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We study the occurrence of nonclassical rotational inertia �NCRI� arising from superfluidity along grain
boundaries in a two-dimensional bosonic system. We make use of a standard mapping between the zero-
temperature properties of this system and the statistical mechanics of interacting vortex lines in the mixed
phase of a type-II superconductor. In the mapping, the liquid phase of the vortex system corresponds to the
superfluid bosonic phase. We consider numerically obtained polycrystalline configurations of the vortex lines
in which the microcrystals are separated by liquidlike grain-boundary regions which widen as the vortex
system temperature increases. The NCRI of the corresponding zero-temperature bosonic systems can then be
numerically evaluated by solving the equations of superfluid hydrodynamics in the channels near the grain
boundaries. We find that the NCRI increases very abruptly as the liquid regions in the vortex system �equiva-
lently, superfluid regions in the bosonic system� form a connected, system-spanning structure with one or more
closed loops. The implications of these results for experimentally observed supersolid phenomena are
discussed.
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I. INTRODUCTION

The observation1,2 of nonclassical rotational inertia
�NCRI� in torsional oscillation experiments on solid 4He cre-
ated a great deal of interest3 in the possibility of occurrence
of a “supersolid” phase in which crystalline order and super-
fluidity coexist. Considerable subsequent work has sustained
this interest. The occurrence of NCRI in solid 4He has been
confirmed in many experiments4–9 and the dependence of the
measured NCRI fraction �NCRIF� on various factors, such as
the method of sample growth, its annealing, frequency and
amplitude of the torsional oscillator, and the amount of 3He
impurities present, have been studied in great detail. How-
ever, despite these extensive studies, the microscopic origin
of the observed NCRI signal remains quite controversial. In
particular, it is not clear whether the superfluid component in
supersolid 4He is distributed uniformly throughout the
sample, or present only near structural defects such as dislo-
cations and grain boundaries. A suggestion that the observed
phenomena were related to an old theoretical proposal10 of
superfluidity arising from mobile zero-point vacancies in the
crystal has been contradicted by results of quantum Monte
Carlo simulations11,12 that show that the concentration of va-
cancies is too low to account for the measured NCRIF. On
the other hand, the observed dependence4 of the magnitude
of the NCRIF on the quality of the sample �samples with
higher degree of crystalline order exhibit smaller NCRIF�
argues in favor of a mechanism of superfluidity in which
defects play a major role. An important role for the defects is
also indicated by the observation9,13 of a close correspon-
dence between the onset of NCRI and an increase in the
shear modulus of the solid, and by an enhancement of both
these effects when the concentration of 3He impurities is
increased. It has been suggested13 that both the occurrence of
NCRI and the simultaneous increase in the shear modulus

arise from a stiffening of a network of dislocation lines, and
that this stiffening is assisted by 3He impurities which pin
the dislocation lines by binding to them.

The question of whether the experimentally observed su-
persolid behavior in 4He can arise from the presence of
structural defects has been investigated, on the theoretical
side, in quantum Monte Carlo studies14–16 that show that
superfluidity can indeed occur along grain boundaries and in
the cores of dislocations. There have been a few
attempts17–21 to calculate the macroscopic properties �such as
the NCRIF� of a system in which superfluidity occurs along
a network of grain boundaries or dislocation lines. Since
these structural defects form disordered complex networks, a
calculation of the rotational inertia of a superfluid confined in
a network of irregular-shaped channels is necessary for un-
derstanding whether a defect-based mechanism can provide a
consistent explanation of the observed results. To our knowl-
edge, no such calculation for realistic defect network struc-
tures currently exists in the literature.

In this paper we study the possibility of occurrence of
supersolid behavior, similar to that observed in solid 4He,
arising from superfluidity along grain boundaries in a two-
dimensional bosonic system. We make use of a well-known
mapping22–24 between the statistical mechanics of a system
of interacting vortex lines in the mixed phase of type-II su-
perconductors and the zero-temperature quantum mechanics
of a two-dimensional system of bosons. Specifically, we con-
sider a highly anisotropic layered superconductor in the pres-
ence of a magnetic field perpendicular to the layers. The
system then consists of a collection of vortex lines oriented,
on the average, normal to the layers. The statistical mechan-
ics of these vortex lines can be mapped22–24 onto the quan-
tum mechanics of a two-dimensional system of interacting
bosons at zero temperature. The mapping can also be used if
a small concentration of columnar pinning centers normal to
the layers is present in the vortex system. In that case, the
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equivalent bosonic system contains a small concentration of
randomly located point pinning centers that produce a ran-
dom external potential for the bosons. In this mapping, the
liquid phase of the vortex system corresponds to the super-
fluid phase of the bosons. The equilibrium properties of the
vortex system, both with and without columnar pinning,
have been investigated in a large number of theoretical,22–24

experimental,25–27 and numerical28–32 studies. These results
establish, as we will show below, that the zero-temperature,
two-dimensional, interacting bosonic system with random
pinning centers exhibits a polycrystalline state with superflu-
idity along grain boundaries over a suitable range of system
parameters.

Our earlier studies28–30 of the vortex system in the pres-
ence of columnar pins provide us with several realistic con-
figurations of the network of grain boundaries. We find that
some of these polycrystalline states survive as metastable
states when the random pinning potential is turned off, as
explained below. This case maps then onto the impurity-free
bosonic system, which is similar to the experimentally stud-
ied 4He case. We then study the NCRIF arising from the
superfluid regions along the grain boundaries by numerically
solving the equations of superfluid hydrodynamics33,34 in the
geometry specified by the superfluid channels in the sample.
This allows us to determine the NCRIF as a function of
system parameters. At low temperatures �meaning the tem-
perature of the vortex system, not that of the two-
dimensional bosonic system�, the liquid regions �superfluid
regions in the equivalent two-dimensional system of bosons�
near the grain boundaries are completely absent or small, and
the NCRIF is vanishingly small. As the temperature is in-
creased toward the melting temperature of the vortex lattice
in the absence of any pinning, a kind of “premelting” occurs
near the grain boundaries so that the area covered by the
liquid regions increases. This increases the connectivity of
the network of liquid channels and causes the NCRIF to
increase as the channels open up throughout the entire
sample. However, the NCRIF remains vanishingly small as
long as the liquid regions remain isolated from one another.
Our main result is that the NCRIF exhibits a sharp jump to a
measurable value of a few percent when the growing liquid
regions percolate across the system to form one or more
closed channels of size comparable to the size of the system.
The behavior of the NCRIF as a function of the temperature
of the vortex system is qualitatively similar to that seen in
the experiments on 4He. Our work, thus, shows that super-
solid behavior similar to that observed in solid 4He can occur
from superfluidity in grain boundaries in a two-dimensional
system of bosons for an appropriate choice of parameters.

The rest of the paper is organized as follows. In Sec. II,
we provide the details of the vortex-to-boson mapping used
in our work, define the model we consider and describe the
numerical methods used in our calculations. The results of
our study are described in detail in Sec. III Section IV con-
tains a discussion of the implications of our results in the
context of current research on supersolidity in 4He.

II. MAPPING, MODELS, AND METHODS

In this section, we first describe in detail the mapping
between the statistical mechanics of a collection of vortex

lines and the zero-temperature quantum mechanics of a two-
dimensional system of bosons. We then discuss how existing
results for the vortex system can be used to infer the occur-
rence of a supersolid phase with superfluidity along grain
boundaries in the bosonic system under suitable conditions.
In our study, information about the behavior of the bosonic
system is obtained, through the vortex-boson mapping, from
calculations carried out for the vortex system. At the end of
this section, we provide some details of the model used in
our study of the vortex system and the method of calculation
we have used.

A. Mappings and models

It is well established22–24 that the partition function of a
system of interacting vortex lines can be written as that of a
two-dimensional system of interacting bosons. We review
here only the necessary details. Let us consider a system of N
vortex lines in a type-II superconductor in the mixed phase,
with the magnetic field in the z direction. We also assume
that Np columnar pinning centers oriented along the z direc-
tion may be present in the sample �this random pinning po-
tential will be turned off in the numerical work described
below�. Let the two-dimensional vector r j�z� denote the
transverse position of the jth vortex line in the xy plane at z
�0�z�L, where L is the thickness of the sample in the z
direction�. The free energy of the system of vortex lines has
the form

FN =
1

2�
j=1

N

��
0

L �dr j�z�
dz

�2

dz +
1

2�
i�j
�

0

L

V��ri�z� − r j�z���dz

+ �
j=1

N �
0

L

Vd�r j�z��dz . �2.1�

Here, � is the tilt modulus of the vortex lines, V�r� is the
interaction potential between two vortex lines separated by
transverse distance r, and Vd�r� is a pinning potential pro-
duced by the columnar pinning centers �for columnar pins
oriented in the z direction, the pinning potential does not
depend on z�. We assume periodic boundary condition in the
z direction, which implies that the positions 	r j�0�
 and
	r j�L�
 at the two ends of the sample must match modulo a
permutation. The partition function of the system of vortex
lines at temperature T is then given by

Zv�T� =
1

N!�P
�
j=1

N �
rj�L�=rP�j��0�

D	r j�z�
exp�− FN/T� ,

�2.2�

where the functional integrals are over all vortex-line con-
figurations that satisfy the boundary conditions r j�L�
=rP�j��0� for all j, P representing a permutation of the indi-
ces 1 ,2 , . . . ,N.

To see the connection of this problem with the quantum
mechanics of bosons, let us consider a two-dimensional sys-
tem of N identical bosonic particles of mass m, with pairwise
interactions given by the potential V�r�, in the presence of an
external impurity potential Vd�r�. In the path-integral repre-
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sentation, the partition function of this system at temperature
Tb can be written as

Zb�Tb� =
1

N!�P
�
j=1

N �
rj���=rP�j��0�

D	r j���


�exp�−
1

�
�

j=1

N �
0

� m

2
�dr j���

d�
�2

d�

+
1

2�
i�j
�

0

�

V��ri��� − r j�����d�

+ �
j=1

N �
0

�

Vd�r j����d��� , �2.3�

where r j��� now represents the position of the jth boson at
“imaginary time” � and �=� /Tb. A comparison of this ex-
pression with that in Eq. �2.2� shows that the two are the
same when one makes the identifications

� → m, T → �, L → � = �/Tb. �2.4�

Thus, the thermodynamic limit, L→	, in the vortex system
corresponds to the zero-temperature �Tb=0� limit in the bo-
son system. The tilt modulus of the vortex lines plays the
role of the mass of the bosons and the temperature T of the
vortex system plays the role of �. The pairwise interaction
V�r� in the system of bosons is the same as that between two
vortex lines and the external potential Vd�r� is also the same
in the two systems. The interaction between two straight vor-
tex lines parallel to each other is repulsive and its depen-
dence of the transverse separation is given by V�r�

K0�r /��, where K0 is a Bessel function and � the in-plane
London penetration depth of the superconductor. Thus, the
pair interaction potential in the corresponding boson problem
is repulsive, logarithmic in r for r much smaller than �, and
falls off exponentially as �exp�−r /�� when r is larger than
�. Liquid phases in the vortex system correspond to super-
fluid bosonic phases while vortex crystalline phases corre-
spond to a bosonic crystal.

This mapping between the two systems allows us to draw
certain conclusions about the behavior of the two-
dimensional bosonic system from the wealth of information
available from existing experimental25–27 and numerical28–32

studies of the mixed phase of type-II layered superconduct-
ors �high-temperature cuprate superconductors, in particular�
in the presence of random columnar pinning centers oriented
parallel to the magnetic field which is perpendicular to the
layers. These studies establish that when the concentration of
pinning centers is small compared to that of vortex lines, the
vortex system exhibits a Bose glass �BoG� phase at low tem-
peratures, and a vortex liquid phase at high temperatures. In
the vortex-boson mapping, the vortex liquid phase corre-
sponds to the superfluid phase of the two-dimensional
bosonic system. Both experiments25 and numerical
studies28–30 show that the BoG phase in the vortex system
has a polycrystalline structure with grain boundaries separat-
ing crystalline domains �see, for example, Fig. 2 of Ref. 25
and Fig. 1 of Ref. 28�. Experiments also show the existence
of a “vortex nanoliquid” phase26,27 near the boundary be-

tween the BoG and vortex liquid phases �see Fig. 2 of Ref.
27�. From direct visualization of the flow of transport current
in the system, it has been established27 that the vortex nano-
liquid is characterized by the simultaneous presence of sol-
idlike and liquidlike regions in the system. This phase is
distinguished from the homogeneous vortex liquid by the
presence of interconnected “droplets” of vortex liquid caged
inside a solid matrix formed by other vortices. The experi-
ments cannot determine the positions of the droplets of vor-
tex liquid relative to the grain boundaries that are known to
exist in the BoG phase. This information is provided by our
earlier numerical studies28,29 of the vortex system. These
studies reproduce all the experimentally observed features
and in addition, show that the liquid regions in the vortex
nanoliquid phase lie along the grain boundaries �see, for ex-
ample, Fig. 7 of Ref. 29�. Since the vortex liquid corresponds
to the superfluid in the bosonic system, these results establish
that a zero-temperature two-dimensional system of bosons,
interacting via a repulsive pair potential proportional to K0�r�
and in the presence of a small concentration of attractive
pinning centers, exhibits a polycrystalline phase with super-
fluidity along the grain boundaries for a suitable choice of
system parameters. In the present study, we examine whether
this behavior persists in the bosonic system when the pinning
potential is turned off, and calculate how the rotational iner-
tia of the system is affected by the presence of droplets of
superfluid lying along the grain boundaries.

B. Methods

Since our results for the bosonic system are obtained from
studies of a system of vortices using the methods of our
earlier work,28–30 we provide here a summary of the vortex
model we consider and the numerical method we use to
study its equilibrium behavior. The details of both the model
and the method of calculation may be found in Ref. 35.

The system studied consisted of a set of vortex lines in a
highly anisotropic, layered superconductor with the magnetic
field perpendicular to the layers. The vortex lines are formed
by stacks of “pancake” vortices located on the layers. The
Josephson interaction between pancake vortices on different
layers was neglected. The structure and thermodynamic
properties of the vortex system are determined from numeri-
cal minimization of a model free-energy functional of the
Ramakrishnan-Yussouff form36 that expresses the free energy
of the system as a functional of the time-averaged local den-
sity of the pancake vortices. For columnar pins perpendicular
to the layers, the pinning potential is the same on all the
layers. This implies that the time-averaged density distribu-
tion is also the same on all the layers. This makes the prob-
lem effectively two dimensional.35 Different phases of the
vortex system correspond to different local minima of the
free energy and phase transitions are signaled by crossings of
the free energies of different local minima. From the density
distribution at a local minimum representing a particular
phase of the system, the positions of the vortices in that
phase are generated by locating the points at which the den-
sity exhibits local peaks. This allows the study the real-space
structures of different phases. The heights of the local-

NONCLASSICAL ROTATIONAL INERTIA IN A TWO-… PHYSICAL REVIEW B 82, 024523 �2010�

024523-3



density peaks are used to determine whether the vortices in a
region of the sample are in a solid or liquid state.

Since our method of calculation is designed for the vortex
system, the parameter that we control is the temperature T of
the vortex system. Changing this temperature is equivalent to
“changing the value of �” in the corresponding zero T
bosonic system via the mapping Eq. �2.4�. This should be
interpreted as changing system parameters in such a way that
the relative importance of quantum effects is modified �“in-
creasing �” implies increasing the importance of quantum
fluctuations�. This correspondence should be kept in mind in
the interpretation of our results in the context of the bosonic
problem.

III. RESULTS

As mentioned above, all our results for the two-
dimensional bosonic system have been obtained from nu-
merical calculations carried out for the equivalent vortex sys-
tem. In our earlier studies,28–30 we considered a system of
vortex lines in the presence of randomly placed columnar
pinning centers and found polycrystalline BoG states when
the areal density of the pinning centers is much smaller than
that of the vortex lines. Since quenched disorder arising from
the presence of pinning centers is not present in the 4He
samples studied experimentally in the context of supersolid
behavior, we first investigated whether the polycrystalline
states found in our earlier studies survive when the random
pinning potential is turned off.

We use for this purpose two of the vortex configurations
obtained and studied in Ref. 30. These correspond to results
for a relative concentration c=1 /8 of columnar pins �c
=np /nv, where np and nv are, respectively, the areal densities
of pinning centers and vortex lines� in a system that con-
tained 4096 vortices �therefore 512 columnar pins�. We con-
sider, for our starting point, vortex configurations at a vortex
temperature T=17.0 K at which point �for c=1 /8� the vor-
tex system is well into the BoG phase, see the phase diagram
in Fig. 1 of Ref. 30 �to set the temperature scale, we note that
when no pinning is present, the vortex system considered
undergoes a first-order melting transition from a crystalline
Abrikosov lattice to a vortex liquid at T=18.4 K.� A per-
fectly crystalline state without grain boundaries is the abso-
lute minimum of the free energy in the absence of pinning.
However if, using the polycrystalline BoG configuration as a
starting point, one reduces the strength of the pinning poten-
tial to zero in sufficiently small steps while running at every
step the free-energy minimization routine, one ends up, when
zero pinning strength is finally reached, with a polycrystal-
line sample, with well-defined grain boundaries. This poly-
crystalline state is of course metastable but we find that as it
is warmed up �we use steps of 0.2 K�, the sample remains in
the local polycrystalline free-energy minimum �within the
finite accuracy of our numerical minimization procedure� un-
til near T=18.4 K when, as mentioned above, the microc-
rystals melt. Even if these polycrystalline states are not true
local minima of the free energy, they can be made so by the
introduction of a few pinning centers that are always present
in any physical sample.

An example of such polycrystalline configurations, ob-
tained by warming up the polycrystalline state originally ob-
tained at a vortex temperature T=17.0 K to 18.2 K, is
shown in Fig. 1. There we plot the average positions of the
vortices, defined to be the computational lattice sites at
which the density has a local maximum. In this and subse-
quent figures, the unit of length is a0, defined by the relation
�a0

2nv=1, where nv is related to the magnetic induction B
�which was B=0.2T in the case shown� by nv=B /0, where
0 is the superconducting flux quantum. In the top panel, we
have shown the results of performing a Voronoi construction
for the vortex configuration. The Voronoi cell associated with
a lattice point is the region of space nearer to that point than
to any other lattice point and the number of sides of the
Voronoi cell represents the number of neighbors of the lattice
point. In the top panel, vortices with six neighbors are shown
as �black� dots and those with five or seven neighbors are
shown as �red� circles and �blue� squares, respectively. A
neighboring pair of five- and seven-coordinated vortices con-
stitutes a dislocation and grain boundaries correspond to ar-
rays of such dislocations. Microcrystals can be seen as or-
dered regions consisting of sites with six neighbors, and
these microcrystals are separated by arrays of dislocations
�pairs of sites with five and seven neighbors� denoting the
grain boundaries.

In the bottom panel of Fig. 1, we show, for the same
configuration, the spatial distribution of the value of the vor-
tex density at each local-density peak, normalized to the av-
erage vortex density value nv. The value of this dimension-
less quantity provides a measure of the degree of localization
of the corresponding vortex. Using the value of this quantity,
we can determine whether the vortices in a given region are
liquidlike or solidlike. In our earlier studies of the vortex
system28–30 �see, for example, Sec. IIIC of Ref. 30 or Sec.
IIID of Ref. 29�, we found that vortices in liquid regions
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FIG. 1. �Color online� A metastable polycrystalline vortex con-
figuration obtained as explained in the text. The temperature of the
vortex system is T=18.2 K, slightly below the melting temperature
of the crystalline solid. Distances are in units of a0 �see text�. The
top panel shows the results of a Voronoi construction �see text� that
brings out the details of the polycrystalline structure. In this plot,
vortices with 4, 5, 6, and 7 neighbors are shown as �green� triangles,
�red� circles, �black� dots, and �blue� squares, respectively. Adjacent
pairs of five- and seven-coordinated sites correspond to dislocations
which line up along the grain boundaries that separate the microc-
rystals. The bottom panel shows the degree of localization of the
vortices in the same configuration. Here, �red� triangles and �black�
dots, respectively, represent liquidlike �less localized� and solidlike
�strongly localized� vortices. This plot illustrates the phenomenon
of premelting along the grain boundaries.

CHANDAN DASGUPTA AND ORIOL T. VALLS PHYSICAL REVIEW B 82, 024523 �2010�

024523-4



correspond to local-density peaks for which this quantity has
values of three or less while those with higher values of this
quantity correspond to solid regions. In the plot, local-
density peaks representing solid and liquid regions according
to this quantitative criterion are denoted as �black� dots and
�red� triangles, respectively. One can see that all the vortices
in the ordered regions are solidlike: these regions correspond
to microcrystals. In contrast, the vortices near the grain
boundaries form liquid channels that separate the microcrys-
tals. This plot illustrates the occurrence of a kind of premelt-
ing in the regions near the grain boundaries: these regions
melt and become liquidlike �superfluid in the equivalent
bosonic system� at temperatures lower than that at which the
bulk crystal melts �which we recall is 18.4 K�. Premelting
along grain boundaries is well known37 in classical solids.
Our observation of this phenomenon in the vortex system is
consistent with experimental results. At lower temperatures,
the liquid channels along the grain boundaries are narrower
and obstructed at the narrowest spots �see Fig. 2 below for an
example�, forming a chainlike structure of small liquid drop-
lets. As the temperature is reduced further, the liquid regions
near the grain boundaries disappear completely and are re-
placed by narrow strips of disordered solid.

These results imply, from the vortex-boson mapping, that
a two-dimensional polycrystalline system of bosons exhibits
superfluidity along grain boundaries over a suitable range of
parameter values. Using the realistic networks of grain
boundaries obtained from our numerical studies of the vortex
system, we can then investigate how the NCRI arising from
the presence of superfluid channels in the bosonic system
depends on the system parameters. The numerically obtained
samples in themselves are too small to allow a realistic study
of the flows but a sufficiently, indeed arbitrarily large,

sample can be obtained from them through periodic repeti-
tions �periodic boundary conditions are used in our original
numerical studies� that produce a tiling of a larger region
with the smaller samples. One obtains then a larger sample
for which the short-distance structure is the same but which
has a different large-scale structure because longer liquid
channels are produced when different copies of the original
sample are juxtaposed. Indeed, the length of the largest chan-
nels after such a juxtaposition is of the order of that of the
combined sample. It is true that the structure of the original
small sample is preserved in the small-scale structure of the
large sample, which has an artificial periodicity. However,
this is not important: the behavior of the moment of inertia of
the liquid region, and therefore the NCRI is of course deter-
mined essentially by the largest-scale channels in the prob-
lem. Scaling the system by a linear factor of s�1 in this way
introduces liquid channels that are larger by a factor of up to
s than the original ones while leaving the original small-scale
structures and the channel widths unchanged. It follows from
geometrical and similarity considerations that the overall
moment of inertia of the channels, including the contribu-
tions from the additional smaller structures, should then scale
as s4. Hence, our conclusions for the moments of inertia,
which we will normalize to the overall rigid-body value,
which also scales in the same way, will be independent of
this procedure. The samples considered in our NCRI calcu-
lations are selected portions of 3�3 tilings of the originally
obtained samples.

The evolution of the network of liquid channels in one of
these samples with increasing temperature T of the vortex
system is displayed in Fig. 2. Each panel shows a different
value of T ranging from 17.8 to 18.4 K. In these plots, vor-
tices in the liquid regions are shown as �blue� squares and
those in the solid regions as �black� dots. At the lowest tem-
perature, T=17.8 K, the liquid regions form largely discon-
nected, small beads located along the grain boundaries, with
larger droplets forming at the intersections of two grain
boundaries. As T is increased, the beadlike liquid structures
coalesce into channels so that at about T=18.2 K, connected
structures of size comparable to that of the whole sample �in
particular, a ringlike structure that can be seen in the upper
left corner of the figure� appear. Finally, at T=18.4 K, just
below the melting temperature of the vortex solid, the liquid
regions have fully developed into open channels which per-
colate through the sample. As the superfluid in the equivalent
bosonic system is allowed, in the configurations obtained in
the higher T range, to freely flow along these channels,
whose characteristic size is now of the order of the sample
size, it is clear that the moment of inertia will exhibit a
substantial reduction, leading to appreciable values of the
NCRIF.

To numerically calculate the moment of inertia of the
bosonic samples, we proceed as follows: we imagine the
microcrystalline sample rotating about its center of mass,
with angular speed �. The solid regions of the sample, com-
posed of the microcrystals, rotate of course as a rigid body
with the angular velocity �. The material in the liquid �su-
perfluid in the bosonic system� channels will flow according
to a pattern that can be determined by numerically solving
the fluid flow equations of an incompressible, irrotational
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FIG. 2. �Color online� Evolution of the network of liquid chan-
nels with the temperature T of the vortex system in one of the
samples studied. Each of the four panels corresponds to a value of
T as indicated. Vortices in liquid regions are shown as �blue�
squares and those in the microcrystal are shown as �black� dots.
One can see that as T increases, the liquid channels become con-
nected and closed loops of size comparable to that of the sample are
formed. Units of length are as in Fig. 1.
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�super�fluid.33,34 These equations can be solved to obtain the
velocity field v�r� in the fluid regions. The velocity field at
the boundaries of the fluid part of the sample must satisfy the
boundary condition33 that follows from assuming that the
fluid is confined by the rigid walls. This implies that the
component of the velocity field v�r� along the outward nor-
mal n̂ at any point on the boundary must be equal to the
component of the rigid-body velocity ��r along n̂ at that
point,

v�r� · n̂ = �� � r� · n̂ , �3.1�

where r is a vector from the center of rotation to a point on
the liquid region boundary. In addition, if the fluid region is
not simply connected, then the circulation of the velocity
field along a closed path surrounding each inner boundary of
the region must be specified in order to make the problem
well defined.38 We assume that the sample is accelerated
from rest at zero temperature so that the values of these
circulations are zero.39 Once the velocity field is obtained,
the resulting angular momentum, and hence the moment of
inertia can be straightforwardly obtained by numerical inte-
gration.

Analytic solution of this problem is feasible33,34 only for
reasonably simple geometries: for the very irregular geom-
etries involving the multiple channels and regions under
study here solution can only be undertaken numerically. The
numerical method we have used involves spatial discretiza-
tion and iterative relaxation40 to obtain a solution of the
Laplace equation �see below� with appropriate boundary
conditions. There are certain technical difficulties involved in
doing this. The main one is that our definition of whether a
part of the sample is solid or liquid is based on the values of
the density at the local peaks which form a discrete lattice.
This lattice must therefore be our computational lattice for
the purpose of calculating the velocity field and the moment
of inertia and we cannot truly gain additional precision by
adding more points. Any attempt to do so would necessarily
involve some noncontrollable interpolation scheme. This un-
avoidable situation leads to some uncertainties in our nu-
merical results. In particular, the final results for the rota-
tional inertia include some numerical uncertainty arising
from this minimum spacing of our computational lattice. An-
other technical difficulty is that the boundary condition for
the velocity field, Eq. �3.1�, is of the Neumann form if one
uses the standard method33,34 to express the incompressible
velocity field v�r� as

vx�r� = − ���r�/�y, vy�r� = ���r�/�x , �3.2�

in terms of a stream function ��r�. The simplication of re-
placing the boundary condition of Eq. �3.1� by the Dirichlet
boundary condition, ��r�= 1

2�r2, at all points on the bound-
ary, which was used in earlier studies,33,34 works for some
simple geometries, but leads to incorrect results when unob-
structed ringlike channels are present. This can be easily
checked by applying this method to determine the velocity
field in a superfluid confined between two concentric cylin-
ders rotating about their common axis. This forces us to use
the original Neumann boundary conditions of Eq. �3.1�.
These are more difficult and awkward to implement numeri-

cally, as they involve the outward normal n̂ at the boundary,
which can be defined in different ways when the boundary
consists of a set of discrete points. With the possibility of
reducing the computational lattice spacing not being avail-
able to us, this introduces additional numerical uncertainty,
as the final results are somewhat sensitive to the way in
which n̂ is defined. However, these uncertainties do not se-
riously affect the quantitative conclusions that we can draw
from our calculation, as we shall see below. We recall that
using a scalar potential for the velocity field leads to other
undesirable problems34 even in some analytic cases.

The irrotational nature of superfluid flow in the absence of
any superfluid vortex implies that ��v=0 in the superfluid
regions. This condition and the definition of the stream func-
tion � in Eq. �3.2� imply that � must satisfy the Laplace
equation, �2��r�=0, inside each superfluid channel. Using a
triangular computational grid of spacing equal to the average
interparticle distance and representing the Laplace operator
by symmetric differences,40 the Laplace equation can be re-
duced to a set of linear equations satisfied by the values of �
at the computational grid points in the interior of each super-
fluid region. The boundary conditions of Eq. �3.1� can also
be written as a set of linear equations involving the values of
� at the grid points on the boundary of a superfluid region
and their nearest neighbors. This set of coupled linear equa-
tions is numerically solved using iterative relaxation.40 This
yields the values of � at the grid points, from which the
velocity field and the rotational inertia can be easily ob-
tained.

In Fig. 3, we present what is the main result of these
computations for the NCRI. The quantity plotted there
�circles� as a function of temperature T �which, we reiterate,
is the temperature at which the calculations for the vortex
system were performed—it should not be confused with the
temperature of the equivalent bosonic system which is zero�
is the NCRIF, defined as the difference between the moment
of inertia of the entire sample as a rigid body and its actual
moment of inertia when the superfluid flow in the liquid
portions is taken into account, normalized by the total rigid-
body moment of inertia. These results are for the sample
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FIG. 3. �Color online� The NCRIF, calculated and normalized as
explained in the text, plotted as a function of T, the temperature of
the vortex system �circles�. Also shown are the values of f , the
liquid �superfluid in the bosonic system� fraction �triangles�. The
straight-line segments join consecutive data points.
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shown in Fig. 2. At lower temperatures, when the liquid re-
gions form small, disconnected clusters �see the discussion
above in connection with Fig. 2�, the superfluid flow is neg-
ligible and the entire system behaves as a rigid body, so the
value of the NCRIF is very close to zero. At higher tempera-
tures, when the disconnected liquid regions join together to
form extended channels, superfluid flow begins to occur over
relatively large portions of the sample and eventually the
characteristic channel length becomes of the order of the
system size. At T=18.2 K, a large, ringlike channel opens
up �see Fig. 2�, providing a closed path for the flow of the
superfluid. This drastically reduces the moment of inertia;
recall, for example, that the moment of inertia of a superfluid
confined in a ring that is rotating about its center is zero.
Therefore the NCRIF increases very drastically �note the
logarithmic vertical scale� and by the time the temperature is
reached where the channels are fully open, it has increased
by nearly three orders of magnitude while of course remain-
ing relatively small ��5%�. Our conclusion about a rapid
increase in the value of the NCRIF at T=18.2 K, when a
large, ringlike channel opens up to allow the flow of the
superfluid along a closed path, is not affected by the above-
mentioned uncertainties in the numerical results, which are
�25% in the worst case. We have repeated the whole calcu-
lation for a second polycrystalline configurations and ob-
tained very similar results. Specifically, we find in both cases
that the NCRIF increases by a factor of �18 at T=18.2 K
when a large, ringlike liquid channel opens up.

In Fig. 3, we have also shown �triangles� the dependence
of f , the fraction of the sample that is liquidlike �superfluid in
the bosonic system�, on T. It is clear from this plot that the
dependence of this quantity on T is qualitatively different
from that of the NCRIF: the liquid fraction f increases
smoothly with increasing T and does not exhibit the rapid
increase seen in the NCRIF at T=18.2 K. This observation
brings out the important point that the NCRIF may not pro-
vide a good measure of the fraction of superfluid regions of
the system if the superfluidity occurs along a network of
channels—the connectivity of the channels plays an impor-
tant role in determining the value of the NCRIF. The NCRIF
remains small as long as the network does not contain large
ringlike paths along which the superfluid can flow without
any blockage. The first opening up of such paths as some
system parameter is varied leads to a large increase in the
value of the NCRIF. This large increase, which may look like
the onset of superfluidity, does not necessarily correspond to
a sudden, large increase in the superfluid fraction f of the
system. This should be kept in mind while interpreting ex-
perimental data for the NCRIF.

IV. SUMMARY AND DISCUSSIONS

In this work, we have studied the NCRI arising from su-
perfluidity along grain boundaries in a two-dimensional
bosonic system at zero temperature. By making use of stan-
dard mappings, we have related the properties of the bosonic
system to those of a system of superconducting vortex lines
at finite temperatures. The latter system has been extensively
studied by numerical methods and computationally obtained

structures in the different phases it can exhibit are available.
One of the possible structures of this vortex system is a poly-
crystalline solid in which liquid regions near the grain
boundaries between microcrystals expand and form more
connected regions which eventually extend through the
sample as the vortex system temperature is increased. These
vortex configurations, obtained from previous numerical
studies, correspond, via the above-mentioned mappings, to
different configurations of the boson system, each containing
more or less extensively connected narrow superfluid re-
gions, separating much larger and compact crystalline re-
gions. We have then calculated the moment of inertia of the
bosonic samples by numerically solving the equations of su-
perfluid hydrodynamics in the superfluid regions of the
sample.

We have found that the nonclassical portion of the mo-
ment of inertia of such samples �the NCRIF� is nearly zero as
long as the vortex liquid �bosonic superfluid� regions remain
disconnected but it increases abruptly by about two orders of
magnitude as the superfluid channels become connected to
form ringlike structures with sizes comparable to the system
size. The values we find for the fully developed NCRIF are
of the order of a few percent. Thus, our results indicate that
NCRI behavior can indeed arise in two-dimensional bosonic
systems from superfluid regions associated with grain bound-
aries. The magnitude of the jump in the NCRIF and the final
NCRIF values obtained from our calculations are quite simi-
lar to what is found experimentally in solid 4He. Our results,
therefore, lend support to the notion that supersolid phenom-
ena in 4He are related to superfluidity in grain boundaries or
other crystal defect regions, such as dislocations. Our results
also indicate that an abrupt increase in the NCRIF from a
vanishingly small value to a few percent does not necessarily
correspond to a similar increase in the fraction of the sample
that is superfluid. As shown in Fig. 3, such an increase in the
NCRIF may actually correspond to the opening up of
system-spanning ringlike channels through which the super-
fluid can flow without any block. The importance of the ex-
istence of a percolating network of superfluid channels in
observing macroscopic signatures of superfluidity has been
pointed out in an earlier study.21 However, we are not aware
of any calculation of the behavior of the NCRIF across the
percolation transition.

As discussed above, the results of existing
experimental25–27 and numerical28–32 studies of vortex lines
with dilute columnar pinning strongly suggest, via the map-
ing used here, that a polycrystalline state with superfluidity
along grain boundaries occurs in a two-dimensional bosonic
system with a small concentration of strong pinning centers.
Such a state may be seen in experiments41 on films of 4He
adsorbed on substrates with imperfections that act as pinning
centers. In the vortex system, the equilibrium phase changes
from polycrystalline Bose glass to vortex nanoliquid and
then to homogeneous liquid as the temperature is increased.
In the equivalent bosonic system, this sequence corresponds
to going from a polycrystalline solid to a supersolid with
superfluidity in the grain-boundary regions and then to a ho-
mogeneous superfluid. It is, however, not clear how the ex-
perimentally accessible parameters in the bosonic system can
be changed to simulate the effects of increasing the tempera-
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ture in the vortex system. The same sequence of phases can
also be seen25–27 in the vortex system by increasing the mag-
netic induction at a fixed, low temperature. Since the mag-
netic induction in the vortex system determines the areal
density of the vortex lines, the supersolid phase in a two-
dimensional bosonic system may be accessed by changing
the coverage of the 4He film. The supersolid would be the
true equilibrium phase of the system when random defects
are present. Our numerical results, furthermore, suggest that
the supersolid survives as a metastable phase even in the
absence of random pinning. While it is not obvious how such
a metastable phase could be accessed in experiments, the
supersolid behavior observed in three-dimensional solid 4He
must also be a metastable phenomenon if it arises from su-
perfluidity in a network of structural defects because these
defects would not be present in the true equilibrium solid
which should be a perfect crystal.

In making any comparison of the behavior of the bosonic
system found in our study with experiments on 4He samples,
one should keep in mind the important fact that the interac-
tion between two 4He atoms �strongly repulsive at short dis-
tances, with a weak attractive part at larger distances that
falls off with distance as a power law� is substantially differ-
ent from that between two bosonic particles in the system
considered here �purely repulsive, logarithmic at short dis-
tances and exponentially decaying at longer distances�. For
this reason, the results of our study cannot be applied quan-
titatively to experimentally studied 4He systems. However,
we expect the qualitative behavior found in our study to be
observed in systems of 4He atoms because the phenomena
on which our conclusions are based �i.e., the formation of
polycrystalline structures and premelting along grain bound-
aries� are fairly generic, independent of the details of the
interparticle potential.

In experiments on 4He, a normal solid to supersolid tran-
sition is observed1–9 as the temperature of the sample is de-
creased. So, it is interesting to inquire whether our study
provides any information about the behavior of the bosonic
system as its temperature is changed. Unfortunately, we can-
not address this experimentally relevant question in our
study. This is because a nonzero temperature in the bosonic
problem maps to a vortex system of finite thickness L, and
our studies of the vortex system, carried out for the L→	
limit, do not provide any information about phase changes

that may occur as L is varied at constant temperature.
We close with a discussion of whether the available ex-

perimental results for supersolid 4He show any evidence for
the sequence of phases �polycrystal to vortex nanoliquid to
vortex liquid� found in the vortex system upon increasing its
temperature T. In the equivalent bosonic system, this se-
quence corresponds to a transition from a defected solid to a
supersolid, followed by a second transition from the super-
solid to a superfluid. The vortex-boson mapping implies that
increasing T in the vortex problem is equivalent to increasing
the relative importance of quantum effects in the zero-
temperature boson problem. It has been suggested42,43 that
increasing the pressure P has the effect of reducing the rela-
tive importance of quantum fluctuations in solid 4He. As-
suming this to be correct, increasing �decreasing� T in the
vortex system should be analogous to decreasing �increas-
ing� P in 4He experiments. Then the relevant question is
whether a sequence of normal solid to supersolid to super-
fluid transitions occurs in 4He as P is decreased at constant
temperature. There is some experimental evidence43 for a
reduction in the low-temperature value of the apparent super-
fluid fraction in supersolid 4He as P is increased beyond 55
bar. This may correspond to a transition from the supersolid
to a regular defected solid, analogous to the disappearance of
the liquid regions in the vortex system as T is decreased.
Also, the “phase diagram” of 4He in the P-T plane shown in
Ref. 1 suggests that the temperature of the normal solid to
supersolid transition decreases as P is increased �the transi-
tion temperature is found to decrease from 315 mK at a
pressure of 26 bars to 230 mK at pressures exceeding 40
bars�. If this relatively weak dependence of the transition
temperature on pressure is a genuine effect, then decreasing
P at constant T would indeed lead to a sequence of two
transitions, first from the normal solid to the supersolid and
then from the supersolid to the superfluid phase. This would
be analogous to the behavior seen in our calculations. More
detailed investigations of the pressure dependence of super-
solid behavior in 4He would be very interesting in this con-
text.
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