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We investigate numerically the signatures of collective modes in the tunneling spectra of superconductors.
The larger strength of the signatures observed in the high-Tc superconductors, as compared to classical low-Tc

materials, is explained by the low dimensionality of these layered compounds. We also show that the strong-
coupling structures are dips �zeros in the d2I /dV2 spectrum� in d-wave superconductors, rather than the steps
�peaks in d2I /dV2� observed in classical s-wave superconductors. Finally we question the usefulness of effec-
tive density of states models for the analysis of tunneling data in d-wave superconductors.
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I. INTRODUCTION

Many experiments have shown that the electrons in cu-
prate high-Tc superconductors �HTS� are significantly renor-
malized by the interaction with collective modes. This renor-
malization appears in photoemission measurements as
velocity changes in the quasiparticle dispersion �the “kinks”�
accompanied by a drop of the quasiparticle lifetime.1,2 In
tunneling, the renormalization shows up as a depression, or
“dip”, in the dI /dV curve with the associated nearby accu-
mulation of spectral weight �the “hump”�.3 Similar signa-
tures observed by tunneling spectroscopy in classical super-
conductors were successfully explained by the strong-
coupling theory of superconductivity.4–6 There are, however,
two striking differences between the structures observed in
the cuprates and in low-Tc metals such as Pb or Hg. The dip
in the cuprates is electron-hole asymmetric, being strongest
at negative bias, while no such asymmetry is seen in lead.
The electron-hole asymmetry of the dip is due to the
electron-hole asymmetry of the underlying electronic density
of states �DOS�.7,8 Second, while the structures are subtle in
low-Tc materials—they induce a change smaller than 5% in
the tunneling spectrum—the cuprate dip is generally a strong
effect which, for instance, can reach 20% in optimally doped
Bi2Sr2Ca2Cu3O10+� �Bi-2223�.9 It is tempting to attribute this
difference of intensities to a difference in the overall cou-
pling strength, as suggested by the largely different Tc val-
ues. However, a comparison of the effective masses indicates
that the couplings are not very different in Pb where10

m� /m=2.1 and in the Bi-based cuprates where m� /m varies
between 1.5 and 3 as a function of doping.11,12 Here we show
that the large magnitude of the dip feature results from the
low dimensionality of the materials and the associated sin-
gularities in the electronic DOS.

Tunneling experiments in strongly coupled classical su-
perconductors have been interpreted using a formalism13 that
neglects the momentum dependence of the Eliashberg func-
tions and of the tunneling matrix element, and further as-
sumes that the normal-state DOS N0��� is constant over the
energy range of interest. The tunneling conductance, then,
only depends on the gap function ����, whose energy varia-
tion reflects the singularities of the phonon spectrum.14,15

The dimensionality of the materials does not enter in this
formalism. The effect of a nonconstant N0��� on the gap

function has been discussed in the context of the A15
compounds.16 However, the direct effect of a rapidly varying
N0��� on the tunneling conductance became apparent only
recently in the high-Tc compounds,8,17,18 and requires to go
beyond the formalisms of Refs. 13 and 16. In particular, one
can no longer assume that the tunneling conductance is pro-
portional to the product of the normal-state DOS by the “ef-
fective superconducting DOS”13 Re���� /��2−�2���� so that
nothing justifies a priori to normalize the low-temperature
tunneling conductance by the normal-state conductance as
was done with low-Tc superconductors.

Among the new approaches introduced to study strong-
coupling effects in HTS, some have focused on generalizing
the classical formalism to the case of d-wave pairing,19–22

still overlooking the dimensionality. Other models are strictly
two dimensional �2D� and pay attention to the full electron
dispersion,7,8,17,23–25 taking into account the singularities of
N0���. Most of these studies assume that the collective mode
responsible for the strong-coupling signatures is the sharp
�� ,�� spin resonance common to all cuprates near 30–50
meV �Ref. 26� but a phonon scenario was also put
forward.22,23 In the present work, we extend these ap-
proaches to three dimensions �3D� by means of an additional
hopping tz describing the dispersion along the c axis, and we
study the evolution of the strong-coupling features in the
tunneling spectrum along the 2D to 3D transition on increas-
ing tz. For simplicity we restrict to the spin-resonance sce-
nario; the electron-phonon model can be treated along the
same lines, and both models lead to the same main conclu-
sions. The model we use is described in Sec. II, results are
presented and discussed in Sec. III, and Sec. IV is devoted to
investigating the validity and usefulness of the effective su-
perconducting DOS concept.

II. MODEL AND METHOD

Following previous works,8,17,27 we assume that the dif-
ferential conductance measured by a scanning tunneling mi-
croscope �STM� is proportional to the thermally broadened
local density of states �LDOS� at the tip apex,28,29 and that
furthermore the energy dependence of the LDOS just outside
the sample follows the energy dependence of the bulk DOS
N���,
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dI

dV
�� d��− f��� − eV��N��� , �1�

where f� is the derivative of the Fermi function. In STM
experiments, various sources of noise may contribute to
broaden N��� further; when comparing theory and experi-
ment we shall take these into account by a phenomenological
Gaussian broadening.

In the superconducting state, the interaction with longitu-
dinal spin fluctuations is described by the 2�2 Nambu ma-
trix self-energy,

	̂�k,�� = −
1

N�
q

1



�
i�n

g2�s�q,i�n�

�Ĝ0�k − q,i�n − i�n��i�n→�+i0+ �2�

with �s the 	SzSz
 spin susceptibility, g=�3J /2 the coupling

strength with J the spin-spin interaction energy, and Ĝ0 the
2�2 BCS matrix Green’s function. The sums extend over
the N vectors q��q� ,qz� in the three-dimensional Brillouin
zone and the even Matsubara frequencies i�n=2n� /
 with

= �kBT�−1. Equation �2� gives the lowest-order term of an
expansion in J.30 We follow Ref. 7 and use for �s a model
inspired by neutron-scattering experiments on the high-Tc
compounds. In this model, �s has no qz dependence and is
the product of a Lorentzian peak centered at �� ,�� in the 2D
Brillouin zone and another Lorentzian peak centered at the
resonance energy �sr. The widths of the peaks are �q in
momentum space and �sr in energy. This simple separable
form of �s allows to evaluate analytically the frequency sum
in Eq. �2�, and to perform analytically the continuation from
the odd frequencies i�n= �2n+1�� /
 to the real-frequency
axis. The remaining momentum integral is a convolution
which can be efficiently performed using fast Fourier trans-
forms. Also, the absence of qz dependence in �s implies that
the self-energy does not depend on kz. We use a BCS Green’s
function broadened by a small phenomenological scattering
rate �,

Ĝ0�k,i�n� =
�i�n + i��i�n���̂0 + �k�̂3 + �k�

�̂1

�i�n + i��i�n��2 − �k
2 − �k�

2 , �3�

where ��i�n�=� sign�Im i�n�, �̂i are the Pauli matrices with
�̂0 the identity, and �k�

=�0�cos kx−cos ky� /2 is the d-wave
gap which we assume kz independent for simplicity. The ad-
ditional effects resulting from a possible weak
modulation35,36 of the gap along kz will be discussed toward
the end of Sec. III. We do not address here the origin of the
pairing leading to the BCS gap �k�

. With the high-Tc com-
pounds in mind, we consider a one-band model of quasi-2D
electrons with a normal-state dispersion,

�k = �k�
+ 2tz cos�kzc� , �4�

where �k�
=�k�

−�, � being the chemical potential and �k�
a

five-neighbor tight-binding model on the square lattice �a
�1�, �k�

=2t1�cos kx+cos ky�+4t2 cos kx cos ky +2t3�cos 2kx

+cos 2ky�+4t4�cos 2kx cos ky +cos kx cos 2ky�
+4t5 cos 2kx cos 2ky.

The momentum dependence of the self-energy in Eq. �2�
is not small �see, e.g., Fig. 1 of Ref. 7 and Fig. 2 below�. This
is a major difference with respect to the electron-phonon
models describing low-Tc three-dimensional metals, where
the momentum dependence of the self-energy can be ne-
glected. The calculation of the DOS is therefore much more
demanding since two three-dimensional momentum integra-
tions must be performed for every energy �. The DOS is
given by

N��� =
1

N�
k
−

1

�
�Im Ĝ11�k,�� , �5�

where Ĝ11 is the first component of the matrix Ĝ�k ,��
= �Ĝ0

−1�k ,��− 	̂�k ,���−1. In Eq. �5�, the kz integration can be
performed analytically �see Appendix� but not in Eq. �2�. In
order to achieve a good accuracy when computing the DOS
N���, we evaluate the self-energy using a 2048�2048
�256 mesh in momentum space and a value �=0.5 meV.
For the evaluation of the tunneling conductance � is in-
creased to 2 meV, which allows to decrease the mesh size to
1024�1024�256.

The model in Eqs. �1�–�5� has several parameters but our
focus is on the c-axis hopping energy tz. In HTS, tz is not
larger than a few meV, and setting it to zero seems appropri-
ate to discuss tunneling data. Indeed, in the 2D limit the
model was found to fit the experimental data for optimally
doped Bi-2223 very well.8,27 Here we take the parameters
determined from one such fit as a starting point, and
we vary tz to demonstrate the role of the dimensionality on
the tunneling spectrum. The band parameters t1. . .5 are −200,
31, −16, 8, and −7 meV, and the chemical potential is
�=−200 meV. The gap magnitude is �0=46 meV. The
spin-resonance energy is �sr=34 meV, its energy width
�sr=2 meV, and its momentum width �q=1.6a−1. Finally
the coupling strength is g=775 meV, which implies a qua-
siparticle residue Z=0.44 and a mass renormalization
m� /m=2.32 at the nodal point of the Fermi surface. The
temperature is set to T=2 K unless stated otherwise. The
resulting theoretical tunneling conductance for tz=0 is com-
pared with experimental data in Fig. 1�c� �topmost curve�.

III. RESULTS

The evolution of N��� with increasing tz is displayed in
Fig. 1�a�. In the 2D limit, the DOS shows sharp and particle-
hole asymmetric coherence peaks, strong and asymmetric
dips, as well as humps and shoulders where the spectral
weight expelled from the dips is accumulated. This produces,
in particular, a characteristic widening of the coherence
peaks basis, which becomes triangular. The particle-hole
asymmetries reflect the particle-hole asymmetry of the cor-
responding bare DOS N0��� shown in Fig. 1�b�, whose Van
Hove singularity �VHS� lies slightly below EF at −16 meV:
on the one hand, the spectral weight of the VHS goes to a
larger degree into the negative-energy coherence peak, and
on the other hand the enhancement of the scattering rate due
to the VHS is stronger at negative energy, explaining the
stronger dip at ��0.7,8 This can also be seen in Fig. 2 where
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the electron-scattering rate −Im 	̂11�k ,�� is displayed for the
nodal and antinodal points of the Fermi surface. The scatter-
ing rate vanishes for �����sr and has a pronounced,
particle-hole asymmetric maximum near ���=�sr+�0 �more
precisely between �sr+�0 and �sr+ ����,0�

2 +�0
2�1/2�. It is also

clear from the figure that the energy of the scattering-rate
peak shows no dispersion with momentum7 but its intensity
is strongly momentum dependent and larger by a factor �2.5
in the antinodal region as compared to the nodal region.

For tz�0, the logarithmic divergence in N0��� is cut on
the scale of 4tz due to dispersion along the c axis �Fig. 1�b��.
No significant change in either N��� or dI /dV is observed
for tz=10 meV. This value is an upper bound for the c-axis
hopping energy in the cuprates, and the relative insensitivity
of the DOS to a small c-axis dispersion justifies the use of
two-dimensional models for these systems. At larger tz val-
ues, however, the suppression of the divergence in N0���
induces a drop of the coherence peaks in N��� and dI /dV.
This is a direct effect of dimensionality on the tunneling
spectrum, which was overlooked in the conventional strong-
coupling approaches of Refs. 13 and 16. Simultaneously the
peak in the scattering rate is also suppressed with increasing
tz �Fig. 2�, leading to a weakening of the dip feature in N���
and dI /dV. This is an indirect effect of dimensionality, that
is, only revealed in the strong-coupling signatures.

As Fig. 2 shows, increasing the dimension not only sup-
presses the peak at �sr+�0 in the scattering rate but it also
reduces its momentum dependence. In 2D, this peak arises
because the q sum in Eq. �2� is dominated by the saddle-
point region near kM��� ,0� and kM���0,��, where the
spectral weight of the BCS Green’s function is largest—i.e.,
k� −q� �kM,M�. Hence the peak energy is determined chiefly
by the BCS excitation energy at kM,M�, shifted by �sr due to
the convolution with the spin susceptibility, and the peak
intensity is controlled by the momentum dependence of
�s�k� −kM,M� ,�sr�, which is at maximum for k� =kM�,M. The
situation changes in 3D because the antinodal regions no
longer dominate the spectral weight, as illustrated in Fig. 3.
This figure displays the partial BCS density of states, i.e., the
part of the BCS DOS originating from states close to the
�� ,0� and equivalent points. While in the 2D limit, a region
covering just 14% of the zone around �� ,0� provides 56% of
the spectral weight for energies between �sr and �sr+�0,
its contribution is reduced to 21% in the 3D limit. Hence
the scattering rate in 3D is nearly momentum independent
and almost constant above �sr+�0. Finally, the 2D to 3D
transition also suppresses the particle-hole asymmetry of
the scattering rate. This again results from the disappearance
of particle-hole asymmetry in the underlying bare DOS
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FIG. 1. �a� Density of states N��� for superconducting electrons
coupled to a �� ,�� spin resonance, as a function of the c-axis
hopping tz. For tz=0, the system is two dimensional while for tz

=200 meV, it is three dimensional. �b� Normal-state bare DOS
N0��� for the same tz values. �c� Tunneling conductance for the
same tz values. The temperature is T=2 K and a Gaussian broad-
ening of 4 meV has been applied. The circles show the experimental
data of Ref. 8 compared to the tz=0 spectrum. The curves in �a�,
�b�, and �c� are offset vertically for clarity.
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�Fig. 1�b�� and in the corresponding BCS DOS �Fig. 3�. Thus
the kz dispersion simultaneously defeats four players who
contribute to make the strong-coupling signatures in the 2D
high-Tc superconductors distinctly different from those in 3D
metals: the Van Hove singularity, the particle-hole asymme-
try, the momentum dependence, and the strong scattering en-
hancement at �����sr+�0, especially near �� ,0�.

In the curves of Figs. 1�a� and 1�c� corresponding to the
3D limit, the strong-coupling signatures are barely visible.
Their magnitude is �1%, smaller than the �5% value ob-
served in Pb. The origin of this difference lies in the gap
symmetry. In d-wave superconductors, the coherence peaks
in the BCS DOS are weak logarithmic singularities37 while
in s-wave superconductors, they are strong square-root diver-
gences. The strength of the scattering-rate peak at �sr+�0,
and consequently the strength of the dip in the DOS and
tunneling spectrum, are determined by the strength of the
coherence peaks in the BCS DOS, as is clear from Eq. �2�. In
the case of a d-wave superconductor, the coherence peaks are
cut in 3D as compared to 2D �see Fig. 3� in the same way as
the logarithmic VHS in Fig. 1�b�, resulting in the suppression
of the scattering-rate enhancement at �sr+�0 in Fig. 2. �Note
that, roughly speaking, the scattering rate is proportional to
the BCS DOS shifted in energy by ��sr.� The suppression
of the BCS coherence peaks with increasing dimension also
occurs in s-wave superconductors but with one difference:
if, on the one hand, the part of the coherence-peak spectral
weight coming from the VHS gets suppressed, on the other
hand, the square-root gap-edge singularities persist in any
dimension. Therefore, in s-wave superconductors the strong-
coupling signatures remain clearly visible in 3D. This is
illustrated in Fig. 4�a�. The 2D and 3D DOS curves of
Fig. 1�a� are compared to the curves obtained for the corre-
sponding s-wave model, i.e., with all parameters unchanged
except the gap which is replaced by �k�

��0=46 meV. The
changes are quite dramatic. The first effect to notice is a
drastic reduction in the peak-to-peak gap �p in the s-wave
case: a consequence of the pair-breaking nature of the cou-
pling Eq. �2� in the s-wave channel.38,39 Still, the strong-
coupling signatures appear at the same energy �sr+�0
=80 meV in both d and s wave, due to our choice of the

lowest-order model 	̂��sĜ0 in Eq. �2�. The second observa-
tion is that the strong-coupling signatures look like steps in
the s-wave DOS, like in the classical superconductors,13 re-
flecting the asymmetric shape of the BCS s-wave coherence
peaks. In contrast, the signatures appear as local minima in
the d-wave DOS because the coherence peaks of the d-wave
BCS DOS are nearly symmetric about their maximum. In
short, the strong-coupling features give an “inverted image”
of the BCS coherence peaks.8 An interesting consequence
follows: while in s-wave superconductors, the strong-
coupling structures correspond to peaks in the second-
derivative d2I /dV2 spectrum, for a d-wave gap they corre-
spond to zeros in the d2I /dV2 spectrum, as demonstrated in
Fig. 4�b�. This conclusion applies equally to phonon models
and calls for a reinterpretation of cuprate d2I /dV2 data in
which peaks were assigned to phonon modes.40,41 Finally,
one sees from Fig. 4 that in 3D the signatures remain strong
for an s-wave gap, for the reason explained above, while

they have almost disappeared in the d-wave case.
The previous discussion underlines the role of the BCS

coherence peaks in the formation, strength, and shape of the
strong-coupling signatures. More generally, for such signa-
tures to occur there must be divergences �or at least pro-
nounced maxima� in the noninteracting DOS. Peaks in the
“bosonic” spectrum are not sufficient, although they are nec-
essary. Indeed, phonon structures are absent from the
normal-state spectra of classical superconductors32 because
the normal-state DOS is flat, in spite of the facts that the
phonon spectrum and the electron-phonon coupling do not
change significantly at Tc. In contrast, the normal-state DOS
of 2D high-Tc superconductors exhibits structures, either the
pseudogap3 or the bare VHS.18 One can therefore expect to
see strong-coupling features in the normal-state spectra of
HTS, provided that the peaks in the bosonic spectrum subsist
above Tc. Figure 5 �thin lines� shows the normal-state DOS
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implied by setting �0=0 in our model, keeping the other
parameters fixed �including temperature�. As expected sharp
strong-coupling features remain in 2D at energies ��sr and
���,0�−�sr=−50 meV while nothing but very weak struc-
tures subsist in 3D, signaling the onset of scattering at ��sr.
Unfortunately it turns out that in the HTS the spin resonance
is absent above Tc—or at least below the background level
of neutron-scattering experiments.42 The normal state of
Bi-2223 has not been investigated by neutron scattering so
far but we may borrow information from the much studied
YBa2Cu3O6+x system �Y-123�. In Y-123, the normal-state
spin susceptibility preserves its separable form with inde-
pendent momentum and energy variations.43 It is still cen-
tered at �� ,�� with a broad maximum at a characteristic
temperature-dependent frequency �sf��sr. For the purpose
of illustrating the effect of a broad spin-fluctuations con-
tinuum on the normal-state tunneling spectrum, it is suffi-
cient to use the same model as in the superconducting state
but with the new parameter �sr=14 meV.44 The resulting
DOS calculated at T=200 K is shown by the thick lines in
Fig. 5. The strong-coupling signatures are almost washed out
in 2D and completely in 3D. This is not due to the thermal
broadening of Eq. �1�, not included in the DOS N���, but
mostly to the intrinsic temperature dependence of the self-
energy in Eq. �2�, and, to a lesser extent, to the broader spin
response. Hence, if structures due to interaction with spin
fluctuations are unlikely to show up in the normal state of
HTS, those associated with the interaction with phonons may
well be observable if the coupling is strong enough since this
coupling will not change appreciably at Tc.

In the present study, we have overlooked a possible kz
dependence of the BCS gap, retaining only the kz depen-
dence of the bare dispersion. A weak modulation of the
BCS gap along kz is expected in 3D systems.35 As shown in
Ref. 36, such a modulation has the effect of cutting the loga-
rithmic coherence peaks on the scale of 2�z, with �z the
amplitude of the gap modulation. This is similar to the effect
of tz on the BCS coherence peaks, which are cut on a scale
corresponding to the gap variation along the warped 3D
Fermi surface, namely, ��0tz /4t1, as seen in Fig. 3. The
expected effect of �z on the scattering rate is also an addi-

tional broadening on top of the one produced by tz, Ĝ0 being
replaced by its kz average in Eq. �2�. Therefore, we expect
that the gap modulation along kz will contribute to suppress
the coherence peaks and the strong-coupling features even
further with increasing tz, as compared to the results in
Fig. 1.

Our results can be summarized as follows. The formation
of clear strong-coupling structures in the tunneling conduc-
tance requires two ingredients: �A� at least one peak in the
spectrum of collective excitations and �B� at least one peak
in the noninteracting or superconducting DOS. In classical
superconductors, �A� is provided by optical phonons and �B�
is the asymmetric square-root singularity at the edge of the
s-wave gap: strong-coupling features are asymmetric steps—
peaks in the d2I /dV2 curve—and dimensionality plays no big
role because �A� and �B� are present in any dimension. In the
normal state, there is no signature because �B� is absent. In
high-Tc layered superconductors, �A� is provided by the spin

resonance and �B� has two sources: �B1� the logarithmic
Van Hove singularity in the bare DOS; �B2� the symmetric
logarithmic singularities at the edge of the d-wave gap.
Strong-coupling signatures appear as local minima—zeros in
the d2I /dV2 curve—but they vanish with increasing dimen-
sionality from 2D to 3D because �B1� and �B2� both get
suppressed by the c-axis dispersion. In the normal state of
two-dimensional HTS, �B2� is absent, leaving aside the ques-
tion of the pseudogap but �B1� remains and strong-coupling
signatures are thus expected unless �A� disappears at Tc. This
is the case for the spin resonance but certainly not for
phonons, leaving open the possibility that phonon structures
might be observable in the normal-state tunneling spectra.

IV. DOS AND EFFECTIVE DOS

The conventional theory of electron tunneling into
superconductors13 leads to an equation identical to Eq. �1�
for the tunneling conductance, except that the DOS N��� is
replaced by an “effective tunneling DOS” NT���
=N0�0�Re���� /��2−�2����. N0�0� is the normal-state DOS
at zero energy—N0����N0�0� is assumed—and ���� is the
gap function. The latter must be understood as a Fermi-
surface average of weakly momentum-dependent quantities,
����= 	��k ,�� /Z�k ,��
FS with � and Z the Eliashberg pair-
ing and renormalization functions. In the notation of Eq. �2�,
they read Z�k ,��=1− �	̂11�k ,��+ 	̂22�k ,��� / �2�� and, for

an s-wave gap �0, ��k ,��=�0+ 	̂12�k ,��. In a d-wave
superconductor, the Fermi-surface average of the gap �k
vanishes, and so does the average of the off-diagonal self-

energy since 	̂12�k ,����k. The effective tunneling DOS
concept is logically generalized19,20 by writing NT���
=N0�0�Re	��� /��2− ��k�����2
FS with

���� =� 1 + 	̂12�k,��/�k

1 − �	̂11�k,�� + 	̂22�k,���/�2��
�

FS

. �6�

This form of NT��� is an even function of �, and cannot fit
the particle-hole asymmetric spectra in HTS. Therefore, a
further generalization of the effective tunneling DOS has
been necessary, namely,

NT��� = N0���Re� ���
��2 − ��k�����2�

FS

�7�

which suggests that the “true” superconducting DOS can be
obtained by dividing the tunneling spectrum in the supercon-
ducting state by the spectrum in the normal state.20,45–47

Equation �7� is very convenient but lacks a formal justi-
fication. Our model offers the opportunity to investigate the
usefulness of Eq. �7�, by comparing numerically the actual
tunneling DOS N��� of Eq. �5� with the effective tunneling
DOS NT���. For the practical evaluation of NT���, we define
the Fermi-surface average as
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	 ¯ 
FS �
�

k
A0�k,0�� ¯ �

�
k

A0�k,0�
�8�

with A0�k ,0� the zero-energy spectral function in the absence

of pairing A0�k ,0�= �−1 /��Im Ĝ11�k ,0� ��k=0. With this defi-
nition, the average is performed on the renormalized Fermi

surface, defined by �k+Re 	̂11�k ,0�=0, rather than the bare
Fermi surface �k=0. Furthermore, each state gets correctly
weighted if the spectral weight is unevenly distributed along
the Fermi surface.

A comparison of N��� and NT��� is displayed in Fig. 6,
where the pairing function ���� is also shown. In two di-
mensions, the real part of ���� has a maximum at �=�sr

+�0, where its imaginary part shows a rapid variation. This
is analogous to the behavior reported in Ref. 13. The result-
ing NT��� also shows a behavior similar to the one found in
Ref. 13: NT��� is larger than the BCS density of states at
energies smaller than �sr+�0 and drops below the BCS DOS
at �sr+�0. The actual DOS N���, however, behaves differ-
ently: it is smaller than the BCS DOS between the coherence
peak and some energy above the dip minimum �see also Fig.
1 of Ref. 8�. Thus, although the positions of the strong-
coupling features are identical in NT��� and N���, their
shape is markedly different in 2D d-wave superconductors.
In 3D, the difference between NT��� and N��� is less severe
than in 2D, and both curves show very weak signatures, al-
though those in N��� are slightly stronger. Finally, the NT���
curves show structures which are absent in the N��� curves.
In 2D, a peak at �=−16 meV=���,0� appears due to the VHS
in N0���; this peak is unphysical because in the actual energy
spectrum, the VHS is pushed to −����,0�

2 +�0
2�1/2. In 3D,

NT��� has a structure near −100 meV, which also comes
from the bare DOS N0��� as can be seen in Fig. 1�b�. In the
actual spectrum, this structure is suppressed due to the per-
sistence of a large scattering rate at energies much higher
than the threshold �sr �see Fig. 2�. These problems illustrate
the limitations of the simple product Ansatz Eq. �7� for ana-
lyzing the tunneling spectrum of d-wave superconductors.
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APPENDIX: ANALYTICAL kz INTEGRATION

If the Nambu self-energy has no kz dependence, the kz
sum in Eq. �5� can be performed analytically. This is the case
in our model defined in Eq. �2�. Solving Dyson’s equation

Ĝ�k ,��= �Ĝ0
−1�k ,��− 	̂�k ,���−1 with Ĝ0 given by Eq. �3�,

we find

Ĝ11�k,�� =
1

� + i� − �k − 	̂11�k,�� − ��k�
+ 	̂12�k,���2/�� + i� + �k − 	̂22�k,���

. �A1�

Since 	̂ does not depend on kz �although it does depend on tz�, the kz dependence only comes from �k in Eq. �4� and we can
make it explicit by rewriting

Ĝ11�k,�� =
1

z11 − 2tz cos�kzc� − z12
2 /�z22 + 2tz cos�kzc��

=
1

2
1 +

�

�
� 1

� + � − 2tz cos�kzc�
+

1

2
1 −

�

�
� 1

� − � − 2tz cos�kzc�
.

�A2�

In Eq. �A2�, the quantities z11, z22, z12, �, �, and � are all functions of k� and � but not of kz. Explicitly, z11=�+ i�−�k�

− 	̂11�k� ,��, z22=�+ i�+�k�
− 	̂22�k� ,��, z12=�k�

+ 	̂12�k� ,��, �= �z11+z22� /2, �=��2−z12
2 , and �= �z11−z22� /2.
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FIG. 6. �Left panels� Real part �solid lines� and imaginary part
�dashed lines� of the pairing function defined in Eq. �6� for tz=0
�2D� and tz=200 meV �3D�. �Right panels� Comparison of the ef-
fective tunneling DOS NT��� of Eq. �7� with the actual DOS N���
of Eq. �5�. The dashed lines show NT��� /N0���. In all graphs, the
dotted vertical lines mark the energy ���sr+�0�.
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The kz integration can then be performed by means of the
identity,

D̃t�z� �
1

2�
�

−�

� dx

z − 2t cos x
=

1
�z − 2t�z + 2t

�A3�

and yields

N��� =
1

N�
�
k�

−
1

�
�Im�1

2
1 +

�

�
�D̃tz

�� + ��

+
1

2
1 −

�

�
�D̃tz

�� − ��� , �A4�

where N� is the number of k� points in the 2D Brillouin zone.
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