��x�

2 �y� is the rotation operator for
spin of holes. This operator transforms the domain wall into
a homogeneous system for passing carriers.10,23–25 The eigen-
states of Eq. �7� are not pure spin states and correspond to
energy eigenvalues �k,�= �2k2

2m� −�� ��=+1,−1 for up- and
down-spin bands, respectively�. The influence of the periodic
potential is included via an effective mass denoted by m�.

We consider the Boltzmann transport equation to develop
the domain wall resistance. For homogeneous media, the
Boltzmann equation in the relaxation-time approximation
can be expressed as

vk,� · eE
� fk,�

0

��k,�
= −

fk,� − fk,�
0

k,�
�8�

in which E is the electric field, vk,� denotes the hole velocity,
and  represents the relaxation time. fk,�

0 and fk,� are the
equilibrium and nonequilibrium distribution functions, re-
spectively, which are considered to be uniform in space. This
assumption is quite reasonable in the absence of spin accu-
mulation. The spin transport and domain wall MR in the
presence of spin accumulation have been studied by several
authors.25–28 The effect of spin accumulation on the domain
wall MR may be significant in ballistic regime26 but it has
been shown by Simanek and Rebei that in the diffusive limit
the domain wall resistance is dominated by the mechanism
of Ref. 10. In other words, the spin accumulation contribu-
tion to the domain wall MR is suppressed in the diffusive
limit.27 Therefore, the spin accumulation has been left out of
our calculations.

In the elastic regime, the spin-dependent relaxation time,
k,�, can be determined by21

FIG. 1. A Néel-type domain wall with dimensions of d�Ly

�Lz.
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�k,��−1 =
LxLz

�2��2�
��
 d2k�

2�

�

Vk�,k

��,�
2

��1 − cos�k�,k�����k,� − �k�,��� , �9�

where the elements of the scattering matrix are related to the

impurity interaction and spin-orbit couplings, i.e., Vk�,k
��,�

= �Hk�,k
��,��im+ �Hk�,k

��,��R+ �Hk�,k
��,��D. The matrix elements of the

interaction terms as well as the explicit form of the spin-
dependent relaxation times have been calculated in the Ap-
pendix. By employing the relaxation times, the evolution of
the resistivity of the domain wall is carried out as follows:

R−1 =
m�e2

�2���2 �
�=�

 d2k�vk · nE�2k,����
1

kF,�
��k − kF,��

�10�

in which kF,�=�kF
2 �

2m��

�2 and nE=E / 
E
 is unit vector
along the electric field, which according to Fig. 1, identifies
two transport geometries CPW �nE=x� and CIW �nE=z�.
Then, the resistivity of the domain wall for CPW and CIW
geometries can be calculated by

RCPW
−1 = �

�=�

e2

�2��2

�kF,��2

m�  d� cos2���kF,�,����

�11a�

and

RCIW
−1 = �

�=�

e2

�2��2

�kF,��2

m�  d� sin2���kF,�,���� .

�11b�

If we replace the domain wall with a ferromagnet, the eigen-
states of the H0+Hex will be pure spin states given by


�k
↑� =

1
�LxLz

ei�kxx+kzz��1

0
� �12a�

and


�k
↓� =

1
�LxLz

ei�kxx+kzz��0

1
� . �12b�

The spin-orbit interactions cannot contribute to the elastic
scatterings inside a ferromagnet. Thus, only the impurity
scattering as the relaxation mechanism should be taken into
account for the ferromagnetic region. Since this relaxation
cannot produce any spin-flip transition between the pure spin
eigenstates introduced in Eq. �12�, the scattering matrix of
impurities inside a ferromagnet and in the spin space can be
expressed as

�Hk�,k
��,��im = �

j

ei�k−k��·rj�vim − �im 0

0 vim + �im
� . �13�

Similarly, for a ferromagnet, one can exhibit that the relax-
ation time associated with impurity scatterings is derived by
the following equation:

���Ferro
−1 =

LxLzm
�Nim�vim − ��im�2

�3 . �14�

As a result, the resistivity of the ferromagnet is found out to
be

RFerro = � e2

4�m
�↑ · kF,↑

2 + ↓ · kF,↓
2 �	−1

. �15�

Finally, the magnetoresistance in CPW and CIW geometries
is given by

MRCPW =
RCPW

RFerro
− 1 �16a�

and

MRCIW =
RCIW

RFerro
− 1. �16b�

III. RESULTS AND DISCUSSION

The study on the domain wall resistance has been done
for 10 nm thick diluted ferromagnetic semiconductor thin
films with the parameters �=30 meV and m�= �mlh

3/2

+mhh
3/2�2/3me=0.47me, where me is the electron mass. These

parameters correspond to Ga0.947Mn0.053As epilayers with
large magnitude of critical temperature TC=110 K.29 The
density of charge carriers, the electrical potential of the lo-
calized impurities and the exchange splitting constant be-
tween holes and localized impurities have been considered to
be p=3.5�1020 cm−3, vim=1.0 eV, and �im=0.8�, respec-
tively. Typical domain wall width in the Bulk Mn-doped
GaAs is about d=15 nm.30 The magnitude of the Fermi
wavevector in such a heavily Mn-doped GaAs, can be ob-
tained as kF=2.18 nm−1. In this case, the semiclassical ap-
proximation requirement, kF↑�↓�d�1, is satisfied adequately.

The domain wall MR versus the Dresselhaus interaction
strength is depicted in Fig. 2 for both CPW and CIW geom-
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=15 nm, and p=3.5�1020 cm−3. Inset: the ratio of CPW to CIW
domain wall MR.
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etries. As can be seen, the domain wall MR in both configu-
rations increases monotonically and then saturates at large
Dresselhaus coupling strengths. As the effective magnetic
field associated with the Dresselhaus spin-orbit interaction
increases, the relaxation time decreases rapidly just for the
four incident wavevector angles mentioned in the Appendix
whereas because of impurity scattering, it remains un-
changed for other incident angles. So, the domain wall MR
which is calculated by integrating the relaxation times over
incident wavevector angles �Eq. �11��, remains approxi-
mately constant at large Dresselhaus coupling strengths.

The inset of Fig. 2 shows the ratio of CPW to CIW mag-
netoresistance. The resistivity in CPW geometry is greater
than that of CIW. It becomes nearly two times larger at high
values of spin-orbit interaction strength which is in good
quantitative agreement with the experimental reports.31 This
can be understood from the fact that the hole traveling across
the domain wall in the CPW configuration encounters an
effective magnetic potential barrier while in the CIW geom-
etry, the hole adapts its magnetic moment to the local mag-
netization �which is homogeneous along the z direction�.
Therefore, carrier transport in CIW configuration is close to
the adiabatic regime.

Figure 3 shows the sensitivity of the domain wall MR to
the impurity density in presence of the Dresselhaus interac-
tion. It can be realized that high impurity densities suppress
the effect of the Dresselhaus interaction contribution to the
CPW resistivity. The Dresselhaus interaction is more effec-
tive for low impurity concentrations. Similar results can also
be found for CIW geometry. Figure 3 also demonstrates that
in the absence of spin-orbit interaction, the domain wall MR
does not depend on impurity density. Using Eqs. �A6� and
�14�, it is easy to show that ������DW

−1 �cim and ���Ferro
−1

�cim. Therefore, the dependency of the domain wall MR on
the impurity density is removed from Eq. �16�. The linear
dependence of resistivity on cim comes from the semiclassi-
cal approach in which some quantum interference effects
have been discarded.

In determining the dependency of domain wall MR on
given parameters, clearly, the size of the domain wall plays

an important role. In the absence of Dresselhaus spin-orbit
interaction, we expect a monotonic reduction in domain wall
MR by increasing the domain wall width, as shown in Fig. 4.
This is because of being close to the adiabatic limit by rais-
ing the size of the domain wall. Nevertheless, the adiabatic-
ity can be violated by Dresselhaus spin-orbit interaction. As
mentioned in the Appendix, the spin-flip scattering angles
depend strongly on the domain wall width �Eqs. �A4� and
�A5��. Consequently, the effective magnetic field of the
Dresselhaus spin-orbit interaction is modified by the size of
the domain wall. This effective field sensed by the holes in
both ↓↑ and ↑↓ spin-flip transitions has been shown in the
inset of Fig. 4 for different domain wall widths. According to
this figure, high magnetic field produced by the Dresselhaus
spin-orbit interaction preserves the nonadiabatic character of
the transport. This can be deduced from the plateau occurred
in the domain wall MR in the presence of the Dresselhaus
interaction �Fig. 4�. For domain walls thicker than about 15
nm, the Dresselhaus spin-orbit effective field begins to di-
minish. Because of fast falling down of the effective field,
the MR curve exhibits a clear change in slope around this
thickness and then adiabatic transport takes place at higher
thicknesses.

The domain wall width is also an important parameter in
determining the contribution of different scattering mecha-
nisms to the domain wall MR. To be more specific, we con-
sider the Dresselhaus and the Rashba spin-orbit interactions
whose effective magnetic fields have been depicted in Fig. 5.
Using Eq. �A4� it is easy to show that for a 15 nm thick
domain wall and a Fermi energy of 0.38 eV, the spin-orbit
scatterings occur just at incident wavevector angels of 30.3°,
149.7°, 210.3°, and 329.7° for ↓↑ spin-flip transitions and
39.9°, 140.1°, 219.9°, and 320.1° for ↑↓ transitions. Accord-
ing to Fig. 5, for such a domain wall, the Dresselhaus effec-
tive magnetic field for both ↓↑ and ↑↓ spin-flip transitions is
approximately one order of magnitude greater than that of
the Rashba term. As a result, it is expected that the Dressel-
haus interaction will lead to a larger spin-flip scattering and
consequently to a higher domain wall MR relative to the
Rashba spin-orbit interaction. This can be confirmed by Fig.
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6 in which the domain wall MR versus the strengths of the
Dresselhaus and the Rashba spin-orbit interactions is plotted
as a contour graph. The strengths of the Dresselhaus and the
Rashba spin-orbit couplings for a typical magnetic semicon-
ductor are 30 eV A3 and 10−2 eV nm, respectively.32 Ac-

cordingly, it is clearly seen that the Dresselhaus term �the
MR is about 13.4%� is more effective than the Rashba cou-
pling �the MR is around 5.8%� in producing resistance. This
is also the case of thicker domain walls. For instance, it is
easy to show that BD,↓↑ tends to diminish at a thickness
around 17.7 nm and so BD,↓↑�BR. Nevertheless, BD,↑↓ re-
mains remarkably greater than BR and makes the Dresselhaus
coupling more effective. In such a ferromagnetic semicon-
ductor, just for very long or very short domain walls the
effects of these two spin-orbit couplings become close to
each other. In the case of long domain walls, the holes follow
the local magnetic moments adiabatically and for very short
domain walls, the impurity relaxation mechanism suppresses
the influence of spin-orbit couplings.

IV. CONCLUSION

In this study, we have investigated the influence of the
Dresselhaus spin-orbit interaction on the MR of a linear
smooth domain wall in a diffusive 2DEG. It has been found
that the domain wall MR increases with the strength of the
Dresselhaus coupling in both CPW and CIW geometries. The
results show that the domain wall MR in the CPW geometry
is greater than that in the CIW geometry. It has also been
demonstrated that increasing impurity concentration sup-
presses the influence of the Dresselhaus interaction. The do-
main wall MR decreases monotonously as the domain wall
width increases but in the presence of the Dresselhaus spin-
orbit interaction, it exhibits a plateau behavior in a range of
the domain wall widths. It has also been realized that for a
typical magnetic semiconductor the Dresselhaus spin-orbit
term can be more effective in producing resistance in com-
parison with the Rashba spin-orbit interaction.
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APPENDIX

The matrix elements of interaction terms can be evaluated
as follows:

�Hk�,k
��,��im = 
�kx�
�kx���vim + �im�

� � � + �k�k� i��k − i�k�

i�k − i��k� 1 + ��k�k�
��

j

ei�k−k��·rj ,

�A1a�

�Hk�,k
��,��R = �R�� i�

2d
− kz��1 + kx�2� , �A1b�

�Hk�,k
��,��D = − �D��−

�2

Ly
2 kx − ikxkz

�

d
+ kxkz

2��1

+ ��2

Ly
2 kz +

i�3

2dLy
2 − kx

2kz −
�2

4d2kz −
i�

2d
kz

2��2�
�A1c�

in which �= �vim−�im� / �vim+�im�,
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FIG. 5. The effective magnetic fields resulted from �a� the
Dresselhaus and �b� the Rashba interactions as functions of in-plane
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=10−2 eV nm.

γ
D

[eV A3]

γ R
[e

V
nm

]

Domain Wall Magnetoresistance [ % ]

6 7
8

9

9

10

10

11

11

12

12

12 13

13

14

14

0 10 20 30 40 50
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

FIG. 6. Domain wall magnetoresistance as a function of both the
Dresselhaus ��D� and the Rashba ��R� spin-orbit coupling strengths
in CPW geometry for d=15 nm, ci=1.0�104 cm−2, and p=3.5
�1020 cm−3.

INFLUENCE OF DRESSELHAUS SPIN-ORBIT… PHYSICAL REVIEW B 82, 035210 �2010�

035210-5



�1 =

�kx�
�kx��

2
����
�x − i�z
���kx�,kx+��/d�

+ ���
�x + i�z
���kx�,kx−��/d���kz�,kz
, �A2a�

and

�2 =

�kx�
�kx��

2
����
�z + i�x
���kx�,kx+��/d�

+ ���
�z − i�x
���kx�,kx−��/d���kz�,kz
. �A2b�

According to Fig. 1, the system under study has been
confined in y direction. This confinement results in discrete
transverse modes. The momentum transfer that can be ob-
tained by a carrier due to the mentioned relaxations is much
smaller than the required one for a transition between the
nearest transverse modes. Thus, one can use the single-
transverse mode approximation. In other words, the transport
occurs mainly in two-dimensional xz plane. Within this ap-
proximation the integration in Eq. �9� has been carried out
over the two-dimensional k space.

The Dirac delta functions in Eq. �9� can be written as
follows:

���k,↑ − �k�,↑� =
m�

�2k
���k� − k� + ��k� + k�� , �A3a�

���k,↑ − �k�,↓� =
m�

�2k−
���k� − k−� + ��k� + k−�� , �A3b�

���k,↓ − �k�,↑� =
m�

�2k+
���k� − k+� + ��k� + k+�� , �A3c�

���k,↓ − �k�,↓� =
m�

�2k
���k� − k� + ��k� + k�� �A3d�

in which k�=�k2�
4m��

�2 . The last term in each of the above
equations is equal to zero because k= 
k�
 and k�= 
k�� 
 are posi-
tive parameters. Since, ��k�−k� and �kx�,kx���/d� cannot be sat-
isfied simultaneously, regarding Eq. �A3�, we can conclude
that the diagonal matrix elements of the spin-orbit interac-
tions are zero. In addition, the nondiagonal scattering matrix
elements are nonzero only for incident wavevector angles of
�1=�, �2=�−�, �3=�+�, and �4=2�−� and corresponding
scattering wavevector angles of �1�=��, �2�=�−��, �3�=�
+��, and �4�=2�−��, �see Fig. 7�, where

� = cos−1��

k2 − k�
2 +

�2

d2

2�

d
k � �A4�

and

�� = tan−1� k sin���

k cos��� �
�

d
� . �A5�

In these definitions, the upper and lower signs are applied to
the Vk�,k

↓,↑ and Vk�,k
↑,↓ elements, respectively. As a consequence

since the spin-orbit relaxations contribute just at the repre-
sented incident wavevector angles, the relaxation times be-
come dependent on the incident angle.

Random distribution of the impurities results in decou-

pling of impurity and the spin-orbit interactions as 
Vk�,k
��,�
2

= 
Hk�,k
��,�
im

2 + 
Hk�,k
��,�
spin-orbit

2 . So, we can rewrite Eq. �9� as

�k,�����−1 = �k,�����im
−1 + �k,�����spin-orbit

−1 �A6�

in which,

�k,↑����im
−1 =

�LxLz�2

2�

m�

�3 cim�vim + �im�2 1
�1 + k2�2 cos2���

�
0

2�

d���1 − cos�� − ����

� � 
� + k2�2 cos���cos����
2

�1 + k2�2 cos2����

+

ik� cos��� − i�k−� cos����
2

�1 + k−
2�2 cos2����

	 ,

�k,↓����im
−1 =

�LxLz�2

2�

m�

�3 cim�vim + �im�2 1
�1 + k2�2 cos2���

�
0

2�

d���1 − cos�� − ����

�� 
1 + �k2�2 cos���cos����
2

�1 + k2�2 cos2����

+

i�k� cos��� − ik+� cos����
2

�1 + k+
2�2 cos2����

	 ,

FIG. 7. View of the 2D wavevector space �kx ,kz�. The repre-
sented wavevectors satisfy functions ��k�−k−� and �kx�,kx��/d, simul-
taneously. A similar figure can be drawn for the case of ��k�−k+�
condition.
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�k,↑����spin-orbit
−1 =

LxLz

4�

m�

�3 C−��A + iB�Dk−

− �
j=2,3

��� − � j�

����� − � j�� + �A − iB�Dk−

+ �
j=1,4

���� − � j����� − � j���2
,

�k,↓����spin-orbit
−1 =

LxLz

4�

m�

�3 C+��A + iB�Dk+

+ �
j=2,3

��� − � j�

����� − � j�� + �A − iB�Dk+

− �
j=1,4

���� − � j����� − � j���2
,

where,

A = �R� i�

2d
− k sin���	 − �D�−

�2k

Ly
2 cos��� −

i�k2

2d
sin�2��

+ k3 sin2���cos���	 ,

B = �R�k cos���� − �D��2k

Ly
2 sin��� +

i�3

2dLy
2 − k3 sin���cos2���

−
�2k

4d2 sin��� −
i�k2

2d
sin2���	 ,

C� =
1 − cos�� − ���

�1 + k2�2 cos2����1 + k�
2 �2 cos2����

,

Dk�

� = �k� cos��� � 1��k�� cos���� � 1� ,

and cim=Nim / �Lx ·Lz� is the density of impurity atoms.
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