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We use the coupled cluster method �CCM� to study the zero-temperature phase diagram of a two-
dimensional frustrated spin-half antiferromagnet, the so-called Union Jack model. It is defined on a square
lattice such that all nearest-neighbor pairs are connected by bonds with a strength J1�0, but only half the
next-nearest-neighbor pairs are connected by bonds with a strength J2��J1�0. The bonds are arranged such
that on the 2�2 unit cell they form the pattern of the Union Jack flag. Alternating sites on the square lattice
are thus four-connected and eight-connected. We find strong evidence for a first phase transition between a
Néel antiferromagnetic phase and a canted ferrimagnetic phase at a critical coupling �c1

=0.66�0.02. The
transition is an interesting one, at which the energy and its first derivative seem continuous, thus providing a
typical scenario of a second-order transition �just as in the classical case for the model�, although a weakly
first-order transition cannot be excluded. By contrast, the average on-site magnetization approaches a nonzero
value Mc1

=0.195�0.005 on both sides of the transition, which is more typical of a first-order transition. The
slope, dM /d�, of the order parameter curve as a function of the coupling strength �, also appears to be
continuous, or very nearly so, at the critical point �c1

, thereby providing further evidence of the subtle nature
of the transition between the Néel and canted phases. Our CCM calculations provide strong evidence that the
canted ferrimagnetic phase becomes unstable at large values of �, and hence we have also used the CCM with
a model collinear semistripe-ordered ferrimagnetic state in which alternating rows �and columns� are ferro-
magnetically and antiferromagnetically ordered, and in which the spins connected by J2 bonds are antiparallel
to one another. We find tentative evidence, based on the relative energies of the two states, for a second
zero-temperature phase transition between the canted and semistripe-ordered ferrimagnetic states at a large
value of the coupling parameter around �c2

�125�5. This prediction, however, is based on an extrapolation of
the CCM results for the canted state into regimes where the solutions have already become unstable and the
CCM equations based on the canted state at any level of approximation beyond the lowest have no solutions.
Our prediction for �c2

is hence less reliable than that for �c1
. Nevertheless, if this second transition at �c2

does
exist, our results clearly indicate it to be of first-order type.
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I. INTRODUCTION

Quantum magnetism at zero temperature for lattices in
two spatial dimensions1–3 is an important and fascinating
subject because such systems display a wide variety of be-
havior, including semiclassical Néel ordering, two-
dimensional �2D� quantum “spirals,” valence-bond crystals/
solids, and spin liquids. The behavior of these systems is
driven by the nature of the underlying crystallographic lat-
tice, the number and range of bonds on this lattice, and the
spin quantum numbers of the atoms localized to the sites on
the lattice. There are very few exact results for quantum spin
systems on 2D lattices, and so the application of approximate
methods is crucial to their understanding. The theoretical in-
vestigation of these models has been strongly mirrored by
the discovery and experimental investigation of new
quasi-2D magnetic materials. It seems clear that we can only
form a complete picture of such 2D quantum spin-lattice
systems by considering a wide range of possible scenarios
that are often inspired �or followed shortly afterwards� by
experimental studies.

A prototypical case is presented by the spin-half square-
lattice Heisenberg antiferromagnet �HAF� model. This model

has been studied extensively via a range of approximate
techniques.3–6 Its basic properties have been well established,
where, for example, approximate results for the order param-
eter indicate that about 61% of the classical Néel ordering
persists in the quantum limit at zero temperature. A review of
the properties of the spin-half square-lattice HAF is given in
Ref. 7. The most accurate results for this model are provided
by quantum Monte Carlo �QMC� simulations.4 Indeed, QMC
techniques generally provide the benchmark for quantum
magnets in two spatial dimensions. However, its use is se-
verely limited by the “sign problem,” which is often a con-
sequence of quantum frustration in the context of lattice spin
systems.

A common theme has also begun to emerge recently when
frustrating next-nearest-neighbor �NNN� bonds with strength
J2�0 are added to the basic spin-half square-lattice HAF
with nearest-neighbor �NN� bonds with strength J1�0. The
frustrating J2 bonds may be added on some or all of the
square plaquettes of the lattice and/or across both or only one
of the diagonals of each plaquette. Perhaps the prototypical
such model is the so-called spin-half J1-J2 model in which
all possible NNN bonds are included. Recent interest in this
model has been reinvigorated by the discovery of various
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layered magnetic materials, such as Li2VOSiO4,
Li2VOGeO4, VOMoO4, and BaCdVO�PO4�2. Several ap-
proximate methods have been used to simulate the properties
of this system including the coupled cluster method
�CCM�,8–12 series expansion �SE� techniques,13–17 exact di-
agonalization �ED� methods,18–20 and hierarchical mean-field
calculations.21 These approximate techniques have estab-
lished conclusively that there are two phases exhibiting mag-
netic long-range order �LRO� at small and at large values of
��J2 /J1, respectively. For ���c1

�0.4 the ground-state
�gs� phase exhibits �NN� Néel magnetic LRO, whereas for
���c2

�0.6 it exhibits collinear striped LRO in which alter-
nating rows �or columns� of the square lattice have opposite
spins, with the spins on each row �or columns� aligned, so
that the Néel order is between NNN pairs. The intermediate
region consists of a quantum paramagnetic state without
magnetic LRO.

Several other models in this general class of spin-half
models with both NN and NNN interactions have prompted
recent interest. They all involve the removal of some of the
NNN J2 bonds from the fundamental J1-J2 model. One such
example is the Shastry-Sutherland model,22–24 realized ex-
perimentally by the magnetic material SrCu�BO3�2, which
involves the removal of three-quarters of the J2 bonds.
Whereas the J1-J2 model on the 2D square lattice has each of
the sites connected by eight bonds �four NN J1 bonds and
four NNN J2 bonds� to other sites, the Shastry-Sutherland
model has each of the sites connected by five bonds �four
NN J1 bonds and one NNN J2 bond�. A second example is
the HAF on the anisotropic triangular lattice model �also
known as the interpolating square-triangle model�,25 realized
experimentally by the magnetic material Cs2CuCl4, which
involves the removal of half the J2 bonds from the original
J1-J2 model. In this model each of the sites on the 2D square
lattice is connected by six bonds �four NN J1 bonds and two
NNN J2 bonds� to other sites, such that the remaining J2
bonds connect equivalent NNN sites in each square
plaquette. Although all of the models mentioned above show
antiferromagnetic Néel ordering for small J2, their phase dia-
grams for larger J2 display a wide variety of behavior, in-
cluding two-dimensional quantum spirals, valence-bond
crystals/solids, and spin liquids. Thus, in the absence of any
definitive theoretical argument, the best way to understand
this class of NN/NNN models on the square lattice is to treat
each one on a case-by-case basis.

In this paper we study another frustrated spin-half model
that has both NN �J1� and NNN �J2� bonds on the square
lattice, where these bonds form a pattern that resembles the
“Union Jack” flag. Just as for the anisotropic triangular HAF
described above, the Union Jack model on the 2D square
lattice also has only one frustrating NNN bond per square
plaquette, but these J2 bonds are now arranged such that half
the sites are connected by eight bonds �four NN J1 bonds and
four NNN J2 bonds� to other sites while the other half are
connected only by four J1 bonds to their NN sites, as de-
scribed more fully below in Sec. II. This model has previ-
ously been studied using spin-wave theory �SWT� �Refs. 26
and 27� and SE techniques.28 As in the case of the spin-half
interpolating square-triangle model, it was shown26–28 that
NN Néel order for the Union Jack model persists until a

critical value of the frustrating NNN �J2� bonds. However, in
contrast to the interpolating square-triangle model, there ex-
ists a ferrimagnetic ground state in which spins on the eight-
connected sites cant at a nonzero angle with respect to their
directions in the corresponding Néel state. This model thus
exhibits an overall magnetic moment in this regime, which is
quite unusual for spin-half 2D materials with only Heisen-
berg bonds and which therefore preserve �spin-� rotational
symmetries in the Hamiltonian. This model also presents us
with a difficult computational task in order to simulate its
properties. Here we wish to study this model using the CCM,
which has consistently been shown to yield insight into a
wide range of problems in quantum magnetism, and which
we now hope will hence shed yet more light on the whole
class of NN/NNN models as mentioned before. The dual
associated features of a model with two sorts of sites with
differing connectivities, and its consequent ferrimagnetic
phase, are just those that are attracting the interest of the
community now.

II. MODEL

In this paper we now apply the CCM to the spin-half
Union Jack model that has been studied recently by other
means.26–28 Its Hamiltonian is written as

H = J1�
�i,j�

si · s j + J2�
�i,k	

si · sk, �1�

where the operators si��si
x ,si

y ,si
z� are the quantum spin op-

erators on lattice site i with si
2=s�s+1� and s=1 /2. On the

square lattice the sum over �i , j� runs over all distinct NN
bonds with strength J1 while the sum over �i ,k	 runs over
only half of the distinct NNN diagonal bonds having strength
J2 and with only one diagonal bond on each square plaquette
as arranged in the pattern shown explicitly in Fig. 1. The unit
cell is thus the 2�2 square shown in Fig. 1�a�. �We note
that, by contrast, the J1-J2 model discussed above, includes
all of the diagonal NNN bonds on the square lattice.� We
consider here the case where both sorts of bonds are antifer-
romagnetic, J1�0 and J2��J1�0, and are hence acting to
compete against �or to frustrate� each other. Henceforth we
set J1�1. We consider the model equivalently defined by the

1

B2AB

B A1A1

BA1 A

FIG. 1. �Color online� Union Jack model; — J1; - - - J2. �a�
Canted state; �b� semistriped state. The unit cell is a square of side
length 2.
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Union Jack geometry in which there are two sorts of sites,
namely, the A sites with eight NN sites and the B sites with
four NN sites, as shown in Fig. 1�a�.

Considered classically rather than quantum mechanically,
�and thus corresponding to the quantum case in the limit
where the spin quantum number s→��, the Union Jack
model has only two gs phases as the parameter � is varied
over the range �0, ��. A simple variational analysis for the
classical model reveals that for 0���1 /2 the gs phase is
Néel ordered, exactly as for the full J1-J2 model. Thus the
Néel ordering induced by the J1 bonds acting alone is pre-
served as the strength of the competing J2 bonds is increased,
until the critical value �c

cl=0.5 is reached. For ���c
cl a new

phase of lower energy emerges, just as in the full J1-J2
model. However, whereas for the full J1-J2 model that new
phase is a classical striped state in which alternate rows �or
columns� of spins are arranged antiparallel to one another,
the new classical gs phase for the Union Jack model is the
canted ferrimagnetic state shown in Fig. 1�a� in which the
spins on each of the alternating A1 and A2 sites of the A
sublattice are canted, respectively, at angles ��	
� with re-
spect to those on the B sublattice, all of the latter of which
point in the same direction. On the A sublattice each site A1
has four NN sites A2, and vice versa. The angle between the
NN spins on the A sublattice is thus 2
.

The classical energy of the above canted state is thus

E = Ns2�� cos 2
 − 2 cos 
� , �2�

where J1�1 and N→� is the number of sites. Clearly the
energy is extremized when

sin 
�1 − 2� cos 
� = 0. �3�

When ���c
cl�0.5, the lowest energy corresponds to sin 


=0 and hence to the Néel state. By contrast, when ���c
cl

�0.5 the lowest energy solution is the canted state with


cl = cos−1
 1

2�
� . �4�

Thus the classical gs energy is given by

Ecl = �Ns2�� − 2� � � �c
cl � 0.5

Ns2
−
1

2�
− �� � � �c

cl � 0.5.
 �5�

The classical phase transition at �=�c
cl�0.5 is of continuous

�second-order� type with the gs energy and its first derivative
both continuous functions of �, although there are finite dis-
continuities in the second- and higher-order derivatives at
�=�c

cl.
In the classical canted phase the total magnetization per

site is mcl= 1
2s�1− �2��−1	, and the model thus exhibits ferri-

magnetism in this phase. Whereas ferrimagnetism more com-
monly occurs when the individual ionic spins have different
magnitudes on different sublattices, it arises here in a case
where when the spins all have the same magnitude and all
the interactions are antiferromagnetic in nature, but the frus-
tration between them acts to produce an overall magnetiza-
tion. The total magnetization m vanishes linearly as �→�c

cl

from the canted phase and then remains zero in the Néel

phase for ���c
cl. The spontaneous breaking of the spin-

rotation symmetry is also reflected by the vanishing of the
energy gap on both sides of the transition. Clearly on both
sides of the transition the translation symmetry of the lattice
is also broken.

One of the aims of the present paper is to give a fully
microscopic analysis of the Union Jack model for the quan-
tum case where the spins all have spin quantum number s
=1 /2. We are interested to map out the zero-temperature
�T=0� phase diagram of the model, including the positions
and orders of any quantum phase transitions that emerge. In
particular, we investigate the quantum analogs of the classi-
cal Néel and canted phases and calculate the effect of quan-
tum fluctuations on the position and nature of the transition
between them. We also aim to investigate, for particular re-
gions of the control parameter �, whether the quantum fluc-
tuations may favor other phases, which have no classical
counterparts. One such possible candidate is discussed be-
low.

In the limit of �→� the above classical limit corresponds
to a canting angle 
→ 1

2�, such that the spins on the A
sublattice become Néel ordered, as is expected. The spins on
the antiferromagnetically ordered A sublattice are orientated
at 90° to those on the ferromagnetically ordered B sublattice
in this limit. In reality, of course, there is complete degen-
eracy at the classical level in this limit between all states for
which the relative ordering directions for spins on A and B
sublattices are arbitrary. Clearly the exact spin-1

2 limit should
also comprise decoupled antiferromagnetic and ferromag-
netic sublattices. However, one might now expect that this
degeneracy in the relative spin orientations between the two
sublattices is lifted by quantum fluctuations by the well-
known phenomenon of order by disorder.29 Just such a phase
is known to exist in the full spin-1

2 J1-J2 model for values of
J2 /J1�0.6, where it is the so-called collinear striped phase
in which, on the square lattice, spins along �say� the rows in
Fig. 1 order ferromagnetically while spins along the columns
and diagonals order antiferromagnetically. We have also
shown how such a striped state is stabilized by quantum
fluctuations for values of J2� /J1�1.8 for the spin-1

2 J1-J2�
model defined on an anisotropic 2D lattice,25 as discussed in
Sec. I above.

The existence of the striped state as a stable phase for
large values of the frustration parameter for both the spin-1

2
J1-J2 and J1-J2� models above is a reflection of the well-
known fact that quantum fluctuations favor collinear order-
ing. In both cases the order-by-disorder mechanism favors
the collinear state from the otherwise infinitely degenerate
set of available states at the classical level. For the present
Union Jack model the corresponding collinear state that
might perhaps be favored by the order-by-disorder mecha-
nism is the so-called semistriped state shown in Fig. 1�b�
where the A sublattice is now Néel ordered in the same di-
rection as the B sublattice is ferromagnetically ordered. Al-
ternate rows �or columns� are thus ferromagnetically and an-
tiferromagnetically ordered in the same direction. We
investigate the possibility below that such a semistripe-
ordered phase may be stabilized by quantum fluctuations at
larger values of �.
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III. COUPLED CLUSTER METHOD

The CCM �see, e.g., Refs. 30–32 and references cited
therein� that we employ here is one of the most powerful and
most versatile modern techniques available to us in quantum
many-body theory. It has been applied very successfully to
various quantum magnets �see Refs. 8–12, 23–25, and 32–36
and references cited therein�. The method is particularly ap-
propriate for studying frustrated systems, for which some of
the main alternative methods either cannot be applied or are
sometimes only of limited usefulness, as explained below.
For example, QMC techniques are particularly plagued by
the sign problem for such systems, and the ED method is
restricted in practice by available computational power, par-
ticularly for s�1 /2, to such small lattices that it is often
insensitive to the details of any subtle phase order present.

The method of applying the CCM to quantum magnets
has been described in detail elsewhere �see, e.g., Refs. 30–35
and references cited therein�. It relies on building multispin
correlations on top of a chosen gs model state ��� in a sys-
tematic hierarchy of LSUBn approximations �described be-

low� for the correlation operators S and S̃ that parametrize
the exact gs ket and bra wave functions of the system, re-

spectively, as �
�=eS��� and �
̃�= ���S̃e−S. In the present
case we use three different choices for the model state ���,
namely, either of the classical Néel and canted states, as well
as the semistriped state. Note that for the canted phase we
perform calculations for arbitrary canting angle 
 �as shown
in Fig. 1�a�	, and then minimize the corresponding LSUBn
approximation for the energy with respect to 
, ELSUBn�
�
→min⇔
=
LSUBn. Generally �for n�2� the minimization
must be carried out computationally in an iterative proce-
dure, and for the highest values of n that we use here the use
of supercomputing resources was essential. Results for the
canting angle 
LSUBn will be given later. We choose local
spin coordinates on each site in each case so that all spins in
���, whatever the choice, point in the negative z direction
�i.e., downward� by definition in these local coordinates.

Then, in the LSUBn approximation all possible multispin-
flip correlations over different locales on the lattice defined
by n or fewer contiguous lattice sites are retained. The num-
bers of such distinct �i.e., under the symmetries of the lattice
and the model state� fundamental configurations of the cur-
rent model in various LSUBn approximations are shown in
Table I. We note that the distinct configurations given in
Table I are defined with respect to the Union Jack geometry
described in Sec. II, in which the B sublattice sites of Fig.
1�a� are defined to have four NN sites and the A sublattice
sites are defined to have the eight NN sites joined to them
either by J1 or J2 bonds. If we chose instead to work in the
square-lattice geometry every site would have four NN sites.
The coupled sets of equations for these corresponding num-

bers of coefficients in the operators S and S̃ are derived using
computer algebra37 and then solved37 using parallel comput-
ing. We note that such CCM calculations using up to about
105 fundamental configurations or so have been previously
carried out many times using the CCCM code37 and heavy
parallelization. A significant extra computational burden
arises here for the canted state due to the need to optimize

the quantum canting angle 
 at each LSUBn level of ap-
proximation as described above. Furthermore, for many
model states the quantum number sT

z ��i=1
N si

z in the original
global spin-coordinate frame, may be used to restrict the
numbers of fundamental multispin-flip configurations to
those clusters that preserve sT

z as a good quantum number.
This is true for the Néel state where sT

z =0 and for the semi-
striped state for which sT

z =N /4, where N is the number of
lattice sites. However, for the canted model state that sym-
metry is absent, which largely explains the significantly
greater number of fundamental configurations shown in
Table I for the canted state at a given LSUBn order. Hence,
the maximum LSUBn level that we can reach here for the
canted state, even with massive parallelization and the use of
supercomputing resources, is LSUB7. For example, to obtain
a single data point for a given value of � �i.e., for a given
value of J2, with J1=1� for the canted phase at the LSUB7
level typically required about 0.3 h computing time using
600 processors simultaneously. However, for values of �
near to termination points at which CCM solutions using that
model state disappear �as described more fully below�, the
computing time typically increased significantly.

At each level of approximation we may then calculate a
corresponding estimate of the gs expectation value of any
physical observable such as the energy E and the magnetic

order parameter, M �− 1
N�i=1

N �
̃�si
z�
�, defined in the local,

rotated spin axes, and which thus represents the average on-
site magnetization. Note that M is just the usual sublattice �or
staggered� magnetization per site for the case of the Néel
state as the CCM model state, for example.

It is important to note that we never need to perform any
finite-size scaling, since all CCM approximations are auto-
matically performed from the outset in the infinite-lattice
limit, N→�, where N is the number of lattice sites. How-
ever, we do need as a last step to extrapolate to the n→�
limit in the LSUBn truncation index n. We use here the
well-tested33,34 empirical scaling laws

E/N = a0 + a1n−2 + a2n−4, �6�

M = b0 + b1n−1 + b2n−2. �7�

TABLE I. Number of fundamental LSUBn configurations �Nf�
for semistriped and canted states of the spin-1

2 Union Jack model,
based on the Union Jack geometry defined in the text.

Method

Nf

Semistriped Canted

LSUB2 3 5

LSUB3 5 42

LSUB4 41 199

LSUB5 194 1259

LSUB6 1159 8047

LSUB7 6862 56442
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IV. RESULTS

We report here on CCM calculations for the present
spin-1

2 Union Jack model Hamiltonian of Eq. �1� for given
parameters �J1=1 ,J2�, based, respectively, on the Néel,
canted, and semistriped states as CCM model states. Our
computational power is such that we can perform LSUBn
calculations for each model state with n�7. We note that, as
has been well documented in the past,38 the LSUBn data for
both the gs energy per spin E /N and the average on-site
magnetization M converge differently for the even-n and the
odd-n sequences, similar to what is frequently observed in
perturbation theory.39 Since, as a general rule, it is desirable
to have at least �n+1� data points to fit to any fitting formula
that contains n unknown parameters, we prefer to have at
least four results for different values of the LSUBn trunca-
tion index n to fit to Eqs. �6� and �7�. However, for all of our
extrapolated results below we perform separate extrapola-
tions using even and odd LSUBn sequences with n
= �2,4 ,6� and n= �3,5 ,7�.

A. Néel state versus the canted state

We report first on results obtained using the Néel and
canted model states. While classically we have a second-
order phase transition from Néel order �for ���c

cl� to canted
order �for ���c

cl�, where ��J2 /J1, at a value �c
cl=0.5, using

the CCM we find strong indications of a shift of this critical
point to a higher value �c1

�0.66 in the spin-1
2 quantum case

as we explain in detail below. Thus, for example, curves such
as those shown in Fig. 2 show that the Néel model state �

=0� gives the minimum gs energy for all values of ���c1

,
where �c1

=�c1

LSUBn is also dependent on the level of LSUBn
approximation, as we see clearly in Fig. 3.

By contrast, for ���c1
the minimum in the energy is

found to occur at a value 
�0. If we consider the canting
angle 
 itself as an order parameter �i.e., 
=0 for Néel order
and 
�0 for canted order� a typical scenario for a first-order
phase transition would be the appearance of a two-minimum
structure for the gs energy as a function of 
. If we therefore
admit such a scenario, in the typical case one would expect
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FIG. 2. �Color online� Ground-state energy per spin of the spin-1
2 Union Jack Hamiltonian of Eq. �1� with J1�1, using the LSUB6

approximation of the CCM with the canted model state, versus the canting angle 
, for some illustrative values of J2 in the range 0�J2

�1.5 for Fig. 2�a� and 0.65�J2�0.75 for Fig. 2�b�. For J2�0.68 in this approximation the minimum is at 
=0 �Néel order� whereas for
J2�0.68 the minimum occurs at 
=
LSUB6�0, indicating a phase transition at J2�0.68 in this LSUB6 approximation.
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FIG. 3. �Color online� The angle 
LSUBn that minimizes the energy ELSUBn�
� of the spin-1
2 Union Jack Hamiltonian of Eq. �1� with

J1�1, in the LSUBn approximations with �a� n= �2,4 ,6� and �b� n= �3,5 ,7�, using the canted model state, versus J2. The corresponding
classical result 
cl from Eq. �4� is shown for comparison. We find in the LSUBn quantum case with n�2 a weakly first-order phase
transition or second-order phase transition �e.g., for LSUB6 at J2�0.680 and LSUB7 at J2�0.646�. By contrast, in the classical case there
is a second-order phase transition at J2=0.5.
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various special points in the transition region, namely, the
phase transition point �c1

itself where the two minima have
equal depth, plus one or two instability points �i1

and �i2
where one or other of the minima �at 
=0 and 
�0, respec-
tively� disappears. By contrast, a second-order phase transi-
tion might manifest itself via a one-minimum structure for
the gs energy as a function of 
, in which the single mini-
mum moves smoothly and continuously from the value 

=0 for all values of ���c1

to nonzero value 
�0 for �
��c1

.
We show in Fig. 2 our results for the LSUB6 approxima-

tion based on the canted �or Néel� state as the CCM model
state. Very similar curves occur for other LSUBn approxima-
tions. A close inspection of curves such as those shown in
Fig. 2 for the LSUB6 case shows that what happens for this
model at this level of approximation is that for ��0.68 the
only minimum in the gs energy is at 
=0 �Néel order�. As
this value is approached from below the LSUB6 energy
curves become extremely flat near 
=0, indicating the dis-
appearance at 
=0 of the second derivative d2E /d
2 �and
possibly also of one or more of the higher derivatives
dnE /d
n with n�3�, as well as of the first derivative dE /d
.
Then, for all values ��0.68 the LSUB6 curves develop a
minimum at a value 
�0 which is also the global minimum.
The state for 
�0 is thus the quantum analog of the classi-
cal canted phase. The fact that the antiferromagnetic Néel
order survives into the classically unstable regime is another
example of the well-known phenomenon that quantum fluc-
tuations tend to promote collinear order in magnetic spin-
lattice systems, as has been observed in many other such
cases �see, e.g., Refs. 34 and 40�. Thus, this collinear Néel-
ordered state survives into a region where classically it be-
comes unstable with respect to the noncollinear canted state.

A close inspection of the curves shown in Fig. 3 for vari-
ous LSUBn approximation shows that the crossover from
one minimum �
=0, Néel� solution to the other �
�0,
canted� appears to be continuous for the odd-n sequence,
thus indicating a second-order transition according to the
above scenario. By contrast, for the even-n sequence with
n�2 the curves in Fig. 3 become very steep in the crossover
region just above �c1

LSUBn and due to the extremely flat nature
of the gs energy curves as a function of 
 in this region, as
shown in Fig. 2, it is impossible to rule out a small but finite
discontinuity in the curves of Fig. 2�a� for the even-n LSUBn
sequence at �=�c1

LSUBn. However, if the phase transition is, in
fact, first order, it is certainly only very weakly so according
to this criterion.

Thus, based on the evidence presented so far of the gs
energies of the Néel and canted phases, it would appear that
the transition at �=�c1

between these two phases is either
second order, as in the classical phase, or weakly first order.
Such a situation where the quantum fluctuations change the
nature of a phase transition qualitatively from a classical
second-order type to a quantum first-order type has also been
seen previously in the comparable spin-1

2 HAF models that
interpolate continuously between square and triangular
lattices,25 and between square and honeycomb lattices,34 re-
spectively. In the present spin-1

2 Union Jack model, however,
the CCM gs energy results appear to favor a second-order

transition, although the extreme insensitivity of the gs energy
to the canting angle 
 near the crossover region, especially
for the even-n LSUBn sequence with n�2, means that we
cannot rule out a weakly first-order transition. The evidence
to date indicates, however, that the quantum phase transition
at �c1

is a subtle one. Furthermore, the present spin-1
2 Union

Jack model appears, on the evidence to date, to behave
somewhat differently �viz., in some senses “more classi-
cally”� than its corresponding spin-1

2 interpolating square-
triangle Heisenberg antiferromagnet counterpart.25 Further
evidence from Fig. 3 appears to back up this observation.
Thus, we see from Fig. 3 that the quantum canting angle 

approaches its asymptotic value � /2 as �→� slightly faster
than does the corresponding classical value. By contrast, in
the case of the spin-1

2 interpolating square-triangle Heisen-
berg antiferromagnet,25 the corresponding pitch angle 
 of
the spiral phase �that is the analog of the canted phase for the
present model� approaches its similar asymptotic value � /2
as �→� very much faster than does the classical value. We
also discuss this difference more fully below, where we find
further evidence that quantum fluctuations modify the clas-
sical behavior of the Union Jack model rather less than they
do for its corresponding spin-1

2 interpolating square-triangle
Heisenberg antiferromagnet counterpart.

We show in Table II the critical values �c1

LSUBn at which
the transition between the Néel and canted phases occurs in
the various LSUBn approximations shown in Fig. 3. In the
past we have found that a simple linear extrapolation,
�c1

LSUBn=a0+a1n−1, yields a good fit to such critical points, as
seems to be the case here too. The corresponding “LSUB�”
estimates from the LSUBn data in Table II are �c1
=0.651�0.001 based on n= �2,4 ,6� and �c1

=0.681�0.001
based on n= �3,5 ,7� where the quoted errors are simply the
standard deviations from the two fits. Similar estimates based
on an extrapolation �c1

LSUBn=b0+b1n−2 are also shown in
Table II, for which the standard deviations are clearly
greater. The fact that the two estimates based on even-n and

TABLE II. The critical value �c1

LSUBn at which the transition
between the Néel phase �
=0� and the canted phase �
�0� occurs
in the LSUBn approximation using the CCM with �Néel or� canted
state as model state.

Method �c1

LSUBn

LSUB2 0.740

LSUB4 0.696

LSUB6 0.680

LSUB� a 0.651�0.001.

LSUB� b 0.676�0.004.

LSUB3 0.597

LSUB5 0.630

LSUB7 0.645

LSUB� a 0.681�0.001.

LSUB� b 0.653�0.004.

aBased on �c1

LSUBn=a0+a1n−1, with n= �2,4 ,6� or n= �3,5 ,7�.
bBased on �c1

LSUBn=b0+b1n−2, with n= �2,4 ,6� or n= �3,5 ,7�.
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odd-n LSUBn sequences differ slightly from one another is a
reflection of the extreme insensitivity of the gs energy to the
canting angle 
 near �c1

LSUBn, and the difference between the
two estimates is a rough indication of our real error bars on
�c1

. We also present other independent estimates of �c1
be-

low.
We note from Fig. 2 that for certain values of J2 with J1

�1 �or, equivalently, �� CCM solutions at a given LSUBn
level of approximation �viz., LSUB6 in Fig. 2� exist only for
certain ranges of the canting angle 
. For example, for the
pure square-lattice HAF ��=0� the CCM LSUB6 solution
based on a canted model state only exists for 0�

�0.161�. In this case, where the Néel solution is the stable
ground state, if we attempt to move too far away from Néel
collinearity the CCM equations themselves become “un-
stable” and simply do not have a real solution. Similarly, we
see from Fig. 2 that for �=1.5 the CCM LSUB6 solution
exists only for 0.308��
�0.445�. In this case the stable
ground state is a canted phase, and now if we attempt either
to move too close to Néel collinearity or to increase the
canting angle too close to its asymptotic value of � /2, the
real solution terminates.

Such terminations of CCM solutions are very common
and are very well documented.32 In all such cases a termina-
tion point always arises due to the solution of the CCM
equations becoming complex at this point, beyond which
there exist two branches of entirely unphysical complex con-
jugate solutions.32 In the region where the solution reflecting
the true physical solution is real there actually also exists
another �unstable� real solution. However, only the shown
branch of these two solutions reflects the true �stable� physi-
cal ground state, whereas the other branch does not. The
physical branch is usually easily identified in practice as the
one which becomes exact in some known �e.g., perturbative�
limit. This physical branch then meets the corresponding un-
physical branch at some termination point �with infinite
slope in Fig. 2� beyond which no real solutions exist. The
LSUBn termination points are themselves also reflections of
the quantum phase transitions in the real system and may be
used to estimate the position of the phase boundary,32 al-
though we do not do so for this first critical point since we
have more accurate criteria discussed above as well as below.

Before doing so, however, we wish to give some further
indication of the accuracy of our results. Thus in Table III we
show data for the case of the spin-1

2 HAF on the square
lattice �corresponding to the case �=0 of the present Union
Jack model�. We present our CCM results in various LSUBn
approximations �with 2�n�7� based on the Union Jack ge-
ometry using the Néel model state. Results are given for the
gs energy per spin E /N, and the magnetic order parameter
M. We also display our extrapolated �n→�� results using the
schemes of Eqs. �6� and �7� with the data sets n= �2,4 ,6� and
n= �3,5 ,7�. The results are clearly seen to be robust and
consistent, and for comparison purposes we also show the
corresponding results using a QMC technique4 and from a
linked-cluster series expansion �SE� method.6 We note that
for the square-lattice HAF no dynamic �or geometric� frus-
tration exists and the Marshall-Peierls sign rule41 applies and
may be used to circumvent the QMC “minus-sign problem.”

The QMC results4 are thus extremely accurate for this limit-
ing ��=0� case only, and represent the best available results
in this case. Our own extrapolated results are in good agree-
ment with these QMC benchmark results, as found previ-
ously �see, e.g., Ref. 38 and references cited therein� for
CCM calculations performed specifically using the square-
lattice geometry, as well as for other CCM calculations for
which the square-lattice HAF is a limit, such as for the
spin-1

2 interpolating square-triangle J1-J2� model,25 for which
the triangular lattice geometry was employed. It is gratifying
to note, in particular, that although the individual LSUBn
results for the spin-1

2 square-lattice HAF depend on which
geometry is used to define the configurations, the corre-
sponding LSUB� extrapolations are in excellent agreement
with one another.

In Fig. 4 we show the CCM results for the gs energy per
spin in various LSUBn approximations based on the canted
�and Néel� model states with the canting angle 
LSUBn cho-
sen to minimize the energy ELSUBn�
�, as shown in Fig. 3.
We also show separately the extrapolated �LSUB�� results
obtained from Eq. �6� using the separate data sets n
= �2,4 ,6� and n= �3,5 ,7� as shown. As is expected from our
previous discussion the energy curves themselves show very
little evidence of the phase transition at �=�c1

, with the en-
ergy and its first derivative seemingly continuous.

Much clearer evidence for the transition between the Néel
and canted phases is observed in our corresponding results
for the gs magnetic order parameter M �the average on-site
magnetization� shown in Fig. 5. For the raw LSUBn data we
display the results for the Néel phase only for values of �
��c1

LSUBn for clarity. However, the extrapolated �LSUB�� re-

TABLE III. Ground-state energy per spin E /N and magnetic
order parameter M �i.e., the average on-site magnetization� for the
spin-1

2 square-lattice HAF. We show CCM results obtained for the
Union Jack model with J1=1 and J2=0 using the Néel model state
in various CCM LSUBn approximations defined on the Union Jack
geometry described in Sec. II. We compare our extrapolated �n
→�� results using Eqs. �6� and �7� with the odd-n and even-n
LSUBn data sets with other calculations.

Method E /N M

LSUB2 −0.64833 0.4207

LSUB3 −0.65044 0.4151

LSUB4 −0.66366 0.3821

LSUB5 −0.66398 0.3795

LSUB6 −0.66703 0.3630

LSUB7 −0.66724 0.3606

Extrapolations

LSUB� a −0.6698 0.316

LSUB� b −0.6704 0.304

QMCc −0.669437�5� 0.3070�3�
SEd −0.6693�1� 0.307�1�
aBased on n= �2,4 ,6�.
bBased on n= �3,5 ,7�.
cQMC �quantum Monte Carlo� for square lattice �Ref. 4�.
dSE �series expansion� for square lattice �Ref. 6�.
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sults for the Néel phase are shown for all values of � in the
range shown and where M �0, using the extrapolation
scheme of Eq. �7� and the LSUBn results based on the Néel
model state. Once again we extrapolate odd-n and even-n
LSUBn results separately. It is interesting to note from Fig. 5
that the raw LSUBn data show the transition at �c1

LSUBn more
clearly for even values of n than for odd values of n. For the
canted phase �for which 
LSUBn�0� we can clearly only
show the extrapolated �LSUB�� results using Eq. �7�, for
regions of � for which we have data for all of the set n
= �2,4 ,6� or n= �3,5 ,7�. We see from Table II that for the
even-n values we are limited �by the LSUB2 results� to val-
ues ���c1

LSUB2�0.740 whereas for the odd-n values we are
limited �by the LSUB7 results� to values ���c1

LSUB7

�0.645. The separate odd-n LSUB� extrapolation curves
for M for the Néel and canted phases are seen from Fig. 5�b�
to be extremely close at the value �=0.645 and the curves
appear to be about to meet at an angle which is either zero or
very close to zero. A straightforward LSUB� extrapolation
using Eq. �7� for the three whole LSUBn curves �Néel plus
canted� with n= �3,5 ,7� shows a value �c1

�0.637 at which
the extrapolated curve diverges �at zero or very small angle�

from the corresponding LSUB� estimate for the Néel state
shown in Fig. 5�b�. For the corresponding even-n data shown
in Fig. 5�a�, simple extrapolations of the LSUB� curve to
lower values of ���c1

LSUB2�0.740 using simple cubic or
higher-order polynomial fits in � give a corresponding esti-
mate of �c1

�0.680 at which the Néel and canted phases
meet. Both even-n and odd-n LSUBn extrapolations yield a
nonzero value for the average on-site magnetization of M
�0.195�0.005 at the phase transition point �c1

. Thus the
evidence from the behavior of the order parameter is that the
transition at �c1

is a first-order one, in the sense that the order
parameter does not go to zero at �c1

, although it is certainly
continuous at this point, and with every indication that its
derivative as a function of � is also continuous �or very
nearly so� at �=�c1

.
We also show in Fig. 6 the corresponding extrapolated

�LSUB�� results for the average on-site magnetization as a
function of J2 �with J1�1�, or hence equivalently as a func-
tion of �, for both the A sites �MA� and the B sites �MB� of
the Union Jack lattice. We recall that, as shown in Fig. 1�a�,
each of the A and B sites is connected to four NN sites on the
square lattice by J1 bonds, whereas each of the A sites is
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FIG. 4. �Color online� Ground-state energy per spin versus J2 for the Néel and canted phases of the spin-1
2 Union Jack Hamiltonian of

Eq. �1� with J1�1. The CCM results using the canted model state are shown for various LSUBn approximations with �a� n= �2,4 ,6� and �b�
n= �3,5 ,7� with the canting angle 
=
LSUBn that minimizes ELSUBn�
�. We also show the n→� extrapolated result from using Eq. �6�.
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FIG. 5. �Color online� Ground-state magnetic order parameter �i.e., the average on-site magnetization� versus J2 for the Néel and canted
phases of the spin-1

2 Union Jack Hamiltonian of Eq. �1� with J1�1. The CCM results using the canted model state are shown for various
LSUBn approximations with �a� n= �2,4 ,6� and �b� n= �3,5 ,7� with the canting angle 
=
LSUBn that minimizes ELSUBn�
�. We also show
the n→� extrapolated result from using Eq. �7�.
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additionally connected to four NNN sites on the square lat-
tice by J2 bonds. The extrapolations are shown in exactly the
same regions, and for the same reasons, as those shown in
Fig. 5.

In Fig. 7 we also show the total gs magnetization per site,
m= 1

2 �MB−MA cos 
�, from using our CCM LSUBn results
with n= �2,4 ,6� and with the canting angle 
=
LSUBn that
minimizes ELSUBn�
�. Clearly m=0 in the Néel phase where
MA=MB and 
=0. We also show in Fig. 7 the corresponding
classical result mcl= 1

2s�1−cos 
cl�= 1
4 �1− �2��−1	 in the

canted phase �with s= 1
2 �. A comparison of the extrapolated

�LSUB�� CCM curve with its classical counterpart shows
very clearly that the quantum fluctuations for this spin-half
Union Jack model modify the classical behavior only rela-
tively modestly, providing further evidence to what we also
noted earlier in relation to Fig. 3.

We also comment briefly on the large-J2 behavior of our
results for the canted phase. �We note that for computational
purposes it is easier to rescale the original Hamiltonian of
Eq. �1� by putting J2�1 and considering small values of J1.�
The most interesting feature of the CCM results using the
canted state as model state is that in all LSUBn approxima-
tions with n�2 a termination point �t

LSUBn is reached, be-
yond which no real solution can be found, very similar to the
termination points shown in Fig. 2. For the even-n sequence
the values are �t

LSUB4�80 and �t
LSUB6�80, whereas for the

odd-n sequence the values are �t
LSUB3�250, �t

LSUB5�85,
and �t

LSUB7�55. This is a first indication that the canted state
becomes unstable at very large values of � against the for-
mation of another �as yet unknown� state, as we discuss fur-
ther in Sec. IV B below.

Extrapolations of the gs energy using the data before the
terminations points �t

LSUBn show that at large J2 values we
have E /N→−0.3349J2 using the even-n LSUBn series and
E /N→−0.3352J2 using the odd-n series. These numerical
coefficients are precisely half of the values quoted in Table
III for the case J2=0. This is exactly as expected since both
the �→0 and the �→� limits of the Union Jack model are
the square-lattice HAF, where in the latter case the square

lattice contains only half the original sites, namely, the A
sites. Similarly, the extrapolated LSUB� values at larger val-
ues of � before the termination point for the on-site magne-
tization on the A sites are MA→0.317 for the even-n LSUBn
series and MA→0.306 for the odd-n series. Both values are
again remarkably consistent with those shown in Table III for
the J2=0 limit. The corresponding asymptotic values for the
B-site magnetization are consistent with MB→0.5, as ex-
pected for large values of J2.

B. Canted state versus the semistriped state

We turn finally to our CCM results based on the use of the
semistriped state shown in Fig. 1�b� as the model state. Un-
like in the case of the corresponding use of the canted state
as model state, the results based on the semistriped state do
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FIG. 7. �Color online� The total ground-state magnetization
per site, m= 1

2 �MB−MA cos 
�, of the Union Jack lattice versus J2

of the spin-1
2 Union Jack Hamiltonian of Eq. �1� with J1�1. The

CCM results using the canted model state are shown for various
LSUBn approximations �n= �2,4 ,6�� with the canting angle 

=
LSUBn that minimizes ELSUBn�
�. We also show the n→� ex-
trapolated result from using Eq. �7� and compare it with the classi-
cal value mcl= 1

4 �1−cos 
cl�.
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FIG. 6. �Color online� Extrapolated curves �LSUB�� for the ground-state magnetic order parameters �i.e., the on-site magnetizations� MA

at sites A �joined by eight bonds to other sites� and MB at sites B �joined by four bonds to other sites� of the Union Jack lattice �and see Fig.
1�a�	 versus J2 for the Néel and canted phases of the spin-1

2 Union Jack Hamiltonian of Eq. �1� with J1�1. The CCM results using the canted
model state are shown for various LSUBn approximations �n= �2,4 ,6� and n= �3,5 ,7�� with the canting angle 
=
LSUBn that minimizes
ELSUBn�
�.
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not terminate at a high value of J2 �with J1�1�. We found no
indication of such a termination value at any LSUBn level of
approximation for 2�n�7 for values of J2�1000. All in-
dications are thus that the semistriped state is stable out to
the J2→� limit. Indeed for these LSUBn levels the CCM
solutions based on the semistriped state as model state exist
for all values J2�1. For example, the LSUB6 solution based
on the semistriped state terminates at a lower end point J2
�0.41.

In Fig. 8 we compare the extrapolated �LSUB�� values of
the gs energy per spin, based in each case on the LSUBn
results with n= �2,4 ,6�, for our CCM results using canted
and semistriped states. Although results for the canted model
state become unavailable for J2�80 for LSUB4 and LSUB6
approximations, the results based on the canted state lie
lower in energy than those based on the semistriped state for
all values of J2�80 for which both sets of solutions exist.
Although this is disappointing at first sight, the two sets of
curves become extremely close for larger values of J2 as can
be seen from Fig. 8. Furthermore, we have also attempted a
simple power-law extrapolation of the quantity E / �NJ2� for
the gs energy of the canted state in powers of 1 /J2, beyond
the large-J2 LSUBn termination points �viz., at J2�80 for
the LSUB6 approximation�. Fits to sixth-, seventh-, and
eighth-order polynomials give virtually identical results for
values of J2 in the range 80�J2�500 and these extrapolated
curves do indicate that there is a second phase transition at
�c2

�125�5 between canted and semistriped phases, such
that for values ���c2

the semistriped phase becomes lower
in energy.

The gs energy in both canted and semistriped phases ap-
proaches the asymptotic value E /N�−0.3349J2 for large
values of J2 as J2→� �with J1�1�. The corresponding
asymptotic �J2→�� values for the average on-site magneti-
zation of the semistriped state are MA→0.317 for the A sites
and MB→0.5 for the B sites.

V. DISCUSSION AND CONCLUSIONS

In this paper we have used the CCM to study the influ-
ence of quantum fluctuations on the zero-temperature gs

phase diagram of a frustrated spin-half Heisenberg antiferro-
magnet �HAF� defined on the 2D Union Jack lattice. We
have studied the case where the NN J1 bonds are antiferro-
magnetic �J1�0� and the competing NNN J2��J1 bonds in
the Union Jack array have a strength in the range 0����.
On the underlying bipartite square lattice there are thus two
types of sites, viz., the A sites that are connected to the four
NN sites on the B sublattice with J1 bonds and to the four
NNN on the A sublattice with J2 bonds, and the B sites that
are connected only to the four NN sites on the A sublattice
with J1 bonds. The �=0 limit of the model thus corresponds
to the spin-half HAF on the original square lattice �of A and
B sites� while the �→� limit corresponds to the spin-half
HAF on the square lattice comprised of only A sites. We
have seen that at the classical level �corresponding to the
case where the spin quantum number s→�� this Union Jack
model has only two stable gs phases, one with Néel order for
���c

cl=0.5 and another with canted ferrimagnetic order for
���c

cl. We have therefore first used these two classical states
as CCM model states to investigate the effects of quantum
fluctuations on them.

For the spin-half model we find that the phase transition
between the Néel antiferromagnetic phase and the canted fer-
rimagnetic phase occurs at the higher value �c1
=0.66�0.02. The evidence from our calculations is that the
transition at �c1

is a subtle one. From the energies of the two
phases it appears that the transition is either second order, as
in the classical case, or possibly, weakly first order. However,
on neither side of the transition at �c1

does the order param-
eter M �i.e., the average on-site magnetization� go to zero.
Instead as �→�c1

from either side, M→0.195�0.005,
which is more indicative of a first-order transition. Further-
more, the slope dM /d� of the average on-site magnetization
as a function of � also seems to be either continuous or to
have only a very weak discontinuity at �=�c1

.
Before continuing with the possibility of a further phase

we compare our results with those from previous calcula-
tions of the same model using spin-wave theory �SWT�
�Refs. 26 and 27� and the linked-cluster SE method.28 Col-
lins et al.26,27 used linear �or leading-order� spin-wave theory
�LSWT� to show that on the basis of a comparison of the gs
energies of the two phases, the phase transition between the
Néel and canted phases is of first-order type and occurs at
�c1

�0.84. In LSWT the Néel staggered magnetization per
site M remains substantial at this estimate of �c1

�0.84.
However, it is well known that LSWT results become unre-
liable near the transition region, and they surmised that the
Néel order parameter M might vanish at or before this point,
yielding a possible scenario where a second-order Néel tran-
sition might occur at a value �c1

�0.84, followed by a pos-
sible intermediate spin-liquid phase �as in the pure J1-J2
model, as discussed in Sec. I�, and then a first-order transi-
tion to the canted phase at a somewhat larger value of �. Our
own results provide no evidence at all for such an interme-
diate spin-liquid phase between the Néel antiferromagnetic
and canted ferrimagnetic phases.

Although LSWT is known to give a reasonable descrip-
tion of the spin-1

2 Heisenberg antiferromagnet on the square
lattice ��=0�, it is surely unable to model the frustrated or
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intermediate regime accurately. Similar shortcomings of
SWT have been noted by Igarashi42 in the context of the
related spin-1

2 J1-J2 model on the square lattice, discussed
briefly in Sec. I. He showed that whereas its lowest-order
version �LSWT� works well when J2=0, it consistently over-
estimates the quantum fluctuations as the frustration J2 /J1
increases. In particular he showed, by going to higher orders
in SWT in powers of 1 /s, where s is the spin quantum num-
ber and LSWT is the leading order, that the expansion con-
verges reasonably well for J2 /J1�0.35, but for larger values
of J2 /J1, including the point J2 /J1=0.5 of maximum classi-
cal frustration, the series loses stability. He also showed that
the higher-order corrections to LSWT for J2 /J1�0.4 make
the Néel-ordered phase more stable than predicted by LSWT.
He concluded that any predictions from SWT for the spin-1

2
J1-J2 model on the square lattice are likely to be unreliable
for values J2 /J1�0.4. It is likely that a similar analysis of
the SWT results for the spin-1

2 Union Jack model studied
here would reveal similar shortcomings of LSWT as the frus-
tration parameter ��J2 /J1 is increased.

In a later paper by Zheng et al.,28 SE techniques were
applied to our spin-half Union Jack model and were com-
pared with those from both LSWT for both the Néel and
canted phases and modified second-order SWT for the Néel
phase. Using the SE method for the Néel phase gave what
these authors termed very clear evidence of a second-order
phase transition at a critical coupling �c1

=0.65�0.01 at
which the Néel staggered magnetization per site vanished.
For higher couplings the system was seen to lie in the canted
phase with no sign of any intermediate spin-liquid phase
between these two magnetically ordered states. Use of the SE
method in the canted phase produced a gs energy which con-
tinues smoothly from the Néel into the canted phase. Zheng
et al.28 found, furthermore, that in the canted phase the stag-
gered magnetizations per site in both vertical and horizontal
directions shown in Fig. 1�a� also appear to drop smoothly
toward zero around the same value �c1

=0.65�0.01, albeit
with very large error bars.

The above SE estimate for �c1
is clearly in excellent

agreement with our own. However, whereas the evidence
from the order parameter M from the SE technique clearly
favors a second-order transition at �c1

at which M→0 from
both sides, our own CCM calculations clearly favor a first-
order transition at which M→0.195�0.005. We note, how-
ever, that the errors on the SE estimates for M become in-
creasingly large as the phase transition at �c1

is approached
from either side. We believe that this could easily account for
the seeming discrepancy between our respective predictions
for the order of the phase transition at �c1

. We note too that
Zheng et al.28 were themselves puzzled by the discrepancy
between the prediction of SWT that the Néel magnetization
per site M does not vanish at �c1

and that of the SE technique
that M vanish does vanish there. While they recognized �as
do we, as we discussed above� that SWT cannot be taken as
an infallible guide, they found the huge difference with the
prediction from the SE technique perturbing. Those authors
ended by stating that, in their opinion, the nature of the tran-
sition from the Néel to the canted phase in the spin-half
Union Jack model deserved further exploration. We believe

that our own work reported here has considerably illumi-
nated the transition at �c1

.
Neither SWT nor SE techniques have been applied to the

possible semistriped state of Fig. 1�b� for the spin-half Union
Jack model and so we have no results against which to com-
pare our own. We were led to consider such a state as a
possible gs phase of the model at large values of � as dis-
cussed in Sec. II. Thus, to recapitulate, the �→� limit of the
canted phase of the Union Jack model �for either the quan-
tum s=1 /2 model considered here or the classical s→�
case� gives a state in which the spins on the antiferromag-
netically ordered A sublattice are orientated at 90° to those
on the ferromagnetically ordered B sublattice. The actual �
→� limit should, in either case, be decoupled antiferromag-
netic �A� and ferromagnetic �B� sublattices, with complete
degeneracy at the classical level for all angles of relative
ordering directions between the two sublattices. We argued
that quantum fluctuations could, in principle, lift this degen-
eracy by the well-known order by disorder phenomenon.29

Since quantum fluctuations are also well known from many
spin-lattice problems to favor collinearity, there is a strong a
priori possibility that the semistriped state of Fig. 1�b� might
be energetically favored at large values of � over the noncol-
linear state which is the �→� limit of the canted state in
which 
→90°.

Accordingly we repeated our CCM calculations using the
semistriped state as model state. We found some evidence
that at very large values of � there might indeed be a second
phase transition at �c2

�125�5, based on the relative ener-
gies of canted and semistriped states. Such a prediction is
based, however, on an extrapolation of the data on the canted
state into regimes where the CCM equations have no solu-
tion for LSUBn approximations with n�3, and hence cannot
be regarded as being as reliable as our prediction for �c1

. If
the phase transition at �c2

does exist it would be of first-order
type according to our results. It would be of considerable
interest to explore the possible transition at �c2

between
canted and semistriped phases by other techniques, possibly
including SWT and SE methods.

As has been noted elsewhere,10 high-order CCM results of
the sort presented here have been seen to provide accurate
and reliable results for a wide range of such highly frustrated
spin-lattice models. Many previous applications of the CCM
to unfrustrated spin models have given excellent quantitative
agreement with other numerical methods �including exact
diagonalization �ED� of small lattices, quantum Monte Carlo
�QMC�, and SE techniques	. A typical example is the spin-
half HAF on the square lattice, which is the �=0 limit of the
present model �and see Table III�. It is interesting to compare
for this �=0 case, where comparison can be made with QMC
results, the present CCM extrapolations of the LSUBn data
for the infinite lattice to the n→� limit and the correspond-
ing QMC or ED extrapolations for the results obtained for
finite lattices containing N spins that have to be carried out to
give the N→� limit. Thus, for the spin-1

2 HAF on the square
lattice the “distance” between the CCM results for the
ground-state energy per spin38 at the LSUB6 �LSUB7� level
and the extrapolated LSUB� value is approximately the
same as the distance of the corresponding QMC result43 for a
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lattice of size N=12�12 �N=16�16� from its N→� limit.
The corresponding comparison for the magnetic order pa-
rameter M is even more striking. Thus even the CCM
LSUB6 result for M is closer to the LSUB� limit than any of
the QMC results for M for lattices of N spins are to their
N→� limit for all lattices up to size N=16�16, the largest
for which calculations were undertaken.43 Such comparisons
show, for example, that even though the distance between
our LSUBn data points for M and the extrapolated �n→��
LSUB� result shown in Fig. 5 may, at first sight, appear to
be large, they are completely comparable to or smaller than
those in alternative methods �where those other methods can
be applied�. Furthermore, where such alternative methods
can be applied, as for the spin-1

2 HAF on the square lattice,
the CCM results are in complete agreement with them.

By contrast, for frustrated spin-lattice models in two di-
mensions both the QMC and ED techniques face formidable
difficulties. These arise in the former case due to the minus-
sign problem present for frustrated systems when the nodal
structure of the gs wave function is unknown, and in the
latter case due to the practical restriction to relatively small
lattices imposed by computational limits. The latter problem
is exacerbated for incommensurate phases and is com-
pounded due to the large �and essentially uncontrolled� varia-
tion of the results with respect to the different possible
shapes of clusters of a given size.

For highly frustrated spin-lattice models like the present
Union Jack model, a powerful numerical method, comple-
mentary to the CCM, is the linked-cluster SE
technique.13–17,44–48 The SE technique has also been applied
to the present model.28 Our own results have shed consider-
able light on the nature of the phase transition at �c1

ob-
served by SE techniques and the discrepancies between the
results from SE and SWT methods.

We end by remarking that it would also be of interest to
repeat the present study for the case of the s�1 /2 Union
Jack model. The calculations for this case are more demand-
ing due to an increase at a given LSUBn level of approxi-
mation in the number of fundamental configurations retained
in the CCM correlation operators. Nevertheless, we hope to
be able to report results for this system in the future.
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