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We study the physics of kinks of dislocation; their possible wavelike properties and energetics. We discuss
their Bose-Einstein condensation and the possible connection with results in recent torsional oscillator experi-
ments. The possible connection with our recent proposal of grain-boundary roughening in this system is
clarified.

DOI: 10.1103/PhysRevB.82.014519 PACS number�s�: 67.80.�s

I. INTRODUCTION

Since the discovery of an increase in torsional oscillator
�TO� frequency in solid 4He at around 200 mK,1 there have
been renewed interests in its low-temperature physical prop-
erties. Much recent focus is on the role played by defects in
this system.2–8 For example, it is suggested that large-angle
grain boundaries can exhibit superfluid behavior.4,8 Disloca-
tion cores are found to exhibit superfluid behavior.6,9

To study the physical properties in the solid phase, it is
important to understand the nature of the elementary excita-
tions. One such type of excitations is phonons. Defects such
as dislocations can also form in the solid phase. Dislocations
are linelike objects. Their motion is through the motion of
kinks whereas phonons do not carry mass currents, defects
can.

If the temperature is low enough, the motion of defects
can exhibit wavelike behavior. Quantum vacancy waves
were discussed in the context of three-dimensional �3D�
solid He.10–13 In this paper we study the physics of kink
waves; their Bose-Einstein condensation and discuss their
possible connection with the experimental results. The pos-
sibility that kinks of dislocations may play a role has previ-
ously been raised by de Gennes.14 Our calculation is very
different from his, however.

Kink waves differ from vacancy waves in a very impor-
tant aspect. The location of the kink can be at any place
along the dislocation. Vacancies are located by the position
of the missing particle and can only be at discrete lattice
sites. Thus the calculation of properties of vacancy waves
involve tunneling between these states13 and is different from
the calculation presented below. We have recently studied
dislocation waves in a two-dimensional �2D� electron solid
and their effect on quantum melting.15 The work reported
here is motivated by those studies.

We find that even though there is an elastic-energy cost to
create a kink, there are two quantum contributions which
lowers the energy and results in a finite density of the kinks
even at zero temperature. There is a long-range strain-
induced interaction between kinks on different dislocations.
As a result the dispersion in the “perpendicular” direction is
proportional to the first power of the wave vector k�. Fluc-
tuations are suppressed. The 3D mean-field Bose Einstein
condensation �BEC� temperature Tc of the kinks can be quite
high.

The BEC of the kinks makes possible dissipationless
movement of the dislocation lines. The motion of a disloca-

tion corresponds in part to a circular motion of many He4
atoms, each by a different amount. An estimate of the frac-
tion of He4 atoms can be obtained by weighting with respect
to the strains. With this the corresponding “superfluid frac-
tion” due to the motion of the dislocation lines is consistent
with current experimental results in TO experiments. The
dislocation motion does not produce any net linear motion of
the atoms and thus will not generate any direct superflow.

Recently Day and Beamish �DB� �Ref. 3� found a change
in the shear modulus with the same temperature dependence
as that for the decoupling in TOs. They ascribe this to a
change in the mobility of dislocations. In our picture, this
increase in mobility as temperature is increased is not di-
rectly related to the BEC of the kinks but is due to a different
phenomenon, for example, the grain-boundary roughening
transition involving fluctuation of the dislocation lines per-
pendicular to the Burger’s vector.16 This increased movement
of the dislocation lines creates a large phase fluctuation and
interrupts the BEC of the kinks. The experimental transition
observed in the TO experiments is related to this grain-
boundary roughening transition. The actual BEC transition,
which would have occurred at a higher temperature, cannot
be observed. Our view of the effect of impurities is similar to
the conventional view, that they affect the mobility of the
dislocation lines. For example, we find that the grain-
boundary roughening transition temperature is very sensitive
to the magnitude of the dislocation core energy and have
speculated that He3 impurities may change its value.16 We
now describe our results in detail.

II. ELASTIC DISTORTION DUE TO A KINK

We first discuss the elastic distortion of the solid due to
the presence of a kink in the dislocation. The elastic distor-
tion u�r� due to a dislocation along the z direction with its
core at �cx ,cy ,z� has been much discussed in the past.17 u is
determined by the condition of local equilibrium subjected to
the constraint that the line integral of the displacement field
around the core is equal to the Burger’s vector. The distortion
of the lattice due to a core given by a trajectory
�cx�z� ,cy�z� ,z� can be obtained from its “elastic equation.”
For the case with the Burger’s vector in the x direction we
get

�2u + �� · u/�1 − 2�� = − bey��r� − c�z�� , �1�

where � is the Poisson’s ratio of the solid and ey is a unit
vector in the y direction. We shall solve the elastic equation
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in Fourier space with u�r�=�dpu�p�exp�−ip ·r� and u�p�
=�dru�r�exp�ip ·r� / �2��3. The Fourier transform of the dis-
placement us of a single straight dislocation where c is not a
function of z is given by

us�q�� = �ey/q�
2 − 0.5�1 − 2��/�1 − ��q�qy/q�

4 �/�2��2.

We are interested in a dislocation with a kink at z=cz where
cx�z� changes by a lattice constant a, as is illustrated in Fig.
1. The details of our calculation are described in Appendix A

We find that the displacement is a sum of the bare dis-
placement u0 of a dislocation with a kink and a correction
term u1,

u = u0 + u1. �2�

The “bare” displacement corresponds to that of a dislocation
centered at c� for z�0 and at c�+a0ex for z�0, where
u0�z ,r��=us�r�−ex��z−cz�−c��,

u0�q�,z� = us�q��exp�iq� · c��z�� , �3�

where u0 by itself does not satisfy Eq. �1�. An additional
term is required. This is given by

u1�q� = − i�ezq� · s�q�� + qzs�q��

− �1 − 2��qzqq · s�q��/��1 − ��q2��

�exp�− iqzcz�/�2�q2� ,

s�q� = us�q��exp�iq · c���exp�iqxa0� − 1� . �4�

From this the elastic energy of a kink can be computed. Thus

Ekink
elas = �

k

m	k
2	u�k�	2/2 − Edis �5�

is the elastic energy of a kink; Edis=�km	k
2	us�k�	2 /2


 log A is the strain energy of the straight dislocation, inde-

pendent of c, We next examine the quantum corrections to
the energy of a kink.

III. KINK WAVE

We find that the motion of kinks can be wavelike. Due to
the quantum fluctuation in the position of the kink there is a
reduction in its energy given by Eq. �10� below. In addition
we obtain an estimate of the effective mass �Eq. �11� below�
about one tenth the He4 mass. The calculation here is similar
to our work on dislocation waves in 2D.15 We describe this
next.

The wave function of the solid with a kink located at
position c can be estimated from the ground-state phonon
wave function of the perfect solid 	G


	G
 = �
k

e�−bk	�rk	2�,

where bk=m	k /2�; �r is the deviation of the particles from
their equilibrium positions; k stands for the wave vector k�

and polarization �: k= �k� ,��. There has been much studies of
phonons in the presence of defects.18 The frequency of each
mode in the continuum is expected to shift by a factor on the
order of impurity density. In addition, there may be localized
modes. Localized modes have energies in the phonon band-
gap region. We are interested in low-energy excitations here
and thus shall ignore these high-energy states.

A kink creates static distortions of the lattice ui at site i.
The wave function for a lattice with static distortion u is

	c
 = �
k

e�−bk�	�rk + uk
c	2�, �6�

where u�k is the Fourier transform of the static displacement
field due to the defect at the origin given by uk��

c =u�k
c ·e�k��, u�k

c

=u�ke
ik�·c�; e�k�� is the polarization vector of the phonon mode k.

bk� differs from bk by a factor on the order of 1 /N. We ap-
proximate bk� by bk in the following.

The approximations used for this wave function are the
following: �1� the static displacement field uk is the one ob-
tained from elasticity theory17 and is exact only in the long-
wavelength limit. �2� This wave function includes the corre-
lations between the particles, which is already much better
than a product of one-particle wave functions. Similar to the
self-consistent phonon theory, we shall use renormalized
phonons and force constants averaged over different interpar-
ticle separations in our numerical estimates. Thus some an-
harmonicity will be included. The details of this are de-
scribed in Appendix B

In general the classical energy of the defect is a periodic
function in the lattice, as is described by the Peierls’ poten-
tial. We first ignore this periodic potential and incorporate it
later on. In the absence of this periodic potential, the system
is translationally invariant. It is straightforward to check that
the eigenstates of H are just plane-wave states given by 	q

=�cz

e�iqcz�	c
. We find that the energy of this state �Appendix
B� is given by

Eq = ez�qz
2/2wz − 1�/2wz, �7�

where

0

x
y

y

FIG. 1. Schematic of a grain boundary. The solid arrows indi-
cate the directions of the Burger’s vector and the kink of disloca-
tions. The dashed arrow indicates the direction of the movement of
dislocation for the roughening transition.
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ez = − m�
k�

	kl
2 	i��zub�qek�

b 	2/4, �8�

wz = − m�
k�

	kl	i��zub�qek�
b 	2/4� . �9�

This consists of a constant shift which can be interpreted as a
quantum correction to the elastic energy due to the quantum
fluctuation in the position of the kink at q=0

Ewave = − ez/2wz �10�

and a term quadratic in momentum; from which we get an
estimate of the effective mass

mz
� = 2�2wz

2/ez. �11�

We next discuss other contributions that provide for addi-
tional lowering of the kink energy.

IV. RENORMALIZATION OF THE ZERO-POINT ENERGY
OF THE PHONON FIELD

When a kink is created, the zero-point energy is changed.
This zero-point energy change is always negative. The larger
the mean-square lattice vibration, the larger this contribution
is. At a certain density when the mean-square lattice vibra-
tion becomes big enough it can become energetically favor-
able to create kinks. This idea has been exploited by us in the
study of quantum melting of the 2D electron crystal.15 We
generalize this calculation and evaluate this change in the
zero-point energy for our case here.

The Hamiltonian of the system is the sum of the kinetic
energy and the potential energy �ijV�ij�, where V is the in-
terparticle potential between the He atoms. A kink creates a
static displacement u of the lattice positions. The change in
the Hamiltonian due to u can be written in a Taylor-series
expansion in the difference of the static displacement as, to
lowest order in u, �H=�ij�V�rij +uij�−V�rij��=�ijA�ij�u�ij�,
where u�ij�=u�Ri�−u�Rj�. Here rij =�rij +Rij is the sum of
the phonon relative displacement and the equilibrium sepa-
ration Rij of the corresponding perfect lattice. The kinetic
energy is just �m��ṙ�2 /2 and remains the same as the unper-
turbed Hamiltonian.

A can be written as a power-series expansion in the pho-
non coordinates �r. The term u�r��V is zero. u��V is the
elastic force due to the displacement u. This net force is zero
because that is how the displacement u of a dislocation with
a kink is determined. The lowest-order term is quadratic in
�r,

�H = �
ij

�uij�rij�rij � ��V�rij��/4.

The first-order correction to the energy, �0	�H	0
 is zero
because uij changes sign under a parity transformation in the
xy plane. The second-order correction to the energy 
E
=EZPE is just �i	�i	�H	0
	2 / �E0−Ei� and can be written as

EZPE = �
kq;l,p=1,3

�/�8m2N�	elkep,−k−quq�V̄�k� + V̄�q�

+ V̄�− q − k��	2/	lk	p,−k−q�	lk + 	p,−k−q� , �12�

where V̄�k�=�Rexp�ik� ·R� ����V�R�, ekl is the polarization
vector for branch l at momentum k, 	 is the phonon fre-
quency. This term is on the order of

EZPE 
 − u2��r2
2�V��2/��r2
V�.

The strain energy of the kink is on the order of

Eelastic 
 u2V�.

The ratio of these two energies is given by

EZPE/Eelastic 
 − ��r2
�V�/V��2.

Thus the larger the zero-point vibration, the higher is the
magnitude of this ratio.

V. NUMERICAL ESTIMATES

We focus on hcp He4 crystal with a molar volume of
24cc. Our estimates for the energy of the kink is a sum of
three terms

Ekink = Ekink
elas + Ewave + EZPE, �13�

where the three different contributions are given in Eqs. �4�,
�9�, and �11�. In this paper, we shall perform simple esti-
mates to demonstrate that Ekink can become negative and
defer detailed sophisticated more accurate calculations to fu-
ture work. We think our estimate for the relative magnitude
of the different contributions is more accurate than the mag-
nitude of the individual terms.

The calculation of Ekink involve estimates of the renormal-
ized phonon frequency and force constants. The He4 system
exhibits large zero-point fluctuations with the root-mean-
square lattice fluctuation �rrms= ���r�2
1/2 on the order of
0.27a.19 We have obtained our result by averaging V and its
derivatives over the distribution of possible interparticle
separation. We describe this next.

The average interaction potential �V
 is, in the self-
consistent phonon approximation, given by

�V�R + �r�
 =� d3rV�r�exp�− �
i

�R − r�i
2/2��ri

2
�/N ,

where ��ri
2
=� / �2MN��q,�	eq�,i	2�1−cos q ·R� /	q� is the

fluctuation of the relative displacement along the three prin-
ciple axis �longitudinal and transverse�. Here � is a label for
the different phonon branches. Of course �ri is slightly dif-
ferent from the mean-square displacement given by

�rrms
2 = �/�2MN��

q,�
1/	q�. �14�

We assume that the transverse relative fluctuation ��rt
2


= ��rrms�2 /3 and have used the experimental value of 0.27a
for the estimate of �rrms. The longitudinal relative displace-
ment is smaller than �rrms because of the repulsion between
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the He atoms. Sophisticated approaches involve introducing
Jastrow factors and t matrix corrections. Here we phenom-
enologically set �rl

2 to be equal to ��rrms
2 /3 with � less than

1. � is determined from the condition that �rrms as given in
Eq. �14� is equal to the experimental value. We found that
�=0.9

The sum was performed with 20 250 mesh points. With
these we found that Ekink

elas /kB=6.8 K, Ewave /kB=−3.5 K,
EZPE=−4.5 K; mz

� /m=0.05. Ekink /kB, the sum of the three
contributions, is equal to −1.2 K and is negative. Quantum
effects make it energetically favorable to create kinks.

VI. SUPERFLOW

If the temperature is low enough a collection of kinks will
form a Bose-Einstein condensate. We expect that the disper-
sion for the excitation to become linearly proportional to the
wave vector in all directions in the long-wavelength limit.
This enables movement without damping of the dislocation
in the direction along the Burger’s vector, as is illustrated by
the solid arrows in Fig. 1. Because of the long-range elastic
strain caused by a dislocation, the motion of a single dislo-
cation corresponds to the motion of many He4 atoms, each
by a different amount. The fraction of He4 atoms moved is
much higher than that indicated by the density nd of the
dislocations. An estimate of the fraction of He4 atoms can be
obtained by weighting with respect to the strains. We de-
scribe this next.

As a single dislocation is moved by a distance �c, the He4
atom a distance r� away from it is moved by an amount on
the order g�c with g=a0 / �2�r��. This is illustrated in Fig. 2
where we show the displacements of the atoms multiplied by
the perpendicular radius, r��us�r�, as the dislocation is
moved from �5,4.5�a0 to �6,4.5�a0. Because the experimen-
tal system is imperfect there is a length scale Lm over which
the displacements from the different dislocations act con-
structively. This can be due to the dislocation loop size or the
mosaic size. The displacement of a He4 atom comes from
the sum of displacements from the different dislocations is

on the order of nd2��0
Lmr�dr�g
 f0=ndLma0. The effect of

the dislocations is not the dimensionless quantity nda0
2 but is

amplified by a factor of Lm /a0 because of the long-range
nature of the strains.

As a He4 atom is moved in a TO because of the disloca-
tions, its velocity v is reduced by the amount �v= f0v. The
kinetic energy of this atom is correspondingly reduced by a
fraction 2f0. We interpret this as the superfluid fraction ob-
served experimentally. With experimental estimates of2 Lm

20 �m and nd ranging from20 6�109 to21 106 /cm2, we
get f ranging from 72% to 0.07%. This is within the range on
the order of magnitude of the superfluid fraction experimen-
tally observed.

DB �Ref. 3� found a change in the shear modulus with the
same temperature dependence as that for the decoupling in
TOs. They ascribe this to a change in the mobility of dislo-
cations. We recently studied the roughening of small-angle
grain boundaries consisting of arrays of dislocations16 and
found two transitions, corresponding to fluctuations of the
dislocations along and perpendicular to the boundaries.
These correspond to motion perpendicular and parallel to the
Burger’s vector.22

We interpret the low-temperature grain-boundary rough-
ening transition as corresponding to the one observed by DB.
�The higher roughening transition at around 1 K corresponds
to the onset of rotational fluctuation in x-ray measurements
by Burns et al.2� After the roughening, phase disorder is
introduced and the BEC of the kinks is no more. The actual
Bose-Einstein transition is never observed. That fluctuation
of the dislocation can destroy phase coherence has been
pointed out by Balibar.23

For the roughening transition, the direction of motion for
this type of fluctuation is indicated by the dotted arrow in
Fig. 1 It is perpendicular to the kink motion discussed here
and corresponds to a different degree of freedom. When the
kinks form a BEC, their dissipationless motion may have an
effect on the elasticity constant but presumably the change is
less than that caused by the grain-boundary roughening tran-
sition.

In the conventional picture of Bogoliubov, the interaction
with the condensate changes the single-particle dispersion
from quadratic in k to linear in k. We do not know if this will
also provide a correction to the shear modulus.

Impurities, such as He3, are found to have a very impor-
tant effect on the transition. Our view on this is similar to the
conventional view that the impurities affect the mobility of
the dislocation lines. For example, we find that the lower
grain-boundary roughening transition temperature is very
sensitive to the magnitude of the dislocation core energy and
have speculated that He3 impurities may change its value.16

Very little pressure-driven direct superflow was found in
this system.24 As can be seen from Fig. 2 the effect discussed
here contains a contribution corresponding to a circular mo-
tion but do not contribute to a linear flow. More precisely, for
the linear superflow, the quantity of interest is ��v
=�dr�v.
As is mentioned above, the velocity change is proportional to
�U�r�=� j�cj ·�u�r−cj�. If the kinks form a BEC, then we
expect �cj to be the same for different j. For a uniform
distribution of dislocations, �U and hence �v changes sign
under a parity transformation. Thus ��v
 becomes small.

FIG. 2. Schematic of the displacements of the atoms multiplied
by the perpendicular radius, r��us�r�, as the dislocation is moved
from �5,4.5�a0 to �6,4.5�a0.

S. T. CHUI PHYSICAL REVIEW B 82, 014519 �2010�

014519-4



On the other hand, for a circular motion with angular
velocity 	, the velocity v�r� of a particle at position r is
given by v=r�	. The total kinetic-energy change due to the
dislocations is thus given by 
E=m�drv ·�v=m�dr	 ·r
��xu�cx. For example, for a single dislocation r��xus= �
−5 cos2��� /4+1.5 cos2����+0.5−�� / �1−��. This remains
finite after the integration over � is carried out. Because v
also changes sign under a parity transformation, the integral
for 
E remains finite.

We next estimate the Bose-Einstein condensation tem-
perature Tc of the kink waves.

VII. Tc

Our goal is not to estimate the BEC transition temperature
Tc very accurately but to show that they can be quite high. As
is well known, there is no BEC in one dimension. This
comes about because the kinetic-energy cost for the phase
fluctuation in the transverse direction is zero. We envision
that there is a collection of dislocations with a finite density
of kinks on each one. Furthermore there are two types of
kinks of opposite “charges,” corresponding to movement of
the cores in opposite directions.

There has been much studies of the strain-induced inter-
action between defects in solids.25 Physically this long-range
�1/distance� interaction comes from the elastic-energy differ-
ence for kinks at different locations. The kinetic-energy cost
for transverse phase fluctuation becomes nonzero when the
strain-induced long-range interaction between kinks on dif-
ferent dislocations is taken into account. The problem then
becomes a three-dimensional problem.

Shevchenko26 has considered possible superfluidity of a
network of one-dimensional lines and suggests that the rel-
evant length scale for the effect of dislocation on the elastic-
ity of the lattice may be the distance between nodes on a
dislocation network. In his model, there is no interaction
between the bosons on different lines.

For the different effect discussed here the interaction be-
tween kinks is not mediated along the dislocation lines. The
interaction is mediated by the disturbance �strain� caused by
the kinks on the whole lattice. The model becomes basically
three dimensional. Hence the relevant distance is not the dis-
tance between nodes of the dislocation network.

More precisely, this elastic interaction between the kinks
located at ci and cj is given by �i,jV�ci−cj� with V�c�
=�qVq�cos�q ·c�−1�, where Vq=m	q

2	uq	2=O�1 /q2�. This in-
teraction provides for a self-energy correction and an effec-
tive mass in the transverse direction. The full treatment of
this problem is beyond the scope of the present paper. Here
we estimate the contribution to lowest order in V. There is no
lowest-order direct term because the system is “electrically
neutral.” The lowest-order exchange term for a state with
wave vector k is given by Eex�k�=+�k�Vk−k�n�k� ,T�, where
n�k� ,T� is the occupation number for state k� at temperature
T. This expression differs by a sign from that of the electron
gas because the statistics is different. We estimate the mag-
nitude of this contribution by replacing V�k� by 1 /k2. The
details of this is described in Appendix C

We find Eexch is a sum of a constant term and k-dependent
terms. The constant term is on the order of Eelasna0 /y0 �n is

the linear kink density� and thus is small. In addition we find
the lowest-order k-dependent terms are on the order
Eelasa0k� that is proportional to the first power of k� �not k�

2 �
and terms on the order of kz

2. This result comes from the
long-range nature of V. In the low-wavelength limit �small
k�, the kinetic-energy cost for phase fluctuation is thus much
higher than the ordinary case. Because fluctuations are sup-
pressed Tc can indeed be high. Kinks of opposite “polariza-
tion” can in principle form a bound pair. We find that not to
be likely. We explain this next.

We have numerically computed the strain-induced inter-
action V�z� between kinks on the same dislocation separated
by a distance z and have estimated the smallest possible
value Eb of the sum of this and the kinetic energy of con-
finement, �2 / �2mzz

2�, for different distances z. We find that
Eb is less than 0.01 K. Thus at T=0.1 K it is not likely that
a bound state will occur.

VIII. EXTERNAL PERIODIC POTENTIAL

We next turn our attention to the effect of the Peierls’
potential. Peierls argued that a dislocation at position x in a
crystal of lattice constant a experiences a periodic potential
given by27

V�x� =
�a2

2�2 �
n=−�

�
a2

�na − x�2 + a2 .

The Fourier series of this periodic potential can be written as
follows:

V�x� = V0 + V1 cos Gx + V2 cos 2Gx + ¯ ,

where V0=�a2 /2� and Vp= ��a2 /��exp�−2�p�.
The Peierls potential makes the kink locally stable and we

have already assumed that. Here we examine the effect of
this potential on the motion of the kink along the dislocation.
The motion of a dislocation wave in this periodic potential
can be treated in exactly the same way as that of an electron
in a periodic crystal. We thus expect band gaps to open up at
the zone boundary. For example, the largest gap V1
=0.0018��a2 /�� is a small fraction �0.002� of the typical
energy we calculated here, the Peierls potential is a small
perturbation on the motion of a kink along the dislocation.

IX. DISCUSSION

In this paper we study the physics of kink waves; their
Bose-Einstein condensation and discuss their possible con-
nection with the experimental results in recent TO experi-
ments.

We find that even though there is an elastic-energy cost to
create a kink, there are two quantum contributions which
lowers its energy and results in a finite density of the kinks
even at zero temperature. The mean-field BEC temperature
Tc of the kinks can be quite high because of the long-range
elastic interaction between kinks.

In Vycor28 and other porous media,29 TO experiments
have observed qualitatively and quantitatively the same phe-
nomena as in bulk. The model we propose here relies of the
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motion of kinks, and the long-range results of that motion.
The fact that the ends of a dislocation line are pinned is
immaterial and at no point does the model invoke transport
along the dislocation lines. Thus they are also applicable to
those situations as well.

The BEC of the kinks makes possible movement of the
dislocation lines. Because of the long-range strain caused by
dislocations, their motion involves that of many He4 atoms.
The corresponding superfluid fraction due to the motion of
the dislocation lines is consistent with current experimental
results.

We recently studied the roughening of small-angle grain
boundaries consisting of arrays of dislocations16 and found
two transitions, corresponding to fluctuations of the disloca-
tions along and perpendicular to the boundaries. The polar-
ization of the kink of interest here corresponds to the glide
motion of the dislocation parallel to the Burger’s vector. We
believe that the lower temperature roughening transition for
vibration in the direction orthogonal to the polarization of the
kink interrupts the BEC of the kinks.

Aleinikava et al.30 recently studied the dislocation rough-
ening transition and conclude that this cannot happen at zero
temperature. They have not included the Casimir term in
their consideration.
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APPENDIX A

We write the displacement as a sum of the bare displace-
ment of a dislocation with a kink u0 and a correction term u1.
The bare displacement corresponds to that of a dislocation
centered at c� for z�0 and at c�+a0ey for z�0. u=u0
+u1, where u0�z ,r��=us�r�−ey��z−cz�−c��, us is the dis-
placement of a single straight dislocation. We end up with a
differential equation for u1,

A�z
2u0 + Bez�z � · u0 + �A�2 + B � � ·�u1 = 0,

where A=1 and B=1 / �1−2��. Now �z� ·u0=��z
−cz�� ·s�r��, �z

2u0=�z��z−cz�s�r��, where s=u0
+−u0

−. We
solve for u1 in Fourier space as follows: A�2u1+B�� ·u1=
−F, F=A�z

2u0+Bez�z� ·u0=B��z−cz�� ·s�r��+A�z��z
−cz�s�r��, where s�k��=us�k���exp�ikc+�−exp�ikc−��. In
Fourier space, u1�r�=�dpu1�p�exp�−ip ·r�, we get

Ak2u1�k� + Bkk · u1�k� = G .

Here

G =� d3r exp�ik · r�F/�2��3 = − i exp�− ikzcz��kzs�k��

+ ezk� · s�k���/�2�� .

We next evaluate u1.
For a matrix Ak2+Bkk, its inverse is � /k2+�kk /k4 with

�=1 /A, �=−B� / �B+A�=−B / �B+A� /A. For the elastic
equation �=1, �=−0.5�1−2�� / �1−��,

u1�k� = − i�ezk� · s�k�� + kzs�k�� − �1 − 2��kzkk · s�k��/��1

− ��k2��exp�− ikzcz�/�2�k2� ,

Recall that

us�q� = �ey/q2 − 0.5�1 − 2��/�1 − ��qqy/q4�/�2��2.

Thus

u0�q� = us�q�exp�iq · c��z�� .

APPENDIX B

The overlap of wave functions corresponding to defects
located at positions c and c� is given by

�c	c�
 = �
k
� e�−bk�	�rk + uk

c	2+	�rk + uk
c�	2��d�rk.

This involves Gaussian integrals which can be easily done
and we obtain

�c	c�

�c	c


= �
k

e�−bk	�k	2/2�,

where �k=uk
c−uk

c�=uk
0�e�ik�·c��−e�ik�·c����. From now on, we di-

vide, without mentioning it, all quantities by the normaliza-
tion factor �c 	c
.

We next calculate the overlap integral �c	H	c�
 of the
renormalized harmonic Hamiltonian between defects located
at c and c�. This is equal to

�c	H	c�
 = �
k
� d�rke

−bk	�rk + uk
c�	2

���
q

Pq
2

2m
+ m	q

2�rq
2/2�e−bk	�rk + uk

c	2

= �c	c�
�E0 + �
k

1

2
m	k

2�	uk
c	2 + Re�uk

c�k
��� = �c	c�


��E0 + Edis + Ekink
elas + Ecc��� , �B1�

where E0=�k�	k /2 is the zero-point energy of the phonon
field. Edis=�km	k

2	us�k�	2 /2
 log A is the strain energy of the
straight dislocation, independent of c,

Ekink
elas = �

k

m	k
2	u�k�	2/2 − Edis �B2�

is the elastic energy of a kink; Ecc�=�km	k
2	u�k�	2�cos�k�c

−c���−1� /2. The contributions of E0 and Edis must of course
be subtracted. The above expression is symmetric in c and
c�. In general the classical energy of the defect is a periodic
function in the lattice, as is described by the Peierls’ poten-
tial. We first ignore this periodic potential and incorporate it
later on. In the absence of this periodic potential, the system
is translationally invariant. It is straightforward to check that
the eigenstates of H are just plane-wave states given by 	q

=�cz

e�iqcz�	c
. The energy of these states is given by
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Eq =
�q	H	q

�q	q


=
�c

�0	H	c
e�iqcz�

�c
�0	c
e�iqcz�

,

ln�0	c
 = − �
k

bk	u�k�	2�1 − cos kc� . �B3�

The overlap integral dies off rapidly as c is increased. We
thus use a small c expansion and obtain

ln�0	c
 = − 0.5�
k

bk	u�k�	2�kc�2.

Substituting the expression for bk, we get

ln�0	cz
 = − wzcz
2,

wz = − m�
k�

	kl	i��zub�qek�
b 	2/4� �B4�

is on the order of the inverse mean-square quantum lattice
vibration and measures the quantum fluctuation in the posi-
tion of the kink. In the same way

E0c = − ezcz
2,

ez = − m�
k�

	kl
2 	i��zub�qek�

b 	2/4. �B5�

Eq is thus given by

Eq =
�c

− ezcz
2 exp�− �wzcz

2 + iqzcz��

�c
exp�− �wzcz

2 + iqzcz��
. �B6�

The denominator and the energy are finally given by

D = � �

wz
��1/2�

e�−qz
2/4wz�,

Eq = ez�qz
2/2wz − 1�/2wz. �B7�

APPENDIX C

We provide the numerical details of the calculation of the
lowest-order exchange term for the self-energy for a state
with wave vector k here. Now Eex�k�=+�k�Vk−k�n�k� ,T�,
where n�k� ,T� is the occupation number for state k� at tem-

perature T. We expect n=1 / �e��kz
2/mz−��/kBT−1�. For one di-

mensional, � is negative and finite, or the integral that deter-
mines the number of particle diverges. Thus for small kz, n is
a constant. n starts to decrease for kz�K where �2K2 /2mz
=kBT. Thus in the integral we set the upper limit of the kz�
integration as K and replace n by a constant. As is explained
above, we estimate Eexch as EelasaI where I=�d3k�n�kz�� / 	k
−k�	2. We are mainly interested in the dependence of this
energy on k� and thus set kz=0 for simplicity.

Hence I
n�dk��
2�0

Kdkz� / �kz�
2+ �k�−k�� �2�


n�dk��
2 tan−1�K / 	k�−k�� 	� / 	k�−k�� 	. For the present prob-

lem, K is larger than 1 �ten times the interatomic spacing�
whereas k��� /L where L is the interdislocation spacing.
Thus tan−1�K / 	k−k��
� /2. Hence I

n�� /2��0

�/Ld2k��lm4� / �2l+1�Ylm� �k�Ylm�k��k�
l /k�

l+1.
Only the m=0 term contributes. Also �=� /2. Hence there

are no contributions from l=1. We get I

n�� /2��0

�/Ld2k��1 /k�+5 /12k�
2 /k�

3 �, I
n�2�0
kk�dk��1 /k

+5 /12k�2 /k3�+�k
�/Lk�dk��1 /k�+5 /12k2 /k�3�, I
n�2��k /2

+5 /48k�+ �� /L−k�−5 /12k2�L /�−1 /k��,

I 
 n�2�k/48 + �/L + O�k2�� . �C1�

If kx�0, the integral of interest becomes

I� 
 n�dk��
2�0

Kdkz�/��kz� − kz�2 + �k� − k�� �2�


 n�dk��
2�tan−1��K − kz�/	k� − k�� 	�

+ tan−1��K + kz�/	k� − k�� 	��/	k� − k�� 	 .

Now K� 	k�−k�� 	. We thus expect tan−1��K−kz� / 	k�−k�� 	�

� /2+� with � small. Since tan�� /2+��
cot �
1 /�.
Thus �
	k�−k�� 	 / �K−kz�
	k�−k�� 	�1+kz /K+kz

2 /2K2� /K
The term linear in kz in the integral I� cancels out. Thus no
term linear in kz is created.
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