
Electron tunneling through a hybrid superconducting-normal mesoscopic junction
under microwave radiation

Argo Nurbawono,1 Yuan Ping Feng,1 and Chun Zhang1,2,*
1Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542, Singapore

2Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
�Received 23 November 2009; published 30 July 2010�

We present a theoretical analysis for electron tunneling through a hybrid superconducting-normal mesos-
copic junction consisting of a superconducting electrode, a two-level quantum dot, and a normal electrode
under single mode microwave radiation. Using nonequilibrium Green’s-function formalism, we incorporate
Floquet basis in the Nambu space and solve the Green’s function with finite matrix truncation to obtain the
transport properties numerically. We studied the effects of photon-induced single-level oscillations and quan-
tum transition between levels on the time-averaged current-voltage �I-V� characteristics of the system. For
quantum dot with a single localized level, the main dc resonance remains unchanged regardless of the fre-
quency and amplitude of the radiation, and a series of secondary resonances due to multiphoton processes are
present. For quantum dot with two localized levels, the sole effects from the transitions between levels produce
splitting on the main dc resonance at Rabi frequency proportional to the coupling. This provides the possibility
for experimental inference of the interlevel coupling strength of the driven resonant tunneling system from the
bias voltage energy difference between the split resonances in the I-V curve.
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I. INTRODUCTION

Nonequilibrium electron tunneling through a mesoscopic
junction consisting of a nanoscale quantum dot in the center
and two metal electrodes is a central issue in our understand-
ing of mesoscopic electronic devices. In normal quantum dot
junctions for which two electrodes are normal, electron tun-
neling through the quantum dot can be understood as the
scattering of Bloch waves of electrons in two leads by local-
ized orbitals in the quantum dot. When the coupling between
the center quantum dot and two electrodes is weak, the scat-
tering problem can be solved with nonequilibrium Green’s-
function �NEGF� techniques.1 For strong-coupling cases like
molecular junctions for which the center molecule is usually
covalently bonded to two electrodes, the first-principles
method combining density-functional theory and the afore-
mentioned NEGF techniques proved to be powerful in solv-
ing the electron-tunneling problem.2 When at least one of
electrodes is superconducting, the electron tunneling through
the quantum dot system is governed by Andreev
reflections3–5 which is completely different from junction
with normal electrodes. In this case, in order to properly
describe the formation of Cooper pairs in superconducing
leads, Green’s functions need to be expressed in 2�2
Nambu space. In literature, several theoretical approaches
based on NEGF for electron tunneling through superconduct-
ing junctions have been proposed and successfully applied to
different types of systems.6–9

Electron tunneling through a superconducting quantum
dot system under laser or microwave fields represents an-
other interesting and fruitful research direction. Experimen-
tally, it is common to use laser fields focused on to the center
region of the superconducting junction to study the phenom-
enon of so-called Shapiro steps.10–12 Theoretically, the inclu-
sion of the electron-photon interactions in superconducting
junctions introduces extra time dependence in the supercon-

ducting phase due to the electromagnetic oscillations12 that
needs to be carefully dealt with. In the field of quantum
computing, superconducting qubits constructed from Joseph-
son junction had been proposed,13 and measurements as well
as theoretical discussions on these qubit states with photons
interactions have been discussed in many papers.14 As to I-V
characteristics of a quantum dot coupled with two supercon-
ducting electrodes, previous theoretical studies based on
NEGF techniques have focused on either single-level quan-
tum dot system9 or the junction for which two electrodes are
connected by a featureless vacuum barrier.12

In this paper we shall consider using semiclassical micro-
wave fields to study a system which consists of a supercon-
ducting electrode, a two-level quantum dot, and a normal
electrode �SNN�. The central aim is to build a method to
study the effects of photon-induced transition between differ-
ent levels in the center dot on electron tunneling through the
superconducting junction which has never been discussed
before. In this work, we focus on the weak-coupling regime
and for simplicity neglect Coulomb interactions between
electrons in the center dot as previous studies did.7,9,15 Al-
though the method we proposed here is for noninteracting
electrons, i.e., in the absence of strong correlations, it serves
as a convenient starting point in our understanding for fur-
ther study in more complicated correlated transport systems.
Prior discussions on a similar system was due to Sun et al.,9

who considered the case of the single-level quantum dot and
solved NEGF using Bessel functions. While Bessel basis
provides analytical solutions for single-level quantum dot, it
prohibits seamless extensions to multilevel quantum dots to
cater interlevel transitions between them. On the other hand,
Floquet basis16 enables more flexible modeling of interlevel
transitions, and its incorporation into NEGF and Nambu
space is just as straight forward. We shall incorporate the
Floquet basis into NEFG formalism in this paper, and discuss
the separate effects of photon-induced independent energy-
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level oscillations and the interlevel transition dynamics.
Apart from standard quantum dot systems, some recent

developments on superconducting quantum point contacts
�QPCs� are worth mentioning for potential applications of
the model we proposed. One such QPC is superconducting
Nb-QPC produced using mechanically controlled break junc-
tion �MCBJ�,17 which was shown to have localized levels
between the electrodes originating from the Nb dimer be-
tween the contacts.18 New features in the subgap structure of
current-voltage characteristics were found in the experiment
when the whole junction is under a microwave field. Those
new features cannot be understood by electron tunneling
through a single-level quantum dot or featureless vacuum
barrier. Since the coupling to the electrodes can be tuned
piezoelectrically, such system may be finely engineered for a
potential realization of our model. Ji et al.19 recently pro-
posed a well-designed experiment the use of superconduct-
ing scanning tunnel microscope to probe magnetic impurities
on a substrate. Several localized impurity states inside the
superconducting gap were identified and shown to have sig-
nificant effects on Andreev reflections. Of course in both
examples spins and Coulombic interaction would be impor-
tant, nevertheless some qualitative pictures would be helpful
to understand the basic ingredients of the complete physics
involved in the process.

II. MODEL AND METHODS

The overall system’s configuration is depicted in Fig. 1
and the Hamiltonian of the entire system can be written as

Ĥ�t� = ĤL + ĤR + ĤT + ĤC�t� , �1�

where ĤL�R� is the left �right� electrode Hamiltonian, ĤT is

the tunneling Hamiltonian, and ĤC�t� is the quantum dot
Hamiltonian. For the sake of clarity, the theoretical discus-
sion is organized in two parts. In Sec. II A, we first focus on

the Floquet treatment for the quantum dot Hamiltonian ĤC�t�
and its incorporation into the Green’s-function formalism. In
Sec. II B, time-averaged current is calculated by solving the
Green’s function and self-energies in Fourier space, employ-
ing Dyson and Keldysh formalisms. Standard NEGF formal-
ism for transport models are adopted from Refs. 6–8 and 20.

A. Quantum dot under microwave radiation

We shall consider model Hamiltonian for a two-level
quantum dot interacting with semiclassical external fields of
frequency �. Neglecting the Coulomb and spin interactions,

ĤC�t� = �
i,�
��i +

1

2
eV + A cos��t��ci�

† ci�

+ �
i�j,�

B cos��t�ci�
† cj�, �2�

where i , j=1,2 denotes the unperturbed level index. A is the
microwave field amplitude, and B is the coupling strength
�hopping� between levels. We may also add a phase shift
between them but it will not alter the ensuing method of
solution. We shall set the left electrode potential to be zero
�VL=0, VR=V�, thus the potential shift due to bias V on the
localized level becomes eV /2, i.e., symmetric between con-
tacts. As mentioned earlier, this model better suits those
quantum dot systems where interactions are reasonably
screened and effects from moderate interactions shall be dis-

cussed in Sec. III. ĤC�t� is periodic in time and may be
expanded in Fourier series,

ĤC�t� = �
n

ĤC
�n�e−in�t. �3�

From the Floquet theory, the solutions of a two-level time-
periodic Hamiltonian is given by two-component eigenfunc-
tions ��=1�,16

��p��t� = e−iq�p�t	�p��t� , �4�

where q�p� is the pth quasienergy and 	�p��t� is the time-
periodic Floquet function which may also be expressed in
Fourier series,

	�p��t� = �
n

	n
�p�e−in�t, �5�

where 	n
�p� are also two-component functions spanned in

terms of orthogonal basis functions of the unperturbed sys-
tem. We have left out the spin degree of freedom in the
solution because in this model the Hamiltonian is diagonal in
spin. In order to transform the problem into a time-
independent one, we normally rewrite the Schrödinger equa-
tion in terms of Floquet function 	�p��t�,

�Ĥ�t� − i
d

dt
�	�p��t� = q�p�	�p��t� �6�

and employ Floquet basis notations commonly adopted for
such systems, which enable us to express the Schrödinger
equation in Floquet-Fourier basis �jn�= �j� � �n�, where j
�or i� is the system index and n is the Fourier index. In this
notation the corresponding eigenvector for a given quasien-
ergy qj

�p� is �qj�p and the Floquet coefficients are given by

p�in�qj�p� = 	i;n
�p�
i,j
p,p�. �7�

The eigenvalue problem can be written by inspection on the
resulting Fourier components in Eq. �6� for any one pth qua-
sistate set,16

V

BCS Normal

FIG. 1. Diagram of the quantum dot system with two localized
levels coupled to the electrodes under dc bias V. The left electrode
is superconducting governed by the BCS model and the right elec-
trode is a normal conductor. Single mode microwave radiation
stimulates Rabi oscillations between localized levels in the quantum
dot, affecting its transport properties.
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�
j

�
m

�in�ĤF�jm��jm�qk� = qk�in�qk� , �8�

where the Floquet Hamiltonian is given by

�in�ĤF�jm� = Ĥij
�m−n� − n�
i,j
m,n. �9�

Now we can express our model Hamiltonian ĤC in Floquet-
Fourier basis, which simply takes the following form:

ĤC�t� = �A B

B A
� e−i�t

2
+ 	�1 +

1

2
eV 0

0 �2 +
1

2
eV


+ �A B

B A
� ei�t

2

=ĤC
�−1�e−i�t + ĤC

�0� + ĤC
�1�ei�t �10�

and the Floquet Hamiltonian �9� would be

	
�

ĤC
�−1� Ê�2� ĤC

�1�

ĤC
�−1� Ê�1� ĤC

�1�

ĤC
�−1� Ê�0� ĤC

�1�

ĤC
�−1� Ê�−1� ĤC

�1�

ĤC
�−1� Ê�−2� ĤC

�1�

�


 , �11�

finally the diagonal terms are given by

Ê�n� = 	�1 +
1

2
eV − n� 0

0 �2 +
1

2
eV − n�
 . �12�

After solving the Hamiltonian, the next quantity of interest
for transport analysis is the retarded Green’s function of the
quantum dot, which can be written in Nambu space as

gij
r �t,t1� = − i��t − t1����ci↑�t�,cj↑

† �t1��� ��ci↑�t�,cj↓�t1���
��ci↓

† �t�,cj↑
† �t1��� ��ci↓

† �t�,cj↓�t1���
� .

�13�

Evaluation of each terms makes use the above results from
the first quantization,21

��ci,��t�,cj,��
† �t1��� = 
�,���

p

�i
�p��t�� j

�p���t1� . �14�

Now we shall perform a double Fourier transform on the
Green’s functions whose purpose would be explained in the
next section where we derive time-averaged current using
NEGF formalism. The transformation shall take the form8

fmn��� =
1

2


−�

�

dt1e−i��+n��t1
−�

�

dtei��+m��t f�t,t1� . �15�

After transformation the diagonal components of retarded
Green’s function in Nambu space are given by

gij;mn
r ���11 = �

p

	i;m
�p�	 j;n

�p��

� + m� − qi
�p� + i�


�m − n − Qij
p � ,

gij;mn
r ���22 = �

p

	i;m
�p��	 j;n

�p�

� + m� + qi
�p� + i�


�m − n + Qij
p � . �16�

The off-diagonal components in Nambu space are zero in
this case due to orthogonal spin functions. The nonharmonic
term Qij

p is the normalized quasienergy difference,
Qij

p = �qi
�p�−qj

�p�� /� and this quantity can be either integer or
noninteger. The delta functions in Eq. �16� are interpreted as


�m − n � Qij
p � = �
m,n
i,j when Qij

p � integer


m,n�� when Qij
p = integer � .

�
�17�

In real calculations, the magnitude for the limit of the integer
round up in taken to be in the same order of � in the de-
nominator of Eq. �16�. We have verified that larger or smaller
value for this limit does not affect the results presented in
this paper due to the fact that all these off-diagonal terms in
Green’s functions are orders of magnitudes smaller than the
diagonal ones. We will see this more clearly in the discussion
of I-V characteristics in the later section.

The products on the numerator of Eq. �16� make use
the orthogonality of basis functions of the system,
	i;m

�p�	 j;n
�p��=�k	ik;m

�p� 	 jk;n
�p��. In the case of a quantum dot with

only one localized level ��i=�0 and B=0� the solution for

ĤC�t� is exact, given in terms of the Bessel function,22

��p��t� = e−i��0+1/2eV+p��tJp��� , �18�

where �=A /� and the corresponding retarded Green’s func-
tion after Fourier transform would be

gmn
r ���11 = 
m,n�

p

Jp���Jp
����

� + �m − p�� − �0 − eV/2 + i�
,

gmn
r ���22 = 
m,n�

p

Jp
����Jp���

� + �m + p�� + �0 + eV/2 + i�
,

which may be used to test the convergence against their Flo-
quet basis counterparts as we shall demonstrate in the dis-
cussions of Sec. III.

B. Time-averaged current

Referring to Eq. �1�, the terms ĤL, ĤR, and ĤT are the
following:

ĤL = �
k,�

�k�aLk�
† aLk� + �

k

��aLk↓aL−k↑ + aL−k↑
† aLk↓

† � ,

�19�
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ĤR = �
k,�

�k�aRk�
† aRk�, �20�

ĤT = �
j,k,�

tLj�aLk�
† cj� + cj�

† aLk�� + �
j,k,�

tRj�aRk�
† cj� + cj�

† aRk�� .

�21�

ĤL is the left electrode Hamiltonian governed by mean-field

BCS theory. ĤR is the right electrode Hamiltonian of the
normal state. Operators a�†� annihilate �create� particles on

their respective electrodes. ĤT is the tunneling Hamiltonian
between both electrodes and the quantum dot, and the super-
conducting phase of the left electrode does not enter into the
model because in this set up the time average current is in-
dependent of it. The current is derived from time derivative
of number operator on one electrode,

I�t� = − e� d

dt
N̂L�t�� = ie��N̂L�t�,Ĥ�t���

=2e Re�
i,k

Tr�Gi,Lk
� �t,t�tLi�z� , �22�

where Gi,Lk
� �t , t� and tLi are defined as

G j,Lk
� �t,t1� = i��aLk↑

† �t1�cj↑�t�� �aL−k↓�t1�cj↑�t��
�aLk↑

† �t1�cj↓
† �t�� �aL−k↓�t1�cj↓

† �t��
� , �23�

tLj = �tLj 0

0 − tLj
� � , �24�

and �z is the Pauli matrix. By writing the general time-
ordered function of Gi,Lk

T �t , t1� we can obtain a differential
equation describing its equation of motion. In the nonequi-
librium treatment, the real time variable is replaced with
complex time and integration is then performed using con-
tour integral. Subsequently Langreth’s theorem of analytical
continuation gives us the standard expression for Gi,Lk

� �t , t�,

Gi,Lk
� �t,t� = �

j
 dt1�Gij

r �t,t1�tLj
� gLk

� �t1,t�

+ Gij
��t,t1�tLj

� gLk
a �t1,t�� , �25�

where the free Green’s functions gLk
�/a belong to the left elec-

trode. Green’s function for BCS Hamiltonian has been
solved and discussed in the literature using Bogoliubov
transformations. We include the results in Eqs. �29� and �30�
for completeness, where �N is normal density of states
�DOS�, fL��� is the Fermi-Dirac distribution function of the
left electrode, and ���� is the complex BCS density of states,

���� =
���

��2 − �2
����� − �� +

�

i��2 − �2
��� − ���� . �26�

We can write the current equation as in Eq. �31�, where �̃���
is defined as

�̃��� = � 1 − �/�
− �/� 1

� . �27�

The next step is to evaluate the Green’s functions by solving
self-energies �r/��t , t1� required for the evaluation of
Gr/��t , t1�. Using the standard resonant-level model20 the
self-energy can be written as

�L�R�ij
r/� �t,t1� = �

k

tL�R�i
� gL�R�k

r/� �t,t1�tL�R�j , �28�

�
k

gLk
r �t1,t� = − i��t1 − t� d��N����ei��t−t1�� 1 �/�

�/� 1
� ,

�29�

�
k

gLk
� �t1,t� = i d��NfL���Re������ei��t−t1�� 1 �/�

�/� 1
� ,

�30�

I�t� = − 2e Im�
i,j


−�

t

dt1 d�

2
ei��t−t1�

�Tr��Re������fL���Gij
r �t,t1�

+ �����Gij
��t,t1���Lij����̃����z� . �31�

Since the current is time periodic, it can be expressed in
Fourier series,

I�t� = �
n

Inein�t �32�

and all the following analysis would be performed in Fourier
space. Applying the double Fourier transform on to the self-
energies yields

�Lij;mn
r ��� = − 
m,n
i,j

i

2
�Lij��� + m���̃�� + m�� , �33�

�Lij;mn
� ��� = 
m,n
i,ji�Lij fL�� + m��Re���� + m����̃�� + m�� ,

�34�

�Rij;mn
r ��� = − 
m,n
i,j

i

2
�Rij�1 0

0 1
� , �35�

�Rij;mn
� ��� = 
m,n
i,ji�Rij� fR

− 0

0 fR
+ � , �36�

where fR
�= fR��+m��eV�. For simplicity we assume equal

tunneling constants for each quantum dot levels, tLi= tL and
using wide bandwidth approximation6 we can define the cou-
pling strength �Lij���=2�L

N���tLitLj
� =�L independent of en-

ergy, as commonly adopted. The self-energy is assumed not
to introduce level mixing in the quantum dot, thus only exist
for identical level tunneling �i= j�. The evaluation of Gr is
straight forward using the Dyson equations which can be
expressed in the following matrix inversion that contains the
entire composite of system levels:
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Gr��� = ��gr����−1 − ��L
r ��� + �R

r �����−1 �37�

and G� from the Keldysh equation,

G���� = �Gr�����L
���� + �R

�����Ga���� . �38�

We are interested in the time-averaged current which can be
derived from zeroth Fourier component of the Green’s func-
tions as

I0 = −
e


Im d� Tr

��� fL���Re������G00
r ��� +

1

2
�����G00

� �����L�̃����z� ,

�39�

where the trace over the Nambu space above is adapted in
terms of Nambu index as Tr�A����= �A11���+A22�−���, and
all subsequent analyses are based on time-averaged quanti-
ties.

III. RESULTS AND DISCUSSIONS

In order to clearly illustrate the separate effects of level
transitions from single-level dynamics, the discussion is or-
ganized based on the parameters A and B in Eq. �2�. The
entire results presented here are for weak-coupling case
where �=0.04�, for the reason of key interests explained
earlier in the introduction.

A. For A�0 and B=0

Physically this corresponds to independent absorption and
emission of photons by each localized levels in nonequilib-
rium driven systems. To provide a cleaner picture for such
cases we shall confine the discussions only for systems with
a single localized level in the quantum dot since the analysis
for multilevel systems can be described by superpositions of
single-level systems. The results from the Floquet basis us-
ing finite matrix truncation exactly resemble the exact ana-
lytical solutions using the Bessel basis, and this agreement is
attainable even with moderately small Floquet matrix em-
ploying �4 Fourier terms, suggesting reasonable conver-
gence efficiency of the numerical approach. Smaller frequen-
cies require more Floquet Fourier terms to provide precise
picture for the DOS and the current density. In the time-
averaged I-V curve of Fig. 2, the current saturation and the
steplike features under radiation are similar to Sun et al.9 The
dc resonance in general starts to appear whenever the quan-
tum dot level is aligned with the Fermi level for a given bias.
However, the main dc resonance at eV=4� originating from
the localized level at �0=−2� remains pronounced under the
field radiation regardless of its frequency and amplitude.
This result differs qualitatively from Sun et al.9 who suggest
complete deformation of this dc resonance peak even by
moderately low intensity fields �A� 1

2�� using effectively
identical system parameters and we believe this is due to
inconsistent transforms of the Bessel functions in the Green’s
function therein. Clearly our results are physically more sen-
sible considering the eigenvalues for those states that do not

absorb or emit any photon should remain constant. It is
physically more intuitive to visualize zero photon process
would always exist at finite probability and therefore would
persistently reproduce the dc resonance at the same bias. In
atomic systems such as QPCs the charge screening is much
weaker, therefore other effects such as spins and Coulombic
interactions which are neglected in the current model could
potentially shift the resonances positions depending on their
interaction strength, as pointed out by Avishai et al.23 who
consider full superconducting electrodes with Coulombic re-
pulsion in the quantum dot. Another significant factor is the
symmetry of the potential drop across the system which we
had already discussed in our earlier works.24

The secondary resonances occur at various bias equally
spaced at �� around the dc resonance. The number of sec-
ondary resonance increases for smaller frequencies due to
more available states in the quantum dot from the harmonics
�p=�0� p��. This is clearly visualized by the equal spacing
�� between Andreev bound states in the DOS �Fig. 2�c��,
where the �pth resonance may be viewed as p photons ab-
sorption or emission process. The widths of these Andreev
bound states decrease with their number, conserving the
overall DOS and hence the resonance current at this bias.
The number of secondary resonances also increases with in-
creasing field amplitude appearing at higher and lower biases
due to more contributions from the higher harmonics �higher
order photon processes� in the quasistate summations of Eq.
�16�. For field frequency above the superconducting gap en-
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FIG. 2. �Color online� Single-level quantum dot �A=0.6�,
�L=�R=0.04�, kBT=0.1�, and �0=−2��. �a� Time-averaged I-V
curve under radiation frequency �=0.6� /� showing excellent
agreements between analytical and numerical solutions using �4
Fourier components. �b� shows the effects of increasing and de-
creasing radiation frequency at constant amplitude. Spacing be-
tween peaks around dc resonance is exactly ��. �c� Time-averaged
DOS at resonant bias �eV=4��. The localized level evidently splits
into a series of Andreev bound states inside the superconducting
gap at uniform interval of ��.

ELECTRON TUNNELING THROUGH A HYBRID… PHYSICAL REVIEW B 82, 014535 �2010�

014535-5



ergy ���� /��, the effects start to diminish regardless the
localized level’s positions relative to the gap since the sec-
ondary resonances become too far off the dc resonance, re-
siding either in the region of strong current saturation or in
the very small current region where the Andreev bound states
are barely above the Fermi level at low bias.

B. For A=0 and B�0

This corresponds to a quantum dot with two localized
levels and oscillatory transition dynamics between the levels.
Highlighted in Fig. 3�a� is the normalized zeroth-order
quasienergy pair and on the background are the typical infi-
nite sets of harmonic Floquet quasienergy pairs. The upper
and lower branches come from the levels above and below
Fermi energy, respectively, which are symmetric but the
analyses are applicable to general two level systems. Increas-
ing the coupling strength between the two levels introduces
increasing quasienergy gap at certain frequencies most sig-
nificantly at Rabi resonance frequency, �= ��2−�1� /�, which
will be the main interest here since this is a first-order pro-
cess. In Fig. 3�b�, at Rabi frequency the quasienergy differ-
ence varies linearly with B and it hardly changes at any other
frequencies. The linear relationship between quasienergy dif-
ference and coupling strength provides a mechanism to un-
derstand the energy distance between singularities in the
DOS from harmonic summation in the retarded Green’s
function �Eq. �16�� which in turn determine the current reso-

nance positions along the bias as illustrated in Sec. III A.
Transition dynamics displays distinctly different features
from single-level dynamics as shown in Fig. 4 for time-
averaged DOS and current density, where multiphoton pro-
cess of Andreev bound states are now replaced by energy
splitting equal to the coupling strength B. As we verify in
Figs. 4�a� and 4�b� the DOS at 0 and 4� at resonant bias
eV=4� would split into two under Rabi frequency, separated
by energy difference B due to the increase in quasienergy
difference by the same amount. Other radiation frequencies
would introduce slight shifts to these densities but not split-
ting. Similar features visible in the current density J0 in Figs.
4�c� and 4�d� but the qualitative pictures can never be the
same since calculation of J0 takes into account more com-
plete self-energy effects from the electrodes, making the cur-
rent density at 0 more diminished in this case.

The time-averaged I-V curves in Fig. 5 show the effect of
radiation on the dc resonance for various frequencies. The dc
resonance at eV=4� originates from the localized level
�1=−2� while the other level �2 is above the Fermi level
outside the superconducting gap, therefore contributing cur-
rent without superconducting resonance features, similar to
normal junctions. The �2 level would make identical dc reso-
nance at negative bias eV=−4�, producing negative current
and the complete I-V curve displays the usual antisymmetric
form. The resonance splitting in the DOS causes the splitting
in the resonance current only at Rabi frequency while other
frequencies would hardly change this dc resonance or the
entire transport behaviors in general. Around Rabi frequency,
the resonance peak splits into two separated by 2B and each
part starts moving in opposite directions with diminishing
magnitude as the coupling strength increases. A slight detun-
ing from the Rabi frequency would produces the same results
but with the split pair resonance moves either to the right or
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zero order sets, which form the harmonic infinite set of Floquet
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to the left as B increases while keeping the separation effec-
tively at 2B, this can be seen from the inset in Fig. 5�a�. In
Fig. 6, we again show the effect of increasing coupling and
splitting is only effective at Rabi frequency while other fre-
quency only shifts the resonance unless the coupling strength
is made unreasonably larger, at which point the dipole model
approximation could fail.

We also observe that when the nonharmonic term Qij
p in

Eq. �16� is an exact integer �, the sudden inclusions of the
off-diagonal terms in the retarded Green’s function do not
bring a sudden change in the DOS and current behavior. This
suggests a smooth evolution of the DOS and other physical
quantities through out the frequency range and various cou-
pling strengths. One reason for the absence of such sudden
behavior is these extra off-diagonal terms are higher order
processes which tend to be very small by few order of mag-
nitudes compared to the first- and zeroth-order ones, there-
fore their contributions in the final sum over all quasistates

are never significant. In this semiclassical model, the transi-
tion dynamics is thus described effectively by absorption and
emission of photon energy determined by the unperturbed
localized level spacing n��= ��2−�1� independent on super-
conducting gap, and therefore for moderate factor B it is only
effective for first-order process at Rabi resonance. In the di-
pole approximation, the coupling strength is simply the ma-
trix element of the perturbation which depends on the elec-
tric field polarizations and level orbitals that can be easily
measured in isolated quantum dots or atomic ensembles. The
current model provides a way to directly measure the cou-
pling matrix elements of a driven tunneling system by mea-
suring the energy separation between the split resonances in
the I-V curve.

C. For both A ,B�0

This is basically the superposition of the two separate
cases above, and their noticeable effects may or may not
come together in the same frequency region depending on
the localized levels spacing of the system. For example, us-
ing the quantum dot levels in Sec. III B, �1=−2�; �2=2�,
would display the effects from independent level oscillations
and transitions at two very different frequency region, as
shown in Figs. 7�a� and 7�b�. This is practically expected
because the effects from independent level oscillations de-
pend on the superconducting energy gap which tends to be
much smaller than energy spacing while the transition effect
is dictated by the energy spacing. For example, a low TC
superconducting Nb electrode has an energy gap around
�1.4 meV, compared to a typical InAs or GaAs quantum
dot with few tens nanometer diameter that easily have energy
spacing in the order of few tens of millielectron volt or larger
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between the ground state to the first excited state,25,26 there-
fore in general these two effects always appear at separate
frequency regions. Also since the interactions are excluded,
the model suits better for larger energy spacing, i.e., the more
typical quantum dots and the level position of �2 in this case
become unimportant in affecting independent oscillation dy-
namics of level �1. To illustrate simultaneous effects from
the two dynamics in Hamiltonian �2�, we must set the local-
ized level spacing to be smaller than the superconducting
energy gap as shown in Fig. 7�c� where �2−�1=0.7�, how-
ever since the model neglects interactions �correlations
would be inevitably important at this point�, this would serve
only as rough qualitative pictures on what would be expected
in reality. In Fig. 7�c� we observe the movement of the dc
resonance at bias eV=0.7� due to transition dynamics, as
well as rich secondary harmonic resonance features with
equal spacing �� from arbitrary multiphoton process at field
frequency �=0.7� /�.

IV. CONCLUSIONS

We have derived a method for dealing with time-
dependent phenomena in transport analysis of an S-N-N me-

soscopic junction by incorporating Floquet basis and NEGF
framework. The use of Floquet basis and its incorporation
into the Green’s-function formalism enables more flexible
modeling of time-dependent transport. We found that inde-
pendent level interactions with external fields do not change
dc resonance behavior, regardless of the frequency and am-
plitude of the fields radiation and this differs from the prior
theoretical predictions in the literature,9 accompanied by a
series of secondary resonances due to multiphoton processes
around the resonance. When the transition between two lo-
calized levels is taken into account and level oscillation is
neglected, radiations have significant effects only at Rabi
resonance when �= ��2−�1� /�. At Rabi resonance, the main
dc resonance splits into two and the separation between them
is determined by the coupling strength of the two levels. This
model enables the measurements of the coupling strength in
such driven system using the I-V curve alone.
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