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We show that the competition between magnetism and superconductivity can be used to determine the
pairing state in the iron arsenides. To this end we demonstrate that the itinerant antiferromagnetic (AFM) phase
and the unconventional s*~ sign-changing superconducting (SC) state are near the borderline of microscopic
coexistence and macroscopic phase separation, explaining the experimentally observed competition of both
ordered states. In contrast, conventional s** pairing is not able to coexist with magnetism. Expanding the
microscopic free energy of the system with competing orders around the multicritical point, we find that static
magnetism plays the role of an intrinsic interband Josephson coupling, making the phase diagram sensitive to
the symmetry of the Cooper-pair wave function. We relate this result to the quasiparticle excitation spectrum
and to the emergent SO(5) symmetry of systems with particle-hole symmetry. Our results rely on the assump-
tion that the same electrons that form the ordered moment contribute to the superconducting condensate and
that the system is close to particle-hole symmetry. We also compare the suppression of SC in different regions
of the FeAs phase diagram, showing that while in the underdoped side it is due to the competition with AFM,

in the overdoped side it is related to the disappearance of pockets from the Fermi surface.
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I. INTRODUCTION

The recent discovery of iron arsenide superconductors'~*
brought renewed interest in the research of high-temperature
superconductors. With transition temperatures 7. of more
than 50 K in some cases, these compounds present a very
rich phase diagram displaying superconducting (SC), antifer-
romagnetic (AFM), and structural order.>~® In some pnic-
tides, such as LaFeAs(O,_,F,), PrFeAs(O,_F)),
(Sr;_,Na,)Fe,As,, and (Ba,_,K,)Fe,As,, the competing SC
and AFM phases seem to be separated by a first-order tran-
sition and can only coexist in phase-separated macroscopic
regions of the sample.>*'> However, in other compounds,
such as Ba(Fe,_,Co,),As, and possibly® SmFeAs(O,_,F,),
local probes!3! as well as bulk measurements’®!6-1 dem-
onstrated that SC and AFM coexist homogeneously. This co-
existence, however, is characterized by a competition of the
two ordered states: neutron-diffraction experiments'®!® re-
vealed the dramatic suppression of the magnetization below
T., to the extent that reentrance of the nonmagnetically or-
dered phase sets in at low temperatures.?”

Experiments have also demonstrated the itinerant charac-
ter of the magnetically ordered phase in the pnictides. In
particular, optical conductivity measurements show a consid-
erable Drude weight as well as a pronounced midinfrared
peak below the Néel transition temperature Ty, consistent
with the itinerant picture.?"?> Furthermore, band-structure
calculations reveal that the crystalline field is unable to sig-
nificantly split the energy levels in order to localize 3d
electrons.?? Also, several theoretical models demonstrate the
adequacy of the itinerant description.>*~2” Therefore, in the
iron arsenides, the same electrons that form the supercon-
ducting condensate seem to be the ones that contribute to the
ordered moment.

The interplay between AFM and SC has been investigated
in many contexts,”®7 including the pnictides.?%3-43 In this
paper, following results from our previous work? as well as
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from Refs. 41 and 42, we investigate in detail the connection
between the competition of these two phases and the pairing
symmetry of the SC state. We demonstrate that coexistence
between SC and itinerant AFM in the pnictides for tempera-
tures close to Ty=T, is only possible if the pairing state is
unconventional, as proposed by models with purely elec-
tronic pairing mechanisms.*-32 In particular, using a mean-
field Hamiltonian for the competition between AFM and SC
and expanding the microscopic free energy in powers of the
order parameters, we show that a conventional s** SC state
does not allow a coexistence regime to be established around
the point where the Ty and 7, lines meet, even for extreme
values of the band-structure parameters. Meanwhile, the un-
conventional s*~ state, whose gap function changes sign
from one Fermi surface sheet to the other, may or may not
coexist with AFM, depending on the details of the band-
structure dispersion relations. Specifically, for the parameters
of Ba(Fe;_,Co,),As,, we find that the s*~ state coexists with
itinerant AFM, while the s** state does not (see Fig. 1).

Our results rely solely on the general assumptions that the
magnetism is itinerant and that the band structure of the iron
pnictides is not far from particle-hole symmetry, consisting
of two distinct sets of Fermi-surface sheets:’* hole pockets
located at the center of the Brillouin zone and electron pock-
ets displaced from the zone center by the magnetic ordering
vector Q. Additional details of the band structure, the dimen-
sionality of the system, or the presence of intraband pairing
interactions do not change the conclusions. On the other
hand, for a localized AFM state, the free-energy expansion
reveals that coexistence is easily attained, which is difficult
to reconcile with the observation of phase separation in some
compounds. Our analysis also indicates that the onset of SC
has little effect on localized moments, which is at odds with
experimental observations as well, giving further evidence
for the itinerant magnetism in the pnictides.

We also investigate in detail the origin of the strong de-
pendence of the phase diagram on the symmetry of the

©2010 The American Physical Society


http://dx.doi.org/10.1103/PhysRevB.82.014521

RAFAEL M. FERNANDES AND JORG SCHMALIAN

150

s state (@)

)
=
FM
50
e
0 1 1 1 1
0 002 004 006 008 010 012
X
150
st state (b)

100

T K

50

0 0.02 0.04 006 0.08 0.10 0.12
X

0

FIG. 1. (Color online) Phase diagrams of Ba(Fe;_,Co,),As, for
a superconducting (a) s*~ state and an (b) s** state, obtained by
numerically solving the gap equations. The green region denotes
homogeneous, microscopic coexistence, whereas the dark red re-
gion denotes heterogeneous, macroscopic coexistence. The band-
structure parameters are discussed in Sec. IV B.

Cooper-pair wave function. Expressing the Ginzburg-Landau
coefficients in terms of Feynman diagrams, it becomes clear
that the static staggered magnetic moment m plays the role
of an intrinsic interband Josephson coupling. Specifically, it
corresponds to a term in the free energy of the form

E; < m?|A||A,|cos 6, (1)

where 6 is the relative phase between the SC order param-
eters of the two Fermi-surface sheets, A; and A,. Thus, the
coexistence state in some iron arsenides naturally carries in-
formation about the relative phase of the Cooper-pair wave
functions, which are usually accessible only through intricate
and delicate interference experiments.’4->°

The quasiparticle excitation spectrum is substantially dif-
ferent for distinct pairing symmetries. For the special case of
particle-hole symmetric bands, the system with competing
magnetism and s** pairing have two distinct positive eigen-
values Ey with Ep=& +(M = A)?, whereas for s~ pairing the
positive eigenvalues are degenerate: Ep=&+M>+A% We
find that this special form of the excitation energy in the s*~
case implies that all quartic (and higher-order) Ginzburg-
Landau terms must depend solely on the combination (M?
+A?), which is the root of the SO(5) symmetry of the system
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and, ultimately, what leads to the conclusion that AFM and
SC are in the borderline of coexistence and mutual exclu-
sion. Inclusion of local moments add new terms to the free
energy, removing the system from this borderline regime.

In this paper we also investigate some specific properties
of the coexistence AFM-SC phase. We find that the effects of
Coulomb repulsion on the magnetic superconducting phase
are basically the same as in the case of a pure multiband
superconductor. Particularly, the s™~ state is remarkably
stable with respect to a uniform Coulomb repulsion. We also
studied analytically the shape of the reentrant Néel transition
line inside the SC state for low temperatures. At the mean-
field level, the finite SC gap introduces an overall energy
scale that causes the Néel line to have a divergent slope as
T—0. Quantum fluctuations, which are relevant only in a
very small region, end up suppressing the reentrant behavior.

The competition between AFM and SC explains the sup-
pression of 7, in the underdoped side of the FeAs phase
diagram. Here, we investigate the suppression of SC on the
overdoped side as well. We find that the changes in the Fermi
surface with doping are crucial to kill SC, in agreement to
angle-resolved  photoemission  spectroscopy  (ARPES)
measurements.”’~ In particular, the vanishing of one of the
Fermi-surface pockets marks the onset of a regime where T.
is strongly suppressed with doping. In this regime, the s*~
state is fragile and easily destroyed by the Coulomb repul-
sion, contrasting to the situation where all Fermi pockets are
present.

The paper is organized as follows: in Sec. II we discuss
the competition between AFM and SC solely on phenomeno-
logical grounds. In Sec. III we introduce the mean-field
Hamiltonian and derive the gap equations, the quasiparticle
excitation spectrum, and the free-energy expansion. Section
IV is devoted to the application of the formalism developed
in Sec. III to the iron arsenides, and is divided in five sub-
sections. In Sec. IV A, we present the results in the special
case of a particle-hole symmetric band structure. Section
IV B contains both analytical and numerical results for vari-
ous band structures without particle-hole symmetry. Phase
diagrams for parameters describing Ba(Fe,_,Co,),As, are
presented. In Sec. IV C, we briefly discuss the regime where
the sign of the coefficient that couples the AFM and SC order
parameters becomes negative, and how it can be avoided by
the onset of incommensurate AFM. Section IV D discusses
the effects of intraband interactions and Coulomb repulsion.
In Sec. IV E, we determine analytically the shape of the re-
entrant Néel transition line at low temperatures and the cor-
rections due to fluctuations. In Sec. V we solve the same
model presented in Sec. III but now with localized magnetic
moments instead of itinerant AFM. Section VI discusses the
suppression of T, in the overdoped side of the pnictides
phase diagram and how it is related to the doping evolution
of the Fermi surface. Section VII is devoted to the conclu-
sions and, in Appendix, we derive the Ginzburg-Landau co-
efficients in terms of Feynman diagrams. Some of the results
have been published in a short publication.?’

II. PHENOMENOLOGICAL ANALYSIS

Regardless of the microscopic details, the competition be-
tween superconductivity and antiferromagnetism near their
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FIG. 2. (Color online) Schematic phase diagrams (x,T) for competing AFM and SC orders. Here, x is a generic physical parameter and
T is the temperature. Solid (dashed) lines denote second-order (first-order) phase transitions. For g <0, there is a tetracritical point and a
region of homogeneous coexistence (a), whereas for g >0 there is a bicritical point [(b) and (c)]. If x changes discontinuously across the
first-order transition [panel (b)], forming a region of heterogeneous coexistence for x; <x<x, (shaded area), then its conjugate variable &,
changes continuously and the phase diagram has only one first-order line [panel (c)].

finite-temperature phase transitions can be described in terms
of a Ginzburg-Landau theory of coupled order parameters.
The homogeneous part of the free energy is given as

Fo(AM) = f ddr<%|A|2 + AR+ Zjapme + L
2 4 2 2
+ “—'"M“), 2)
4

where A and M denote the SC and AFM order parameters,
respectively. As usual, A is a complex order parameter, char-
acterized by an amplitude and a phase, and M is a three
component vector. The leading term in the order-parameter
competition is characterized by the coefficient y>0, where
the sign of y reflects that both ordered states compete. As
usual, the quadratic coefficients are given by a,,=a,,((T
—Tyo) and a;=a, o(T—-T,. ) and change sign at Ty and 7.,
denoting the Néel and SC transition temperatures without
order-parameter competition. We consider the situation
where the transitions for y=0 are second order, i.e., the quar-
tic coefficients u,, and u are positive.

Furthermore, we consider that Ty o(x) and 7. o(x) vary as
function of a physical parameter x that could be pressure,
electron density, or magnetic field. In case where both tran-
sitions meet at x=x", i.e., for

= TN,O(X*) = TC,O(X*)’ (3)

we have a multicritical point (x*,7%) in the phase diagram.
The vicinity of this multicritical point is the regime where a
simultaneous expansion of the order parameters is allowed.
The mean-field analysis of Eq. (2) allows for two options for
the phase diagram near (x*,T%), depending if 7> u,,u, or
¥Y? <u,u,. Since we are interested in y>0, it is convenient
to define the dimensionless quantity®®

Y
g=——-1. (4)
VU,

Thus, the nature of the phase diagram is determined solely
by the quartic coefficients in the Ginzbg&Landau expan-
sion, Eq. (2). For g<0 (i.e., 0<y<iumu,), (x*,T°) is a
tetracritical point where two second-order phase lines cross,

leading to a regime in the phase diagram where simultaneous
AFM and SC order occurs homogeneously within the
sample, see Fig. 2(a). In this regime both phases compete but
do not exclude each other. On the other hand, if g>0 (i.e.,
v>\u.u,) the phase competition is sufficiently strong that
both phases are separated by a first-order transition that ter-
minates at the bicritical point (x*, 7). Notice that if the pa-
rameter x jumps discontinuously from x; to x, at the first-
order transition, there is an intermediate regime x; <x <x, of
heterogeneous phase coexistence, see Fig. 2(b). A sharp line
of first-order transitions occurs if one considers the phase
diagram as function of %,, the variable that is thermodynami-
cally conjugate to x, see Fig. 2(c). Critical fluctuations, that
go beyond this mean-field analysis, change the universal ex-
ponents near the critical temperatures and the slopes of the
phase lines near (x*, T*). However, neither the generic behav-
ior shown in Fig. 1 nor the quantitative criterion based on the
sign of g are changed by fluctuations.®!-6>

If we consider g<<0, both order parameters can be finite
simultaneously. This regime is often referred to as coexist-
ence of AFM and SC, referring to coexistence of order. This
should not be confused with phase coexistence in the ther-
modynamic sense. The area in Fig. 2(a) below the tetracriti-
cal point is a single thermodynamic phase characterized by
two order parameters that are simultaneously finite. Simi-
larly, the tetracritical point is not a point where four phases
coexist (which would not be allowed by Gibbs phase rule)
but a point where the system is in a single phase and both
order parameters are infinitesimal simultaneously. Below the
bicritical point, coexistence of thermodynamic phases only
occurs for x; <x<x,, where macroscopic AFM and SC re-
gions occur together in the sample. We use the term homo-
geneous coexistence of AFM and SC order below the tetrac-
ritical point to refer to coexisting order and heterogeneous
coexistence below the bicritical point to refer to coexistence
of phases.

From the Ginzburg-Landau expression, Eq. (2), we obtain
the temperature dependence of the magnetic moment in the
SC phase in the case of homogeneous coexistence,

Ay otts(Tyo=T) + ago V(T =T, )

MZ(T) = |
Ny =y

)
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Without phase competition both order parameters de-
crease as function of temperature, dM?/dT<0 and dA/dT
< 0. Phase competition can change this behavior. For in-
stance, if

as,Oy > am,Ous’ (6)

it follows from Eq. (5) that dM?/dT >0 once superconduc-
tivity sets in. Thus, below T, the ordered moment decreases
with decreasing temperature, as was observed in neutron-
diffraction experiments'®!? in both Ba(Fe,_,Co,),As, and®
Ba(Fe,_,Rh,),As,. It is interesting that the same condition
implies a back bending of the antiferromagnetic phase
boundary upon entering the superconducting state, see Fig.
1(a). To demonstrate this we write for the bare Néel tempera-
ture Ty o(x) =T, o[ 1 +f(x)] with df/dx <0 and f(x*)=0. Thus,
Ty is a monotonic decreasing function of x and meets the
SC phase line at the carrier density or pressure value x*.
Without restriction we assume that T, is x independent near
x*. From the Ginzburg-Landau expansion, Eq. (2), follows
that the Néel temperature T inside the SC phase is given by

am,()ux
Ao Y- Ay 0Us

Since df/dx <0, it follows that dTy/dx>>0 in case Eq. (6)
is valid. Thus close to x* one finds reentrance of the para-
magnetic phase below the SC transition temperature. In
Ba(Fe,_,Co,),As, this was indeed observed.'®!® The
observation®® of dM?/dT>0 in Ba(Fe,_,Rh,),As, implies
that the phase line for this material must bend back as well.
Furthermore, the SC transition temperature inside the AFM
phase is given by

Ty=T.o| 1 - f(x) (7)

am,Oy
oY — as,Oum

Using the condition Eq. (6) and the fact that 7y
<u,uy(g<0) it automatically holds that a,, oy <aj gi,,, im-
plying dT./dx>0. Hence, the SC transition temperature is
suppressed inside the AFM phase.

A very interesting limit is g=0, i.e., at the transition be-
tween the tetracritical point and bicritical point. Focusing on
this multicritical point, where a, and a,, change sign simul-
taneously, one can introduce the five-component vector,

1/4
N=<&> (Re AIm A,\/a—mM). 9)
am aS

In case where the additional condition ux=afum/ afn is ful-
filled it follows that the free energy can be written as

Tc = TC,O 1 +f(X) (8)

For(AM) = f ddr(gﬁz+ﬁﬁ4>, (10)

where a=sign(a,)Va,a,, and u=vuu,,. This is the SO(5)
symmetric form of the Ginzburg-Landau energy that was
first proposed by Zhang to describe the physics of the cu-
prate superconductors.®*% In the context of the pnictides, it
was shown®® that a model Hamiltonian similar to the one
used in this paper is invariant with respect to a global SO(6)
symmetry that contains, in addition to the AFM and SC order
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FIG. 3. (Color online) Schematic representation of the two-band
structure used here. It consists of a circular hole band (band 1, red
line) in the center of the Brillouin zone and an elliptical electron
band (band 2, blue line) shifted by the ordering vector Q from the
hole band. The chemical potential w is positive for electron doping.

parameters, an imaginary density wave state. Below we will
see that there is evidence that the pnictides are indeed
strongly affected by such an enhanced symmetry.

III. MICROSCOPIC MODEL

So far we have analyzed the problem of coexistence be-
tween SC and AFM only on phenomenological grounds,
which gave us interesting and general information about the
phase diagram. Next we develop a microscopic model that
captures the essential aspects of the iron arsenides to deter-
mine their detailed phase diagram. We will also make ex-
plicit contact to the Ginzburg-Landau theory and determine
the coefficients of the order-parameter expansion to obtain
the behavior close to the transition temperatures.

We start from the Hamiltonian

H=H0+HAFM+HSC' (11)

The noninteracting part H, describes two bands shifted by
the momentum Q relative to each other,

Ho= 2 (81,k - M)CITka(r + 2 (82,k+Q - M)dILQUdMQo-
ko ko

(12)

We consider only one hole band located in the center of
the Brillouin zone with dispersion &y, and one electron
band, shifted by Q from the hole band, with dispersion &, .
To keep the discussion as simple as possible, but still captur-
ing the basic properties of these materials, we consider a
circular hole band and an elliptical electron band,

k2

k=10~ m’

[ =
=— +—— 4 13
€2 k+Q €20 2m, Zmy (13)

where ¢, is the energy offset (see Fig. 3). Such a choice is
motivated by ARPES measurements (Ref. 53) as well as by
tight-binding fittings to first-principles band-structure calcu-
lations. The operator ¢y (dLQU) creates an electron with
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momentum k(k+Q) and spin o in the hole (electron) band.
The chemical potential is denoted by u and we define &,
=g,x— M. Frequently, it will be possible to gain explicit ana-
Iytic insight by considering the limit of particle-hole symme-
try, where gg=¢€, g=8&, 9, my=m,=m, and u=0. In this case
the hole and electron Fermi surfaces are identical, leading to
perfect nesting. In what follows we supplement our numeri-
cal analysis of the problem with the band structure of Eq.
(13) by analytical results at or near the limit of particle-hole
symmetry. Even though all five iron d orbitals contribute to
the states at the Fermi surface of the iron arsenides, the phys-
ics of the competition between the antiferromagnetic and the
superconducting states is well captured by this effective two-
band model.?°

The same electrons that form the Fermi surface are as-
sumed to be responsible for the magnetism of the system
through an electronic interband Coulomb interaction I, lead-
ing to excitonic itinerant antiferromagnetism,?6-67-63

i i
Harm=1 2 2 C]isa's.r’dk+qs' 'dk/‘yo'ss’ck’—qs" (14)

kk',qs.s

Here o-i’s), denotes the (ss’) element of the ith Pauli matrix
with s==*1. In the weak-coupling limit, we perform a
Hartree-Fock decoupling that leads, except for a constant
shift in energy, to the effective single-particle Hamiltonian

1 N N
Hapm =— K/E SM(ClLsdk+Qs + dlL+Qkas) ) (15)
ks

where N is the system size. M denotes the antiferromagnetic
gap opened at momenta k that are Bragg scattered due to
magnetic order, §1,k0:§2,k0+Q. In general, for small M, the
Fermi surface is only partially gapped and the magnetic state
is metallic. For large enough M, however, the Fermi surface
can become completely gapped. In the case of perfect nested
bands, an infinitesimal antiferromagnetic gap is already able
to gap the entire Fermi surface. Note that M=|M]| is propor-
tional to the amplitude of the staggered magnetization m and
given by

1 .
M= EvkE s(etdiags) = Im. (16)

Besides the magnetic interaction /, the electrons are also
subject to a pairing interaction V,g, where a,B=1,2 are
band indices. In case of pure interband interaction Vg
=V(1-8,p) the Hamiltonian becomes

HSC =V 2 Ci£+ch-‘—-kld—k’—quk’T' (17)

kk'.q

Below we demonstrate that the introduction of an intra-
band pairing interaction does not change the main conclu-
sions of our paper. A, is the superconducting gap of band «
which, given the interband coupling V, is due to the action of
the electrons in the opposite band &. Thus, A; and A, are
determined by the two gap equations,

|4 .
Ay=— _2 <C1J2TC'_H>,
Nk
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\% .
A== {di,gid v q))- (18)
N%

The expectation values are determined with the mean-field
Hamiltonian,

HSC =- E (AIC;TCjkL + hC) - E (A2dli+Qszk—Ql + hC) .

k k
(19)

The mean-field Hamiltonian formed by the sum of Eqs.
(12), (15), and (19) is quadratic and can be diagonalized
analytically, yielding the self-consistent gap equations,

14 E,
Ap=——2 Kp ., tanh<M> ,
Nk,a ’ 2

1 E
=L gy tanh( B “*) (20)
Nk,a ’ 2

with kernels

A Aa(EZ,k - Alzz - fik) +M?A,
ka 2E, (B2~ EZ))

bl

KM M(E;j + DAy + & oy — M)
k,a —
2E,\(E2y — E2))

(21)

The excitation energies E,j (a=1,2) are the positive ei-
genvalues of a state with simultaneous magnetic and super-
conducting order,

1
E, = E(Fk T+ Qe+ 8) (22)

with Fk=2M2+A%+A§+si,l+si+Q,2 and Qk=—4(s,2(,1
+A%)(812(+Q!2+ A%) as well as 5k= SMZ(A1A2+8k’18k+Q’2
—M?/2). The free-energy density of a system with SC and
AFM long-range order that results from this analysis is

20 Loen o n
SN =M= (AT + A3

_ Z—TE log{Z COSh( Eax )] i (23)
N k,a

2kyT

The superconducting order parameters A; and A, of the
two bands and the staggered moment M are obtained by
minimizing f(M,A,). The gap equations [Eq. (20)] follow as
the stationary points df(M,A,)/ A ,=df(M,A,)/ IM=0.

Before we analyze the impact of magnetic long-range or-
der on the pairing state we discuss the gap equations [Eq.
(20)] in the limit M =0. Here, we perform the momentum
integration by introducing the density of states p; and p, of
the two bands. The condition for 7, is that the largest eigen-
value of
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-Vp, ) (24)

0
o
_Vpl 0

is positive and equals to 1/In[W/(aT,)], were a=me 7E/2,
vg 1s Euler’s constant and W is an upper energy cutoff for the
pairing_interaction. Clearly, the eigenvalues of A are \.
=+ V\p,p,. The pairing state is determined by the corre-
sponding eigenvector,

—— (). ()
Vp1tp2

Thus, for V<0, \_ is the largest eigenvalue and the gap
equation has a solution where A; and A, on the two sheets of
the Fermi surface have the same sign. This is called the s**
state and is analogous to the pairing state of the multiband
superconductor®® MgB,. It is the natural state that arises as a
result of conventional electron-phonon interactions. On the
other hand, the gap equations also allow for a solution for
V>0 with A, and A, having different signs on distinct
Fermi-surface sheets. This s™ -state results from purely elec-
tronic interactions,?**-4648-52 i e it is the natural analog to
the d,2_»-pairing state in the cuprates with a single Fermi-
surface sheet. As the relative sign of A, and A, is —1, this is
an unconventional SC state, even though it is in the same
irreducible representation A,, of the symmetry group Dy, as
the s** state.

In case where A; and A, have the same sign (s** state),
the excitation energies *E,) possibly have nodes.** The
nodes are located at the set of points k,, that satisfy simulta-
neously the equations,

A
Sig, = * 1\ A_I(M2 - 40",
2

A
brpo= =\ T (M =418y (26)
1

determined from the condition E,,=0. Obviously, one con-
dition for nodes to exist is M>=A,A,. For A=A, the con-
dition for nodes in the antiferromagnetic state corresponds to
gl’kn=§2~kn+0’ i.e., where Bragg scattering due to antiferro-
magnetism is large. However, nodes are not guaranteed to
emerge. For example, in the case of particle-hole symmetry
(implying perfect nesting of the Fermi surface)

&=&x=&xe0 (27)

it holds for />|V| that A=A,= iA2=J%M<M and the
above equations cannot be fulfilled simultaneously. This also
follows if one explicitly considers the eigenvalues for s**
pairing in the limit of particle-hole symmetry,

El =&+ (M= A, (28)

(A,A,) =

which are fully gapped for M # A. Only for |V|=1 follows an
entirely gapless eigenvalue E,y, consistent with the condi-
tion given by Eq. (26). In distinction, the eigenvalues for s*~
pairing and particle-hole symmetry are fully gapped and
doubly degenerate,

EL =&+ M+ A% (29)
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It is also interesting to note that, if one considers the
simplification A=A;=-A, even in the absence of particle-
hole symmetry, then the excitation energies for the s™~ case
assume the simple form E.  =(EXM)?+A?, where

- (B o e (Buc i)

are the excitation energies of the pure AFM state. Thus, in
this special situation, one can perform two separate Bogoly-
ubov transformations to diagonalize the full Hamiltonian.
These considerations allow for some general conclusions
of the order-parameter dependence of the free energy, Eq.
(23). The quadratic terms of f(M,A,) depend on the interac-
tion strengths 7 and |V|. However, all other dependencies take
place only via the implicit dependence of E, ) on the order
parameters. In case of s™* pairing, the order parameters enter
these extra dependencies through the combinations
(M + A)?, while for s*~ pairing the third term in Eq. (23) can
only depend on the combination M?+A2. Thus, we find for
the free energy of the s*~ state with particle-hole symmetry,

2M? 2A°
f+_=T+W+2(D(M2+|A|Z). (31)

On the other hand, it follows for the s** state,

2M?  2A?
foi(A M%) = - ™ + LM +|A)D* ]+ PL(|M]| - |A)?],
(32)
where
D)= — 4Tpf dzz 10g[2/ czosh(zﬂz/Z)] (33)
x| N7 —X

is the same function in both cases. These facts have impor-
tant implications for the Landau expansion of the free energy
that we discuss next.

In order to obtain microscopic expressions for the coeffi-
cients of the Ginzburg-Landau theory, we expand
OfM,A,)=f(M,A,)-£(0,0) with respect to M and A,. It
follows from Eq. (23) that

Mx,a Ai
4

of = Gmnge 4 Legt > MAaAlﬁ >
2 4 o 2 "

+ 3 TENPA A, (34)
apB

For the coefficients of the antiferromagnetic order parameter
follows

a,,=

- 2Xph(Q) s

~
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1k Sk
Ak sechz(E —Ask+Q sech? ﬁ

|
=~ 2

N7y T(& k- &rxeQ)’
(35)

with coefficients A, x=—&,x+&zxk++27T sinh(&,,/T) and
the bare static particle-hole response at the antiferromagnetic
ordering vector,

1 tanh(%) —tanh(ngék; )
=— . 36
Q)= £k Erra (0

For the coefficients of the superconducting order parameters
follows

2
‘_/(1 - 5&5) - 50(,8pr(0)3

as,aﬁ =-

sech2< %) [T sinh(BE,x) — €ax]

= , (37
where
(5
Xpp(0) = — > ————— (38)
b Nk,a ‘fa,k

is the bare static particle-particle response at external mo-
mentum q=0. Finally, it follows for the coefficients 7,z that
determine the coupling between both order parameters,

1 < c
yﬂa = b
2Ny o Tgi,k(ga,k + fa,k)(ga,k - §a,k)2
1 D ok tanh(BE51/2) — &5 tanh(BE, 1 /2)
Yaa= 7,
N7y Tga,kf&,k(fi,k - fé,k)

(39)

with  CU) =27 tanh(B&, 1/ 2) (&~ &2+ 2éunéar). Cor=
—fa,k(gi,k—§é,k)sech2(,8§a,k/ 2) as well as CS};
-4TE, | tanh(BE;)/2).

These Ginzburg-Landau coefficients can also be ex-
pressed in terms of Feynman diagrams obtained by integrat-
ing out the fermionic degrees of freedom of the system with
competing AFM and SC. The derivation is presented in Ap-
pendix; in Fig. 4, we show the diagrammatic representation
of all the quartic coefficients in terms of the single-particle
Green’s function G;(k)=(iw,—&,;)7".

Due to the coupling between the two bands, A, and A,
will always appear simultaneously. As follows from the
eigenvectors of A in Eq. (24), close to T,, the ratio A;/A,
=+ (p,/p;)"? is determined by the ratio between the densi-
ties of states of the two bands. In our case holds p,/p;
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FIG. 4. (Color online) Diagrammatic representation of the quar-
tic Ginzburg-Landau coefficients associated to the system with
competing AFM and SC order parameters. The single-particle
Green’s function of the two bands are denoted by G,(k).

=\m,m,/m. The relative sign of A; and A, depends on the
sign of V. Thus, one can introduce the superconducting order

parameter A via
2
Ay= | —P2A,
p1t+p2

2
A=+ Sy (40)

p1+p2
such that A?=(A?+A7)/2. This leads to the Landau expan-
sion coefficients of the superconducting order parameter of

Eq. (2),

—
_ 2a,11p2+ 20, 0p) + 4as1oNpi1pa
' (p1+p2)

[l

2 2
_ 4u‘v,lp2 + 4us,2p2

(p1 +p2)?
_ 2911p2+ 22001 £ 4y12Vp1P2
Y= : (41)
(p1+p2)

Note that the coefficient y of the coupling between the SC
and AFM order parameters depends on the relative phase of
the two SC order parameters. In the next section we analyze
these expressions and discuss the implications of these re-
sults for the phase diagram of the pnictides.

Before moving on, let us briefly discuss the relationship
between the system’s dimensionality and the Néel transition
temperature. Since our mean-field model is insensitive to
fluctuations, it allows a finite 7y even for two dimensions.
However, due to Hohenberg-Mermin-Wagner theorem,’”® a
nonzero Ty will only be possible if the band structure has a
three-dimensional (3D) dispersion, i.e., if the electronic in-
teraction responsible for the AFM instability is effectively
3D. In the iron arsenides, the AFM ordering involves Fe ions
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located on spatially separated layers. Assuming a weak inter-
layer coupling, we can introduce a phenomenological 3D
anisotropic action for the low-energy collective magnetic
modes and obtain the Néel transition temperature Ty,

Ty=Tx N~ In <J> (42)
Ty J

Here, J is the effective in-plane magnetic exchange, J, is
the interlayer coupling, and 70 is the mean-field Néel transi-
tion temperature. Notice that J and J, are effective param-
eters of the low-energy model originated by the electronic
interaction, Eq. (14), and are not necessarily related to local-
ized spins. The logarithmic dependence of Ty on J,/J shows
that the overall scale of the transition temperature of an an-
isotropic magnetic material is determined by the mean-field
value Tﬁ, This explains why, in the iron arsenides, T, has the
same order of magnitude for both the 1111 and the 122 com-
pounds, even though the former are much more anisotropic
than the latter.

IV. PHASE DIAGRAMS

In this section, we will use the formalism developed
above to explore the possible phase diagrams of the system
with competing SC and AFM order. In particular, we will be
interested in analyzing whether different superconducting
states are able to coexist with an itinerant antiferromagnetic
state or destined to phase separate from it.

A. Particle-hole symmetric case

As we stated in Sec. III, the band structure of the iron
arsenides can be generically described by two sets of hole
and electron bands, displaced from each other by the mag-
netic ordering vector Q. Even though the electron and hole
bands are not perfectly symmetric to each other, we can start
our analysis by considering, at first, the case of two nested
bands, such that §=§&, x=-§& k.. Notice that, in this con-
text, nesting does not mean that the distinct pockets of the
Fermi surface have parallel segments; instead, it implies that
they have the same shape and area, such that the noninter-
acting Hamiltonian H,, has particle-hole symmetry.

The limit of perfect nesting corresponds to gy=eg;
=gy, my=m,=m, and u=0 in Eq. (13). In this case, it is
straightforward to conclude that A=|A;|=|A,|. Moreover, us-
ing formula (37), it follows that a,  =a,,, and ug=u,,.
Thus, independently of the relative sign between the Cooper-
pair wave functions of the two bands, they have the same SC
Ginzburg-Landau coefficients, meaning that the thermody-
namic properties of the “pure” s** and s*~ states will be the
same. However, the coupling to the magnetic degrees of free-
dom significantly changes this picture.

The Ginzburg-Landau expansion is formally valid around
the temperature where the AFM and SC phase lines meet,
Ty=T,.. From the magnetic and superconducting quadratic
coefficients, we see that, for particle-hole symmetry, this
condition implies /=|V|. Thus, calculation of the Ginzburg-
Landau coefficients using Egs. (35), (37), and (39) yields
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) s f2)]

4 2
(43)
where a=me™"E/2 as well as
US Uy =Ug= Y11= Y0n=2Y) (44)

with

(51l
1 sech <2T T sinh e & » 7¢3)

‘e zzvr% e TR
(45)

Lo )

Inserting these results into the Ginzburg-Landau expansion,
Eq. (34), yields*

SFMLA) = g(M2 +AY) + %(M2 + A% 4 ggMZAZ,

(46)

where g=(1+cos 6), as given by Eq. (4), with # denoting the
relative phase between the SC order parameters of the elec-
tron and hole bands. Thus, for the s** state (6=0), it follows
that g=2>0, meaning that the s** state is deep in the mutual
exclusion regime, unable to coexist with AFM in the region
of the phase diagram close to 7y=T,.. However, for the s*~
state it holds that g=0, implying that this state is in the
borderline between the coexistence and mutual exclusion re-
gimes.

We can trace back to the Ginzburg-Landau coefficients in
Egs. (35), (37), and (39) the origin for the distinct behaviors
of the systems with competing itinerant antiferromagnetism
and s** or s*~ superconductivity. As we showed above, the
quadratic and quartic SC and AFM coefficients are the same
in both cases. However, the net SC-AFM coupling coeffi-
cient y,_=vy,,+vY»n—2v), is reduced in the case of an s*~
state when compared to the case of an s™ state, where vy,
=71+ v2n+27y;,. Notice that in both situations y>0, evi-
dencing the competition between the two phases.

In fact, from the diagrammatic representation of the coef-
ficients presented in Fig. 4, it is clear that the only Feynman
diagram sensitive to the relative phase between the SC order
parameters of the two bands is the diagram corresponding to
12 It gives a contribution to the free energy of the form
M?|A]|As|cos 6, see Eq. (1). Therefore, the static long-range
magnetic order plays the role of an intrinsic Josephson cou-
pling: it provides the momentum Q to the electrons of a
Cooper pair in band 1, scattering them coherently to band 2,
where they recombine. Thus, the region of the phase diagram
where antiferromagnetism and superconductivity compete
provides an efficient tool to probe the relative phase between
the Cooper-pair wave functions, an information that is usu-
ally reserved to very delicate phase sensitive
experiments.’*~3¢ The existence of such a tool is even more
relevant in the case of the iron arsenides, since both s** and

s*~ states belong to the same irreducible representation A,
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of the tetragonal point group D,,, making interference ex-
periments rather involved and complex.3%71-73

The analysis of this limiting case with particle-hole sym-
metry suggests that while the s** state is intrinsically unsuit-
able for coexistence with the AFM phase in the iron ars-
enides, the s*~ state may or may not coexist with magnetism.
In the realistic case where particle-hole symmetry does not
hold, the decision on whether the s*~ state is in the regime of
coexistence or mutual exclusion will depend on additional
details of the band structure, as we will demonstrate in Sec.
IV B. This explains why some compounds present homoge-
neous coexistence,”®131 such as Ba(Fe,_,Co,),As, and
possibly® SmFeAs(O,_,F,), while in others, such as
LaFeAs(O,_,F,), PrFeAs(O,_,F,), (Sr,_,Na,)Fe,As,, and
(Ba,_,K,)Fe,As,, AFM and SC are mutually excluding.>-!2

Notice that these results do not depend on the specific
functional form of the bands dispersion relations nor on the
dimensionality of the system. They follow solely from the
assumption of particle-hole symmetry §; x=—§&, x.q. Note
also that, as we anticipated in the previous sections, the free
energy, Eq. (46), for the s*~ case is completely symmetric
with respect to both order parameters and can be character-
ized by the SO(5) order parameter N=(Re A,Im A,M). Re-
markably, a similar SO(5) model has been proposed previ-
ously for the cuprates.®#% In the context of the iron
arsenides, recent works®®’# demonstrated that the complete,
interacting particle-hole symmetric Hamiltonian has an
emergent SO(6) symmetry (the other degree of freedom
which is not captured in our model is associated to an imagi-
nary density wave). The existence of such an emergent sym-
metry suggests that our result regarding the ability of the s*~
state to coexist with magnetism is likely valid not only in our
weak-coupling approach but also in the strong-coupling
limit.

B. General case and application to Ba(Fe;_,Co,),As,

We now move away from the particle-hole symmetric
case and consider more specific details of the band-structure
dispersions of the iron arsenides. Let us first consider small
perturbations that break the particle-hole symmetry. For in-
stance, we first take gy=g;o=&,, m,=m,=m but a finite
chemical potential ©<<T7, i.e., we have two detuned circular

bands. An analytic expansion yields, to leading order

4
72
g+_zo.018<;) ,

w\?
g ~2+ 0.386(;) . (47)

Thus, in the case of spherical detuned bands, we always
find a first-order transition between the superconducting and
magnetic phases, independent of the pairing state. This is in
agreement with numerical calculations performed by
Vorontsov et al.,*® which found no region of coexistence
between commensurate AFM and SC.

The second perturbation we consider is an infinitesimal
ellipticity of the electron band, such that m,=m+dm and
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FIG. 5. (Color online) (a) Ellipticity of the electron band e

= 1—% and (b) chemical potential x (in meV) as functions of z.
The parétmeter ¢t interpolates between two points of the band-
structure parameters space: t=0 corresponds to the particle-hole
symmetric case while r=1 refers to the parameters that give good
agreement with experimental magnetization data (Ref. 20) on
Ba(Fe;_,Co,),As, (see the main text for the actual values).

m,=m-om, but with eg=g, y=€,( and u=0. Such pertur-
bation also makes |A;| and |A,| assume different values. In
this case, we obtain the following perturbative expansion of
g for the s*~ case

€p 2 €p 4 om 4
g+~ 1-0.0039 +0.0022{ — | +0.00008{ — —
T T m

(48)

while g, , remains close to 2. Since g,> T, we conclude that
the s*~ state moves again to the regime of mutual exclusion
from antiferromagnetism.

In order for the s*~ state to be able to coexist with AFM,
we need to consider both a finite chemical potential and a
finite ellipticity. Then, depending on the particular values of
the band masses, of the energy offsets, and of the chemical
potential, g,_ will be either positive or negative while g,
remains positive.

To illustrate this, we perform a numerical calculation of
the coefficients g through a particular path connecting two
important points of the parameters space. They are the point
with particle-hole symmetry, where gy=g,y=&,y, m,=m,
=m, and =0, and the point corresponding to the values that
consistently  describe the magnetic properties of
Ba(Fel_XCOX)2A52: 80=0.110 eV, €1,0=€0~ Mo 82’0=80+M0,
Mmp=0.015 eV, m=1.32mgecion, Mm=2m, m,=03m, and u
=u,=0.039 eV. As we showed in a previous work,?’ these
parameters give a satisfactory agreement between our model
and the doping and Ty dependence of the experimental val-
ues of the relative zero-temperature staggered magnetization
in the absence of SC, M(x,T=0)/M(x=0,T=0). The chemi-
cal potential u,. corresponds to a variation in the electronic
occupation number by An=0.06 with respect to w,. Since
each added Co atom replaces one Fe atom, we associate this
increase of An to the Co doping concentration x=0.06.

In particular, the path chosen to connect these two points
is parametrized by a real number 7e[0,1], such that m,
=(1+1*)m, m,=(1-0.7t)m, and p=(u,+ po)t>. The variation
in the electron band ellipticity and in the chemical potential
as function of ¢ are shown in Fig. 5, and the corresponding
values of g,_ and g,, are presented in Fig. 6. Clearly, when
both ellipticity and u are finite, g,_ can be either positive or
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FIG. 6. (Color online) Coupling coefficient g for both (a) the s*~
state and (b) the s** state as function of the parameter 7, which
interpolates between distinct band-structure parameters, changing
simultaneously the electron band ellipticity and the chemical poten-
tial (see Fig. 5 for the definition of 7).

1.0 t

negative, but g,, remains positive. Notice that, for the pa-
rameters corresponding to Ba(Fe,_,Co,),As, (t=1), the s*~
state coexists with magnetism, while the s™ state is incom-
patible with AFM. In particular, for =1, we have

g, ~-052,

g =2.0. (49)

Our analytical results and numerical calculations indicate
that g, is generally positive, in special for the range of
parameters associated to the pnictide compounds. In order to
investigate this point further, we analyzed which parameters
are able to bring g,, to smaller values. Particularly, we no-
ticed that by increasing the mass anisotropy of the electron
band, while keeping the chemical potential fixed, g, can be
reduced. In Fig. 7, we show the effects of an extremely large
mass anisotropy on the value of g,,. All the other band-
structure parameters have the values used before for r=1.
Clearly, even after pushing the electron band ellipticity to
unphysical limits—at least in what concerns the iron
arsenides—we still obtain that the s** state cannot coexist
with magnetism.
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FIG. 7. (Color online) Coupling coefficient g for the s** state as
function of the electron band anisotropy m,/m,. The values of the
other band-structure parameters are described in the text.

These results were briefly discussed in our previous
work?® and, in some detail, by Vavilov et al.*' Considering
that &, ¢, &, are the dominant energy scales of the problem,
the authors of Ref. 41 write the band structure, Eq. (13), in
the form &, y,o=—& x—29,, where ¢ is the angle along the
electron pocket and §,= &)+ 6, cos 2¢ with & proportional
to the chemical potential and band masses difference and &,
to the ellipticity. In this limit, one can approximate |A,]
~|A,| and expand in powers of & and &,. They obtain that
g._ becomes negative for a significant range of values where
both §, and &, are simultaneously finite. Furthermore, they
also find that g, is always positive, in complete agreement
with our previous and present results.

Although the Ginzburg-Landau expansion is extremely
useful to investigate if SC and AFM are able to coexist, it is
formally not valid far from the point where the two phase
lines meet. In order to obtain a complete (x,7) phase dia-
gram, including the back bending of the Néel transition line
predicted phenomenologically in Sec. II, we self-consistently
solve the gap equations [Eq. (20)] at a fixed occupation num-
ber. Using the parameters discussed above for
Ba(Fe,;_,Co,),As,, we obtain the phase diagrams presented
in Fig. 1. A zoom of the phase diagram associated to the s*~
SC state is presented in Fig. 8, evidencing the reentrance of
the AFM transition line. The magnitudes of the electronic
interactions were chosen to yield?*® Ty=140 K at x=0 and
T,=25 K at x=0.06, and are given by |V|=0.46 eV and I
=0.95 eV. The level of Co doping x is associated to the
variation in the electronic occupation number, which de-
pends on the chemical potential. Specifically, we consider
that each added Co corresponds to one electron added in the
system.

We emphasize that all band-structure parameters were de-
termined in our previous work?® by fitting the Ty and x de-
pendence of the experimental zero-temperature magnetiza-
tion, M(x,T=0)/M(x=0,T=0), in the absence of SC.
Therefore, in the phase diagram presented in Fig. 1, all the
available free parameters are fixed by the shape of the tran-
sition lines Ty o(x) and T, o(x) of the independent uncoupled
phases. The actual transition lines Ty(x) and T.(x) of the
system with coupled AFM-SC phases are the solution of the
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st state

0.07 0.08

FIG. 8. (Color online) Zoom of the phase diagram of
Ba(Fe,_,Co,),As, considering a superconducting s*~ state (see Fig.
1). Note the reentrance of the nonmagnetically ordered phase at low
temperatures.

self-consistent gap equations with no extra free parameters
involved.

Clearly, the only difference between the phase diagrams
for an s** and an s*~ SC state is on the coexistence/mutual
exclusion regions. In Fig. 9, we compare the temperature
dependence of the AFM and SC gaps for a fixed doping in
both cases. For T<T,, while in the s*~ case the magnetiza-

(@ s — —T—T T 100
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FIG. 9. (Color online) Absolute values of the superconducting
order parameters A; and A, (in meV), as well as of the magnetic
order parameter M [in units of its value M, at (x=0, T=0)] as
function of temperature 7 (in K) for the fixed doping level x
=0.054 [see the (x,T) phase diagrams of Fig. 1]. Panel (a) shows
the result for an s*~ state whereas panel (b) presents the result
corresponding to an s** state.
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FIG. 10. (Color online) Magnetic order parameter M [in units of
its value M, at (x=0, T=0)] as function of temperature 7 (in units
of the AFM transition temperature Ty) for different doping levels.
Due to the competition and coexistence with the s™~ SC state, M
decreases below 7. Note the reentrant behavior for x=0.059. The
right panel is a zoom of some of the curves from the left panel.

tion is strongly suppressed but still survives, in the s** case it
completely vanishes once the SC gap opens. Note that, for
the s*~ case, the T=0 values for M and A, are smaller than
their values in the respective pure states. In Fig. 10, we
present the temperature dependence of the magnetization for
several doping values in the case of AFM competing with s*~
SC, demonstrating its stronger suppression as the tetracritical
point is approached.

Numerical calculations of the phase diagram associated to
the simplified band structure &, y,q=—§ x—29, discussed
above were recently presented by Vorontsov et al.*> Our re-
sults from Fig. 1 are in general agreement with their findings.
Exploring other regions of the parameters space, they also
found systems where the s™ coexistence region does not
persist all the way to 7=0 as well as a small region at very
low temperatures where s** could, in principle, coexist with
AFM.

A rather small region with coexistence between isotropic
s-wave SC and itinerant AFM was also found by Kato and
Machida® in the context of heavy-fermion compounds (see
Sec. V for a brief discussion about these materials). Consid-
ering a single band without particle-hole symmetry, they per-
formed numerical calculations to determine the phase dia-
gram for different pairing states. In particular, coexistence
between isotropic s-wave SC and AFM was only found far
from the multicritical point Ty=T, and in a very narrow
regime, analogous to what was reported by Vorontsov et al.*?
in the context of the iron arsenides. Note that these results
are not in contradiction to our conclusions, since our
Ginzburg-Landau expansion and, consequently, the defini-
tion of the coupling parameter g,,—is only valid for Ty
=T.,. Far from the multicritical point and from particle-hole
symmetry, the details of the bands dispersions are very im-
portant and it is, in principle, possible to find coexistence
even if g,, >0 at Ty=T..

So far, we have only compared the s*~ and s** SC states
in our calculations. However, electronic theories for the su-
perconductivity in the iron arsenides have also proposed
other symmetries for the Cooper-pair wave function where
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nodes are present.’%’>7® One example is the d-wave state,
where A; and/or A, have nodes along their respective Fermi
pockets. The generalization of our formalism to these other
symmetry states is straightforward. One has only to intro-
duce the corresponding angular factors 7(¢) for the gaps and
for the pairing interaction V, and then average over the Fermi
pockets.

In the case of particle-hole symmetry, where the free en-
ergy is given by Eq. (46), we obtain, for a d-wave state, g
=(\r§—l)u%0.6u. Unlike the s*~ state, the d-wave state is
not on the borderline between coexistence and mutual exclu-
sion from AFM. However, it is neither deep in the mutual
exclusion regime, as the s** state is. Even though the s*~
state is the most compatible with itinerant magnetism, we
cannot exclude that the d-wave state is also able to coexist
with AFM for certain parameters.

C. Incommensurability and the sign of the coupling coefficient

Our model assumes that the magnetism is commensurate.
Experimentally, this is still an unsettled issue for
Ba(Fe,_,Co,),As,. While neutron-diffraction measurements
did not detect any incommensurability inside their resolution
window,!"1820 some works employing NMR (Ref. 13) and
Mbssbauer spectroscopy’’ suggest that the magnetism could
be weakly incommensurate in these systems.

Theoretically, the weak-coupling model for the excitonic
itinerant magnetism naturally predicts the onset of an incom-
mensurate AFM state for small enough temperatures,’® as
recently pointed out by Vorontsov et al.’® To see how this
comes out from the model we used here, consider the spe-
cific case of detuned bands having the same shape, &, ko=
—&1 x—2 . Instead of expressing the Ginzburg-Landau coef-
ficients as momentum sums, Egs. (35), (37), and (39), we can
equivalently express them as Matsubara sums. Using the dia-
grammatic form of the coefficients (see Fig. 4 and Appen-
dix), this is a straightforward calculation and yields

2 2
w,(w; —3u7)

u =47TPTE —Lon o

om0 (@ +p?)?

1
Uy o=2mpT 2 3

wn>0 wn

Wy

Yoo =47pT -,
“ 0 (@ + 1)’

1
Yoa=2mpT 2, (50)

N
a)n>0 wn(wn + lu’z)

Similar expressions were obtained in Ref. 41. Using Eq.
(50), it becomes clear now that u,,<0 for 7, <0.5u, indi-
cating that the transition from the paramagnetic to the com-
mensurate AFM phase is first order. However, as discussed
elsewhere,’® when this condition is met an incommensurate
AFM phase has a lower energy than the commensurate state.
For the parameters we used to obtain the phase diagrams of
Ba(Fe,_,Co,),As, (Fig. 1), where the Fermi pockets have
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actually different shapes, the AFM phase line meets the SC
phase line before this incommensurate instability takes place.
Even if they met after this instability point, it was shown by
Vorontsov et al.3¥*? that the s*~ state remains able to coexist
with an incommensurate antiferromagnetic state.

Not only does u,, become negative for low temperatures
but also the net coupling coefficient y= y;+ ¥ = 275. Us-
ing Eq. (50) for detuned circular bands, we obtain for the s*~
case,

2

2
w, = K
Vi =4mp(ep)T 2 = .
’ ,>0 wn(wi + M2)2

(51)

Thus, y,.<0 for T"<0.3u. Although the sign of 7,_
does not affect the criterion for phase coexistence, 3’
<u,,u,, it significantly changes the forms of the AFM and
SC transition lines inside the coexistence region. In particu-
lar, a negative vy implies that neither 7, nor M are suppressed
in the AFM-SC coexistence regime, see, for instance, Eq.
(6).

A similar result for the AFM-SC coupling coefficient y
was obtained by Zhang ef al.”® in the context of the cuprates.
In a weak-coupling calculation at 7=0 but finite disorder
(otherwise the Matsubara sums would diverge), they obtain a
negative coupling coefficient between a single-band d-wave
SC order parameter and an itinerant AFM order parameter.
Technically, the problem of the competition between AFM
and a single-band d-wave SC is equivalent to our two-band
problem with the st~ SC state. Notice, however, that the
coefficient 7y,_ only becomes negative at T°<T,, i.e., the
incommensurate AFM transition would happen before the
coupling coefficient changes sign. Thus, y,_ has no meaning
in this regime and one would have to go back and calculate
the coupling coefficient between an incommensurate AFM
order parameter and the SC order parameter. However, the
numerical calculations performed by Vorontsov et al.®*? in-
dicate that this coupling coefficient must be positive. Thus,
in our approach, the most stable AFM state and superconduc-
tivity are always competing.

Notice that this theoretical discussion about the incom-
mensurability of the AFM state does not take into account
the coupling to the lattice degrees of freedom. As argued by
many authors, an emergent nematic degree of freedom is
present in the iron arsenides due to its frustrated magnetic
structure.3%-82 The energy of the system is minimized by the
onset of a nematic transition at 7., = Ty. Due to the bilinear
coupling between the nematic order parameter and the shear
distortion, the nematic transition is simultaneous to a struc-
tural transition from the tetragonal to the orthorhombic
phase. Key to this process is the commensurability of the
magnetic fluctuations that give rise to this emergent nematic
degree of freedom.®? Thus, the inclusion of this extra degree
of freedom could change the outcome of an incommensurate
AFM state at low temperatures.

D. Intraband pairing and Coulomb interaction

In writing our weak-coupling expression for the SC inter-
action term, Eq. (19), we considered only an interband pair-
ing interaction V=V,=V,,. If one includes additional intra-
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band pairing interactions V;; and V,,, the only change in the
free energy density, Eq. (23), is that the quadratic term
—%,(ATA2+ AZA)) is replaced by =2 ,5(V™") ,pA%A 5. This will
of course change the gap equations, specially the value of T,
and may also affect the ratio A;/A,. Yet, the inclusion of an
intraband pairing interaction will only change the quadratic
Ginzburg-Landau coefficients «; ,, leaving the values of the
quartic coefficients ug, u,,, and y unchanged. Since our re-
sults regarding the coexistence or mutual exclusion between
the SC and AFM states rely solely on the quartic coefficients,
they will remain unchanged.

Here, we assume that the interband pairing interaction V
=YV, is originated from the coupling between electrons and
collective modes of the system, such as phonons (V<<0) or
paramagnons (V>0), for example. With this in mind, we can
investigate the effects of the electronic Coulomb repulsion
by adding a renormalized Coulomb interaction U>0. First,
consider the case of an uniform Coulomb repulsion with
equal intraband and interband terms U. Formally, there is
now a single interband interaction given by V+ U, which is
enhanced (reduced) in the case of s*~(s**) pairing. Yet, due
to the different origins of V and U, we here opt to write the
total interband interaction in the form V+U.

For the pure s*~ state, it was previously shown that a
uniform renormalized Coulomb interaction U is unable to
completely destroy the SC state, i.e., T.(U) never goes to
zero, no matter the magnitude of the Coulomb interaction.>2
In order to demonstrate this, one writes the linearized gap
equations in matrix form as A,=A,zAg and analyzes the
eigenvalues of

—(V+U)p2>. (52)

_ ( - Up,

-(V+U)p, -Up,

The largest eigenvalue N determines the transition tem-
perature through )C':_ln(WQTC). For small U, it follows
that N=|V|\p;po—3(\Vp; £ p2)?U, where +1 refers to s**
pairing and —1 to s*~ pairing, respectively. The suppression
of the pairing interaction is significantly weaker for the s*~
state, in particular, for similar densities of states p; and p,.
For s**-pairing \, and thus T, vanishes as U— |V|/2, while
in case of s*~ pairing the net pairing interaction stays finite
even for infinite U, where it holds N(U— )=2|V|p;p,/(p;
+p,). These results are summarized in Fig. 11.

We next investigate the effects of a uniform Coulomb
repulsion in the case where s*~ SC coexists with AFM. We
now have

(— (V+U)rg—Ury, —(V+U)r, - Uro) 53)
-(V+U)r,=Ury =(V+U)ry=Ur, )’

where

2 (E2 - &, )tanh(BE, 1/2)
fa= Nica 2Eak(Eak E; 1)

a,

i
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FIG. 11. (Color online) Effective SC coupling constant Ay

=1/In(W/aT,) as function of the ratio between the Coulomb repul-
sion and the pairing interaction U/|V| for both a pure s™ state and
a pure s+~ state. Here, we considered the values |V|p;=0.1 and
|V|p,=0.3 but the conclusions are similar for arbitrary parameters.
The inset is a zoom of the curve associated to the s*~ state.

~ E M? tanh(ﬁEa,k/z)
Nka 2Ea k( - Etzjk)
and the excitation energies are given by Eq. (22) with A,

=A,=0. The superconducting transition temperature is again
determined by the largest eigenvalue of A, which is given by

ro= (54)

7\=—(r1 +72+2r0)U—2r0V+[(r1+r2+2ro)2U2+4r1r2V2
+4UV(27172+ ror' + r()rz)]l/z. (55)

For U=0, we find N=2(\r;r,—ry)V. Let us assume that,
in the absence of the Coulomb interaction, the system under-
goes a SC transition at 7. Imposing the vanishing of the
largest eigenvalue, we obtain that N(U,)=0 for U,=-V/2,
independent of the value of the magnetic order parameter M
or of band-structure details. However, for the s*~ case, V
>0, implying U.<0. Therefore, the s*~ SC state inside the
antiferromagnetic phase is robust against a uniform Coulomb
interaction, similarly to what happens for the nonmagnetic
st state.

We can also consider the case where the Coulomb inter-
action is not uniform, such that its value for intraband repul-
sion U is greater than its value for interband repulsion U’
< U. Now we need to determine the largest eigenvalue N\ of

~ (- (V+U)ry=Ur, =(V+U")r;=Ur

—-(V+U")ry-Ury —(V+U")ryg— Url)' (56)

\ now vanishes for U=|V| = U’, where the plus (minus)
sign is to be used for the case of an s™ (s**) state. In this
case, both states can be destroyed by a sufficiently large
repulsion, yet the s* state is destroyed easier than the s~
state. Note also that the condition U=|V| = U’ is the same for
both situations of a pure SC state and a coexistent SC-AFM
state. Thus, in general, magnetism does not seem to signifi-
cantly influence the ability of the Coulomb repulsion to de-
stroy the SC order. The renormalization of the Coulomb in-
teraction was also investigated using a renormalization-
group approach in Ref. 46. Even though the underlying
reasoning is somewhat different from our analysis, the con-
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clusions of Ref. 46 are consistent with our result. The pair-
breaking contribution of the Coulomb interaction is less ef-
ficient for the s*~ state, if compared to s™ superconductivity.

E. Reentrant Néel transition line and quantum
fluctuations

According to our phenomenological discussion in Sec. I,
the strong suppression of the AFM order parameter in the SC
phase is also reflected in the reentrance of the AFM transi-
tion line, as shown by the calculated phase diagrams of Fig.
1 and confirmed by neutron-diffraction measurements.?’ The
same reentrant behavior is observed in some heavy
fermions,®*8 where AFM-SC coexistence takes place as
well. In the cuprates, theoretical models also proposed that a
similar reentrance is present in the phase diagram.®

Let us investigate in more detail the form of the reen-
trance line in the iron arsenides. For simplicity, we follow
Ref. 41 and consider a small perturbation of the particle-hole
symmetric band structure, & x.@=—§ k=29, with 5,=9
+ 8, cos 2¢, as we explained in Sec. IV B. Assuming that &,
and &, satisfy the conditions for coexistence between AFM
and s*~ SC, we expand the free energy, Eq. (23), only in
powers of M, keeping the SC gap A=A,;=-A, fixed. This
last assumption is justified at low temperatures, where the
SC order parameter saturates (see Fig. 9). For T<§<A, we
obtain for the quadratic magnetic coefficient,

A=A — AT
a,(A,T) = 4( A C) - (4\'27752$/K>6_A/T (57)

c

with 525(51>=5(2)+ 6%/ 2. Here, A, corresponds to the 7=0
value of the SC gap where the quantum phase transition from
the pure superconducting state to the superconducting state
with antiferromagnetic long-range order takes place. Equa-
tion (57) implies that, at T=0, there is AFM order for A
<A,. The negative sign in front of the temperature-
dependent term also implies that Ty is finite for A>A..
Therefore, it correctly captures the reentrance of the AFM
line.

The presence of the exponential term e is a conse-
quence of the fact that, inside the SC state, quasiparticle
excitations are fully gapped. Due to this exponential depen-
dency, the reentrant T line approaches the quantum critical
point with an exponentially steep slope, i.e., as an almost
vertical line. This is in agreement with our calculated phase
diagrams from Fig. 1, as well as with the phase diagrams
obtained by Vorontsov et al.*?

These results were derived using a mean-field approach.
Close to T=0, the presence of quantum fluctuations change
this scenario. To illustrate their effects, we consider collec-
tive magnetic fluctuations in the vicinity of this quantum
critical point. In order to properly describe long-range mag-
netic order we have to include interlayer coupling and con-
sider an effective three-dimensional quantum rotor model.
Due to the fact that quasiparticle excitations are gapped, we
consider a rotor model with dynamic critical exponent®® z
=1. Within a self-consistent large-N theory, where N refers to

-A/T
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the number of components of the rotor, we obtain a renor-
malization of the coefficient a,,— a,, due to critical fluctua-
tions,

m= U Tzf(%rfa +q +w2 (58)

An expansion at low temperatures yields a,—a,,=CT>
with C>0, which dominates over the exponential term e~%/7
that follows from the mean-field theory. The presence of
power-law corrections in a,, is more general than our self-
consistent large-N theory and is expected to occur due to the
presence of massless critical fluctuations. Due to the fact that
the coefficient C is positive, such quantum fluctuations sup-
press the magnetic reentrant behavior at very low tempera-
tures. However, as usual in systems in the weak-coupling
regime, the critical region where quantum fluctuations are
relevant is expected to be very small, and probably hard to
be detected experimentally.

V. LOCALIZED VERSUS ITINERANT MAGNETISM

A key conclusion of our calculation is that homogeneous
coexistence of superconductivity and magnetism is only al-
lowed in case of unconventional s*~-pairing state while both
ordered states exclude each other in case of conventional s**
pairing. This conclusion seems to be at odds with the well-
known fact that antiferromagnetism and superconductivity
do coexist homogeneously in a number of materials where
the evidence for conventional electron-phonon pairing is
very strong, such as the borocarbides®” RNi,B,C and the
ternary superconductors® RMogSg and RRh,B,, with R de-
noting a rare earth. The crucial difference between these
rare-earth based systems and the iron pnictide superconduct-
ors is that the magnetism in the former is due to localized
rare-earth spins while in the latter the same electrons that
superconduct are responsible for the entire ordered moment.
Thus, for our argumentation in the pnictides to hold, it is
essential that the same electrons that form the Cooper-pair
condensate are responsible for the ordered moment. This is
evident from our Hamiltonian, Eq. (11), where the order pa-
rameters A and M are expectation values of electronic states
of the same bands. This is the reason for the highly symmet-
ric form of the free energy of Egs. (31) and (32) and why the
Ginzburg-Landau coefficients for the quartic magnetic, su-
perconducting, and coupling terms are closely related to each
other.

In order to demonstrate explicitly that the phase diagram
of competing magnetism and superconductivity is very dif-
ferent in case of localized spins, here we analyze this prob-
lem in some detail. We recall that the total Hamiltonian is
given by Ho+H apm+Hsc. We keep the same terms for the
kinetic and superconducting parts given by Egs. (12) and
(19), respectively. The pairing interaction V in Hg- might,
for example, be due to the electron-phonon interactions. At
this point we are not concerned whether systems like the
RNi,B,C are indeed characterized by a corresponding two-
band model. Instead, we are primarily interested in compar-
ing localized and itinerant magnetism for a system with oth-
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erwise unchanged electronic structure. It will become
evident below that our analysis is in fact more general. The
crucial new term in the Hamiltonian is H spy Which is re-
placed by
Jx ;
Harm = Zz S (cjyoyd; + Hee.). (59)
l
Here S, refers to a localized spin-S operator and Jg is the
exchange coupling between localized spins and conduction
electrons. We are interested in the regime where Jx leads to
magnetic long-range order via the Ruderman-Kittel-Kasuya-
Yoshida (RKKY) mechanism with JRKKY(r)ZJ%( L(r),
where x,(r) denotes the electronic spin susceptibility. In the
regime of antiferromagnetism with large ordered local mo-
ments, it is possible to neglect the Kondo effect as Jrgyy 1S
larger than the corresponding Kondo temperature. To pro-
ceed, we perform a mean-field analysis of this model. We
introduce the expectation values

<Szz> = mloceiQ.Ria

N R
(5 = Ty Tlepotpron) == mae' ¥ (60)
po

with magnetic ordering vector Q. For definiteness, we con-
sider Jx>0, implying that (S;) and (s;) have opposite sign.
Since we ignore the Kondo effect, our final results are inde-
pendent on the sign of Jg.

In analogy to the theory of itinerant magnetism we per-
form a mean-field calculation, giving rise to the total free-
energy density F=F+F o+ Fsc with contributions from lo-
calized spins, F, from the SC condensate Fgc, and from the
electronic part, Fj., which also includes the order-
parameters coupling. The last two terms are completely
analogous to the case of an itinerant AFM state competing
with SC, Eq. (23), if we identify the magnetic order param-
eter as

= 8o (61)
4

Recall that M in our notation is the antiferromagnetic po-
tential that causes a gap for Bragg reflected points of the
Fermi surface. In case of itinerant magnetism this gap is due
to the electron-electron interaction / and the moment of the
itinerant electrons. Now the microscopic origin of M is very
different. Yet, the expression for the energy of the conduction

electrons is still given by

E
Fou=-2T>, ln[Z cosh( ”"‘)} (62)
’ k,[l 2T

with the same excitation energies E, x=E, x(A;,A,,M) from
Eq. (22). The contribution to the energy due to the pairing
interaction is unchanged as well and given by

Fsc=-2
ap

V;}GAZAB. (63)

Finally, the free-energy density due to the localized spins is
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s
F,=—Tln >, """

m=—S

+ JKmlocmeI’ (64)

where h=Jgm, is the Weiss field of a single spin S. Since
both magnetizations m,,, and m, order simultaneously, we
can eliminate m, and express the Landau expansion in terms
of M. To this end we use m,,,=—dF/ h ;- =T and solve for

mg(myo.). Using M of Eq. (61) instead of My, We find
to leadmg order

T
mel=—2<M+ Bs2 ) (65)
with
S(S+1)
g = .
12

S(S+D[1+25(5+1)]

Bs= 90 . (66)

After inserting this result for m, into the free energy, Eq.
(64), we can expand it and thus determine the Ginzburg-
Landau expansion simultaneously for the SC and AFM order
parameters, A, A,, and M. We obtain the exact same expres-
sions for the coefficients related to the superconducting order
parameter, a, .z and u,, as well as for the coupling v,z
between the AFM and SC order parameters. Despite the
same formal expression, the physical interpretation of the
order-parameter coupling terms v,z is somewhat different
now. It reflects changes in the conduction-electron-mediated
RKKY interaction due to the onset of superconductivity.

The only difference in the values of the Ginzburg-Landau
parameters due to the presence of localized spins is for the
coefficients of the magnetic order parameter. We find

AT
ap="—"">5-2 67

ag J%( X ph(Q) ( )

and

T
=+ (68)
(as/k)

where u is the quartic coupling of itinerant spins given by

Eq. (35). The additional term in Eq. (68) is solely determined
by the Néel temperature, Ty, the size of the spin, S, and the
coupling Jx. Ty is determined via a,,(Ty)=0 and given, as
expected, by the RKKY coupling,

1
Ty= EaSJiXph(Q) (69)

with bare spin susceptibility of the conduction electrons at
the ordering vector Q. Since Eq. (45) gives uglz p/ (2T12\,), it
follows that the relative change in the magnetic Ginzburg-
Landau coefficient is

0
Uy — Uy, ﬁ _
e (k)0 (a5' 207, (70)

ag
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The additional logarithmic term In3(ag'J2p™2) occurs
only near particle-hole symmetry and is replaced by a con-
stant of order unity away from particle-hole symmetry. The
prefactor Bg/ ag grows as S? for large S. Thus, it is easily
possible that the quartic coefficient of the magnetic order
parameter is significantly enhanced in case of localized
spins. For example, the relative corrections are around 200%
for S=7/2 and Jgp=0.025. Since the order-parameter cou-
pling and the quartic coefficients of the superconducting
term are unchanged, it follows that the condition y<\uu,,
for coexisting order can now be fulfilled easier than in the
case of purely itinerant systems. This offers a natural expla-
nation for the observation of homogeneous coexistence of
both phases in systems such as the RNi,B,C and addresses
the fact that coexistence observed in systems with localized
spins is not in contradiction to our conclusions. For com-
pleteness, we also analyzed a model with additional mag-
netic interactions between localized spins that are not cap-
tured by the RKKY mechanism, adding to H sgy of Eq. (59)
the term %Ei! #iSi*S;. This new term will change the value of
Ty but not affect the expression, Eq. (68), for u,),.

Additional consequences for localized spins are that the
coefficient am’0=(aSJf<)‘1 of the temperature-dependent qua-
dratic coefficient a,,=a,,o(I-Ty) is expected to be larger
compared to the corresponding coefficient a,o==p/T, of the
superconducting order parameter if we consider the multi-
critical point 7,.=Ty near particle-hole symmetry since
a0/ as0=x,n(Q)/p. With Eq. (6) follows then that it be-
comes harder to achieve a suppression of the magnetization
with dM?/dT >0 below the superconducting transition. The
observed suppression'®1%93 of M in the coexistence region of
Ba(Fe,_,Co,),As, and Ba(Fe,_,Rh,),As, is therefore an in-
dication that the same electrons are responsible for both
states and that magnetism is itinerant in these materials. On
the other hand the condition a, 4y <a,, oit,, for suppression of
T. in the magnetically ordered state can easily be fulfilled.
Thus, while SC in systems with localized spins is affected by
magnetic long-range order, the opposite does not seem to
hold and AFM is rather indifferent to SC.

Finally we comment on the relevance of this calculation
for heavy-fermion superconductors, such as CeRhlns and
UPt;. In CeRhlIns, the coexistence between magnetism and
superconductivity has been investigated in great detail®
while in UPt; there is clear evidence®* for suppression of
magnetism below 7. The heavy-fermion system are believed
to be properly described by the Kondo lattice Hamiltonian®
with coupling between localized and conduction electrons as
in Hpy of Eq. (59). However, our analysis of this model,
where we completely ignored the Kondo effect and the emer-
gence of a heavy electron state is inadequate for such sys-
tems. In fact one expects that a system in the heavy electron
state is better described by the theory employed here for the
FeAs systems, yet the interactions / and V as well as the
quasiparticles masses are heavily renormalized due to Kondo
lattice screening. Thus, while a detailed theory for the com-
petition of magnetism and superconductivity in heavy elec-
tron states is complex, we do expect a similar competition in
the FeAs systems and these heavy-fermion compounds. The
very similar behavior of the SC and AFM transition lines in
the phase diagrams?*3385 of Ba(Fe,_,Co,),As, and CeRhlIns,
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as well as the suppression of the magnetization®* of UPty
below T, certainly support this view.

VI. SUPPRESSION OF SC IN THE OVERDOPED REGION

So far we have analyzed the competition between AFM
and SC with the consequent suppression of the supercon-
ducting state in the underdoped region of the phase diagram
of the iron arsenides. In the overdoped region there is no
magnetically ordered state, yet SC is also suppressed and
eventually disappears. The Fermi surface in this part of the
phase diagram also changes significantly: for electron (hole)
doped samples, it is characterized by increasingly large elec-
tron (hole) pockets and decreasingly small hole (electron)
pockets,>® which eventually disappear at a certain doping
level. In this section, we investigate how the disappearance
of these pockets from the Fermi surface affects the transition
temperature of the pure SC state.

We consider, once more, one hole pocket centered at the
Brillouin zone and one electron pocket displaced by Q from
the zone center. For definiteness, we use the band disper-
sions, Eq. (13), with gy=g, =€, and vary the chemical
potential w. Here, we consider the effects of electron doping
only, such that u>0; the case of hole doping (u<0) is
analogous and the same conclusions hold. For simplicity, we
first consider V to be constant as u changes and neglect
intraband pairing interactions. The linearized gap equations
are then given by

¢
tanh| —
VA, (Y <2TC>
Al—__z f_wda)z(f)—g ,
3
VA W tanh(g)
Apy=——| dép,(H—F1, (71)
2 Jy £

where, once again, W denotes an upper energy cutoff asso-
ciated to the pairing interaction. In a two-dimensional (2D)
system, the density of states p;(£) is constant if the energy &
falls inside the bands. Therefore, diagonalization of the lin-
earized gap equations give the following implicit expression
for T,:

1 (eo=w/2T) (Wi2To) tanh x tanh y
== dx dy——,
Ay 4xy

—(W/2T,) —min[(W/2T,),(sg+/2T,)]
(72)

where we introduced )\0=V\J’E. For simplicity, let us first
consider the special case W=g; the main conclusions hold
for an arbitrary W.

Although a complete analytical solution for 7.(w) is not
available from Eq. (72), we can obtain some important lim-
its. For small u<<g), we obtain that 7, decreases linearly
with respect to Tﬁ_o) =T.(u=0),

T,= ﬂc‘”(l - i) (73)

480
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Equivalently, we can show that the effective coupling
constant \ = ln‘l(%%ﬁ) decreases linearly with u from its
n=0 value \. At the special point u=g,, i.e., when the hole
pocket shrinks to a single point in the Fermi surface, the
effective coupling constant is reduced to about 70% of its

initial value, No=\/V2, implying

T, = ]ﬁo)e‘\@‘”", (74)

Even though the vanishing of the hole pocket does not
cause T, to vanish, it does signal the onset of a regime where
the coupling constant decays very strongly with respect to
the chemical potential w, in contrast to the case of small
chemical potential, where the decay A was linear in u. To
illustrate this point, consider the regime of £, < u<<2g, such
that uw—ey,>T.,. Notice that this condition is not too restric-
tive, since 7.< 7§0)<80, by construction. Then, it follows
that

)‘—2111( £ ) (75)

implying

2 1
T.=TY exp| - ——F—— +—
)\21n< %o ) A

M= &g

Clearly, the effective coupling constant only vanishes at
m=W+ey=2¢g, i.e., where the range of energies for which
the net attractive interaction is positive does not cross the
hole pocket. However, it is already significantly reduced for
values of the chemical potential much smaller than that one.
In Fig. 12, we present the behavior of T, for two values of
the effective zero-doping coupling constant, Ay=0.2 and A,
=0.3. Notice that, in both cases, T, decreases moderately for
u<gg (i.e., when the hole pocket is small but still present)
and then is strongly reduced for w>g; (i.e., when the hole
pocket disappears from the Fermi surface). The same conclu-
sions also hold for the case of an arbitrary cutoff W> g: the
special point of the phase diagram where the hole pocket is
reduced to a Fermi point marks the onset of a dramatic re-
duction of 7., no matter the initial value of the coupling
constant \.

As we mentioned, T actually only vanishes at u=W+g,.
However, in this region where it is strongly suppressed, even
a uniform Coulomb interaction is able to completely destroy
superconductivity. This is to be contrasted to the optimally
doped region, where the s*~ state is robust against a uniform
Coulomb repulsion, as we discussed in the previous section.

To illustrate how the s*~ SC state is killed in the region of
strong suppression, u—gy>>T,, consider W=g; and an uni-
form repulsion U>0. For simplicity, we focus only on the
limit of U>V. To leading order, the equation determining
the effective SC coupling constant is given by

(76)

PHYSICAL REVIEW B 82, 014521 (2010)

(0)
TC /TC 0.5
A
1.0k 025
/e
0.8 F 0.9 10 1.1
06 I~ ©
04t | = D
02F =

O 02 04 06 08 10 /g

FIG. 12. (Color online) Superconducting transition temperature
T, (in units of its value at zero chemical potential Tfo )) as function
of the chemical potential w (in units of gg) for both an initial effec-
tive SC coupling (a) Ag=0.2 and (b) \y=0.3. The insets show the
changes in the Fermi surface with u, with the red circle (blue el-
lipse) denoting the hole (electron) pocket. In the upper right corner
of each panel we present a zoom of the region around u=g, where
the electron pocket is reduced to a Fermi point.

€0
21In Vpip2
— &
=% -1 (77)
0
Neft ln(—)Pl +2p;
M= &g
Defining \;=Vp;, we obtain
2\ 1
M= | M=y (78)
1 €0
ln( )
Mm=&p

Note that A vanishes at u*=gy(1+¢~"M) but is positive
for w<<u*. Thus, a sufficiently large Coulomb interaction U
is now able to destroy the s*~ SC state, contrary to what
happened when the hole pocket was part of the Fermi sur-
face, where A ;— const even as U— .

The previous analysis holds for a 2D system. In the case
of a three-dimensional system, the density of states is not
constant anymore, but given b V=c Veg—u— & for the
hole band and by p,(€)=c,Vey+u+ & for the electron band.
Here, we neglected the anisotropy of the electron band and
denoted unimportant constants by c¢;. The main difference
from the two-dimensional case is that the densities of states
go to zero at the bands edges, leading to a significant stron-
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FIG. 13. (Color online) Comparison between the behavior of T,
(in units of its value at zero chemical potential Tio)) as function of
the chemical potential  (in units of g;) for a two-dimensional and
a three-dimensional system (green and red curves, respectively).
The coupling constants were chosen to give 7’20)%0.03W in both
cases with W=g,,.

ger reduction in 7, as the chemical potential increases. This
is illustrated in Fig. 13, where we compare the solutions of
the linearized gap equations [Egs. (71)] for the cases of a 2D
and a 3D system, with coupling constants chosen to yield
T.(w=0)=0.03W. Therefore, close to the point of the phase
diagram where the hole pocket disappears, the space dimen-
sionality matters much more than in the usual Cooper prob-
lem.

Our results suggest that the main factor responsible for
the complete suppression of the SC state in the overdoped
region of the iron arsenides phase diagram is the evolution of
the Fermi surface with doping. This is corroborated by
ARPES measurements®’° on Ba(Fe,_,Co,),As,, which
show no superconductivity in the overdoped region after the
Fermi surface loses one of its pockets around x=0.15. The
fact that superconductivity requires the presence of the hole
pocket and the observation that the superconducting gap on
the hole and electron pockets are very similar, strongly sup-
port the view that the pairing interaction in the pnictides is
due to interband coupling.

VII. CONCLUDING REMARKS

We showed that the ability of superconductivity and anti-
ferromagnetism to order simultaneously depends sensitively
on the nature of the Cooper-pair wave function. In a two-
band system with particle-hole symmetry, the itinerant AFM
state and the unconventional s*~ SC state are exactly in a
borderline regime between phase coexistence and phase
separation. In contrast, the conventional s** state is deep in
the regime of mutual phase exclusion. We further demon-
strated that this result holds regardless of additional details of
the band structure or the system’s dimensionality. It does not
change either when one considers the presence of intraband
pairing interactions or the effects of Coulomb repulsion. The
robustness of this result, valid around the multicritical point
Ty=T,, is related to the quasiparticle excitation spectrum of
the system, which depends on the peculiar combination M?
+|A[*=N? only. This is the root of the SO(5) symmetry of
the free-energy expansion, which has been shown to hold not
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only in the mean-field level, but also in the strong-coupling
limit, as a subgroup of an emergent SO(6) symmetry present
in the Hamiltonian.®® Furthermore, the inclusion of fluctua-
tions in our free-energy expansion are known to not change
the condition for having the borderline regime,%? g=0. All
these facts suggest that this simple result is a much more
general property of this type of system. We also demon-
strated that for our results to hold, it is crucial that the same
electrons that form Cooper pairs are responsible for the for-
mation of the ordered moment. For instance, we showed that
an AFM state generated by localized moments has a ten-
dency of being indifferent to SC, falling much easier in the
regime of phase coexistence.

When applying this result to the pnictides, one has to
critically evaluate whether the assumptions that were made
are too restrictive. We assumed a certain vicinity to particle-
hole symmetry. It is evident that the real materials do not
have perfectly nested bands.>® Yet, there are clearly two sets
of pockets whose centers are separated by the ordering vec-
tor Q. As we showed, small perturbations in the ellipticity of
one pocket or in the chemical potential bring the s*~ state to
the regime of mutual exclusion. However, simultaneous per-
turbations in both quantities can bring the system to either
regime, as our Fig. 6 illustrates. Most importantly, small de-
viations from perfect nesting are not sufficient to lead to
simultaneous order of magnetism and s** pairing close to the
multicritical point. The fact that particular details of the band
structure are able to bring the s*~ state either to the phase
coexistence or to the phase separation regime is, in our view,
what makes some of the iron arsenides display second-order
AFM-SC transition and others, first-order AFM-SC transi-
tion. For Ba(Fe,_,Co,),As,, we were able to independently
“fit” the effective band-structure parameters to give the cor-
rect doping and Ty dependence of the zero-temperature mag-
netization in the absence of superconductivity.”?’ Having this
set of parameters, which did not depend on any SC property,
we were able to obtain the complete mean-field x-7 phase
diagram and to readily calculate the parameter g, verifying
that, as evidenced by many experimental probes,”%13-1?
Ba(Fe,;_,Co,),As, has homogeneous coexistence between SC
and AFM states.

For other compounds that are believed to display phase
separation, such as LaFeAs(O,_,F,) and (Ba,_,K,)Fe,As,,
we do not have the same systematic diffraction measure-
ments that allow a reliable extraction of effective two-band
parameters. Even though tight-binding fits to density-
functional theory calculated band structures are available,
they usually refer to the parent compounds. The problem to
extrapolate them to finite doping is that, in these materials,
doping is not on the Fe site nor on the FeAs plane, which
makes it much more difficult to make a direct association
between electronic occupation number and doping level, as
we did for Ba(Fe,_,Co,),As,. Furthermore, in some of the
pnictides, the issue of whether they have homogeneous or
heterogeneous AFM-SC coexistence is still not completely
settled. For example, in (Ba;_,K,)Fe,As,, while many ex-
periments find phase separation, Mossbauer spectroscopy
identifies microscopic coexistence.”’ In SmFeAs(O,_,F,),
muon-spin rotation® finds homogeneous coexistence while a
work combining powder x-ray diffraction, Mdssbauer spec-
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troscopy, and nuclear resonant forward scattering finds phase
separation.”!

In what concerns the pairing state, although many theories
for pairing due to electronic interactions predict a nodeless
s* state, other models also suggest that accidental (i.e., not
related to symmetry) nodes*”’>7® or even d-wave nodal
states®® could be present. Furthermore, penetration depth ex-
periments are, in principle, consistent with the existence of
accidental nodes.’”> The inclusion of gap nodes in our model,
as we discussed, tend to move the SC state from the border-
line regime to the mutual exclusion regime, although not as
deep as in the s** case. Clearly, A, sign-changing gap func-
tions with specific configurations of nodes could be as effec-
tive as small perturbations of the particle-hole symmetric
band structure in making the AFM-SC state go from one
regime to the other. Thus, while we cannot discard the pres-
ence of unconventional nodal states coexisting with AFM,
we can certainly discard the conventional s** state: it is sim-
ply incompatible with magnetism.

Regarding the nature of the magnetic state, there is still
some debate whether the AFM phase is due to conduction
electrons or localized spins. Our analysis shed light on this
subject: as our calculations demonstrated, a magnetically or-
dered phase with localized spins can coexist much easier
with superconductivity. This holds even for conventional
BCS states, like in the case of the ternary® and quaternary®’
rare-earth compounds. Furthermore, the magnetization is not
so affected by the SC condensate as in the case of purely
itinerant magnetism. Therefore, the experimental observation
of reentrance of the paramagnetic phase inside the SC
dome? seems to rule out the AFM state formed only by
localized moments.

As we showed, in the underdoped side of the FeAs phase
diagram, both Ty and T, are suppressed due to the competi-
tion between the AFM and SC phases. The Néel transition
line is even bent back, approaching the x axis vertically,
similar to the case of a first-order transition line. The sup-
pression of T is milder; this difference is probably due to the
fact that the AFM gap opens only around the corresponding
Bragg scattered points,*’ whereas the SC gap opens isotropi-
cally around the Fermi surface. In the overdoped side, how-
ever, SC is the only thermodynamic ordered phase of the
system and yet it is suppressed similarly to the underdoped
side. Our calculations using the coupled SC gap equations
shows that this suppression is related to the disappearance of
one of the pockets from the Fermi surface. As suggested by
our Figs. 12 and 13, and by ARPES measurements®’’ in
Ba(Fe,_,Co,),As,, the main cause of suppression of SC in
the overdoped side seems to be the doping-induced changes
in the Fermi surface rather than possible changes in the mag-
nitude of the pairing interaction. Interestingly, the Fermi sur-
face is also indirectly responsible for the suppression of 7, in
the underdoped side since it is the driving force of the AFM
instability.?’

The calculations we presented here did not take into ac-
count another important degree of freedom present in the
iron arsenides, the orthorhombic distortion. However, in
separate works, we showed that the competition between SC
and AFM, combined with the coupling between nematic de-
grees of freedom and structural distortion, are able to consis-
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tently explain the observed back bending of the structural
transition line”? inside the SC dome as well as the increase in
the shear modulus®? below T..

Finally, we comment that in many models of unconven-
tional pairing in the iron arsenides, the bosons responsible
for the formation of Cooper pairs are spin
fluctuations.*~4649-51 In this case, the pairing interaction V
itself would also be sensitive to the presence of magnetic
long-range order. Clearly, this would change some details of
the coexistence state, particularly the form of the transition
lines. Yet, our main conclusions still hold in this case, since
the decision about the coexistence between AFM and SC is
made when both transition temperatures are close, implying
that the order parameters are only infinitesimal.
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APPENDIX: DIAGRAMMATIC INTERPRETATION OF
THE GINZBURG-LANDAU COEFFICIENTS

Here, we rederive the Ginzburg-Landau expansion in Eq.
(23) by explicitly integrating out the fermionic degrees of
freedom of a system with competing SC and AFM. This
method is useful since it provides a diagrammatic interpreta-
tion for the coefficients, as presented in Fig. 4. We first de-
fine the Nambu operator

Y= (o cly) digr dig))” (A1)

and generalize the uniform order parameters A, and M to
inhomogeneous functions of space and time Aa,(k,w") and
M0, where w,=(2n+1)7T is a fermionic Matsubara fre-

quency. Thus, denoting k=(k,w,), we obtain the Green’s
function,

él:,lk’ = (iwn - ék) 5](,](' - Uk—k’ S (AZ)
where the hat denotes a matrix in Nambu space and
(A]k—kr =Ak—k' +Mk—k’~ (A3)

With the help of the Pauli matrices 7, we can write the 4
X 4 Nambu matrices as

A A 0
& = (fl,kﬁ, ) (A4)
0 §2,k+QTz
and
A~ - A] T 0
A, = 4 ) A5
4 ( 0 - AZ,qTx ( )
as well as
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M :< 0 —MqT())
a —MqT() 0 '

Therefore, after introducing the condensation energy of the
magnetic and superconducting phases, we obtain the action,

2
s= [t [ |22 ]
X ’ LT Vv

(A6)

where [,=T%,3, and [,=7[dx[{ 'dr with v denoting the
volume of the system. The fermions can now be integrated
out, yielding an effective action in terms of the collective
AFM and SC fields S The partition function of the free
fermions is given by

Zy=det(- Gy"), (A8)

where we defined the noninteracting Nambu Green’s func-
tion CA/(I)_kk, =(iw,— &) O The effective action reads

SeffZ—Trln(l—g()U)'i'Z 7—7

X

)

Here, the trace refers to the sum over momentum, frequency,
and Nambu indices. Notice that, for uniform AFM and SC
gaps, the total free-energy density (free-fermions contribu-
tion included) is given by

2M? 2AA,

v (A10)

f=- f In det(G; ) +
k

Since det(éi}(,):Ek,a(wi+E§,k), we can evaluate the Mat-
subara sum to obtain

f==-2T>, 1n|:2 cosh(Ea’k)} +

Kk,a 2T

2M?  2AA,
I 1%

(A11)

with excitation energies E,y given by the positive roots of
Eq. (22). Minimization of the free energy, Eq. (All), with
respect to A, and M leads then to the gap equations [Eq.

(20)].
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Going back to the effective action, Eq. (A9), we can now
perform a Ginzburg-Landau expansion in the AFM and SC
order parameters. Expansion of the logarithm yields, for the
free energy relative to the paramagnetic, normal phase

| EEDPUDSURR B M?* AA
8F = ~Tr(GoU)* + —T U4+2f (——#>
S TG0 + TG0y +2 | | ==
(A12)

Considering static and homogeneous AFM and SC gaps and
performing the traces in the Nambu space, we obtain the
free-energy density expansion of Eq. (23) with Ginzburg-
Landau coefficients,

4
am=—+4J Gl kGZk’
I k ’ ’
2
as,aﬁ == _(1 - 50/[%) - 25015 Ga,kGa —k>
\4 X ’
Up = 4J G%,kG%,k’
k
Us o= 2f Gi,thzx,—k’
k
Yoa=—4 J G ouiGatG1 4G ks
k

Yoa=2 f GoiGoikGa1Ga - (A13)
k

In the previous expressions, we introduced the noninteract-
ing single-particle Green’s function G, ;=(iw,—& ;)" and
Gy =(iw,—& )" Thus, the coefficients depend only on
the band structure and on the magnitude of the electronic
interactions. The Feynman diagrams associated to the quartic
coefficients of Eq. (A13) are presented in Fig. 4. Evaluation
of the Matsubara sums then leads to Egs. (35), (37), and (39)
for the Ginzburg-Landau coefficients.
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