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Predictions are established for linear differential current-current cross-correlations dSa,b /dV in a symmetri-
cally biased three-terminal normal metal-superconductor-normal metal �NSN� device. Highly transparent con-
tacts turn out to be especially interesting because they feature positive dSa,b /dV. At high transparency, pro-
cesses based on crossed Andreev reflection �CAR� contribute only negligibly to the current and to dSa,b /dV.
Under these circumstances, current-current cross-correlations can be plausibly interpreted as a coherent cou-
pling between the two NS interfaces in the form of synchronized Andreev and inverse Andreev reflections
�AR-AR�, corresponding to the process where a pair of electronlike quasiparticles and a pair of holelike
quasiparticles arrive from the normal electrodes and annihilate in the superconductor. Hence, positive dSa,b /dV
does not automatically imply CAR. For tunnel contacts, dSa,b /dV is positive because of CAR. In between these
two extremities, at intermediate transparencies, dSa,b /dV is negative because both processes which cause
positive correlations occur only with small amplitude. We use scattering theory to obtain analytic expressions
for current and noise and microscopic calculation using a tight-binding model in order to obtain a clear
interpretation of the physical processes.
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I. INTRODUCTION

Beautiful experiments on transport and noise in normal
metal-superconducting �NS� hybrids allow probing the mi-
croscopic physics associated to the superconducting conden-
sate and quasiparticles. For instance, the superconducting
gap � was revealed by tunnel spectroscopy on a normal
metal-insulator-superconductor tunnel junction. In NS struc-
tures with highly transparent contacts, Andreev reflection1 is
the phenomenon by which pairs of electronlike quasiparticles
from the normal electrode N can enter the superconductor S
and join the condensate. Additional processes appear in
NaSNb structures with two normal electrodes Na and Nb: an
electron coming from Na may be transmitted as an electron
into Nb �elastic cotunneling, EC�, or it may be transmitted as
a hole into Nb �crossed Andreev reflection, CAR �Refs.
2–36��. The amplitudes of these two processes decrease ex-
ponentially with a characteristic length scale: the coherence
length �, which is inverse proportional to the energy gap � in
the ballistic limit. Therefore, three-terminal nanoscale de-
vices with distance R�� between the contacts are especially
interesting: conductance and noise experiments on them
probe both the condensate and the quasiparticle states.

Concerning current-current correlations, theorists have
envisioned two kinds of experiments for the long term: using
entanglement in quantum-information devices and testing
entanglement in the electronic Einstein-Podolsky-Rosen
�EPR� experiment.3,25,37 The EPR experiment is not consid-
ered here but instead the basic problem of current-current
cross-correlations38 in NSN structures is addressed. Some
experiments based on NISIN structures have been reported
recently.39 Our task here is not to understand the tunnel limit,
where an insulating oxide layer I is inserted in between the
normal and the superconducting electrodes but the opposite
limit of highly transparent interfaces where Coulomb
interactions16 are not expected to play a predominant role.

Based on the limiting case of tunnel contacts,6,26 one may
erroneously conclude that positive differential current-
current cross-correlations dSa,b /dV are equivalent to CAR.
However, this is not the case because, as we show, positive
dSa,b /dV can well be obtained in the absence of CAR.

Current-current cross-correlations are negative40–42 for
noninteracting fermions. A flux of bosons leads to positive
cross-correlations43 and negative cross-correlations are found
for bosons impinging one by one onto a beam splitter.44

Cross-correlations can be positive in interacting fermionic
systems,45–51 as well as in multiterminal NS structures.21–30

The recent experiment39 and other experiments under way
involve normal electrodes separately connected to a
superconductor28 with a geometry similar to that considered
in the following. Not only the noise can be evaluated in
various setups, but also the full histogram of the charge
transmitted in a given time interval.25,27,30 In addition to
these setups, relevant information is also obtained from
“zero-dimensional” chaotic cavities in contact with a super-
conductor, in connection with the possibility to observe posi-
tive current-current cross-correlations due to CAR.23

In what follows, attractive interaction binding pairs of
electronlike quasiparticles is present everywhere in the su-
perconducting region. Two electronlike quasiparticles of a
pair injected into the superconducting region remain glued
by the BCS mean-field interaction, in contrast with the dis-
sociation of a Cooper pair entering a chaotic cavity �see Ref.
23�. The physics behind current-current cross-correlations in
the NSN structure with highly transparent contacts consid-
ered here was not really elucidated in Ref. 28, in spite of the
important observation that dSa,b /dV is positive but the non-
local conductance is negative at low bias. Unusual properties
can be realized with the following experimental conditions:
first it is assumed that the same voltage Va=Vb�V is applied
on the two normal electrodes Na and Nb. Second the tem-
perature is very low and third high values of interface trans-
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parencies are used. Direct electron transmission is Pauli
blocked at zero temperature because of the same voltage ap-
plied on the two normal electrodes. On the other hand,
crossed Andreev reflection is strongly reduced at high trans-
mission, regardless of the applied voltages Va and Vb. These
two features of EC and CAR are shown to be a sufficient
condition for deducing dSa,b /dV�0, not due to CAR, but
due to what is called here synchronized Andreev reflection
and inverse Andreev reflection �AR-AR�. The positive
current-current correlations at high transparency are not in
disagreement with what is found in Ref. 23 for strong cou-
pling to the superconductor, where a gap is induced in a
chaotic cavity. The crossover between high values of inter-
face transparency and tunnel contacts will also be investi-
gated: CAR has a dominant contribution to dSa,b /dV for tun-
nel contacts, and dSa,b /dV is negative at the crossover for
intermediate values of interface transparency, where AR-AR
is suppressed.

The paper is divided into two independent main sections
where current-current correlations are evaluated on the basis
of �i� the scattering approach for a homogeneous supercon-
ducting gap �see Sec. III� and of �ii� microscopic calculations
taking into account the strong inverse proximity effect �see
Sec. IV�. Technically, these two sections rely on different
approaches and are based on different assumptions. Overall
agreement between the two calculations is obtained. Final
remarks are provided in Sec. V. Technical details are as much
as possible left for Appendices. The paper starts with a pre-
liminary section containing definitions and a summary of the
main results.

II. PRELIMINARIES

A. Current, noise, and current-current correlations

We start with general definitions of current and current-
current cross-correlations. The geometry of the considered
setup is shown in Fig. 1. The central island is superconduct-
ing and it is connected by highly transparent contacts to the
two superconducting reservoirs on top and bottom. The su-
perconductor S is made of the central island and of the two
reservoirs.

The operator giving the current flowing at time t from the
normal electrode Na to the superconducting island S at the
NaS interface �see Fig. 1�b�� takes the form

Îa,��t� = �
�,n=1

M

�tan,�n
c�n,�

+ �t�can,��t� + t�n,an
can,�

+ �t�c�n,��t�� ,

�1�

where � is the projection of the spin on the quantization axis
and the sum over n runs over the M tight-binding sites de-
scribing the interface. Tight-binding sites on the normal side
of the interface NaS are labeled by an, and their counterparts
in the superconducting electrode are labeled by �n. The hop-
ping amplitudes between electrode Na and the supercon-
ductor are denoted by tan,�n

and t�n,an
. One has tan,�n

= t�n,an
� ta in the absence of a magnetic field. The average current

Ia��Îa,��t�� is the expectation value of the current operator
given by Eq. �1�.

Current-current autocorrelations in electrode Na are given
by

Sa,a�t�� = ��Îa�t + t���Îa�t�� + ��Îa�t��Îa�t + t��� �2�

with �Îa�t�= Îa�t�− �Îa�t��. In the absence of ac excitations,
the average current given by Eq. �1� is time-independent and
the autocorrelations Sa,a�t�� given by Eq. �2� depend only on
the difference t� of the time arguments.

Similarly, current-current cross-correlations between the
electrodes Na and Nb are given by

Sa,b�t�� = ��Îa�t + t���Îb�t�� + ��Îb�t��Îa�t + t��� , �3�

where Îb describes the current at the interface with the nor-
mal electrode Nb. Zero-frequency autocorrelations �Sa,a� and
cross-correlations �Sa,b� are defined as the integral over t� of
Sa,a�t�� and of Sa,b�t��. The definition used here for the Fano
factor is as follows: Fa,a=Sa,a /2eIa and Fa,b=Sa,b /2e	IaIb
with Ia= Ib. With this definition, the Schottky formula leads
to F=q� /e for a Poisson process transmitting a charge q�.

B. Known results and open questions

A few facts related to the nonlocal conductance for arbi-
trary values of interface transparency are already known.
Only local Andreev reflection AR and local inverse Andreev
reflection AR come into account for contacts separated by a
distance much larger than the coherence length �see Figs.
2�a� and 2�c��. Local AR means that an electron is converted
into a hole and a pair of electronlike quasiparticles is trans-
mitted into the superconductor, and local AR means that a
hole is converted into an electron and a pair of holelike qua-
siparticles is transmitted into the superconductor, which an-
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FIG. 1. �Color online� The two models studied in this paper:
Panel �a� shows the one-dimensional geometry used in the BTK
calculation, which is a simplified description for a NSN structure in
three dimensions. The central superconducting electrode has length
R and the superconducting gap �0 is uniform. Panel �b� shows a
representation of a three-terminal device described by a tight-
binding Hamiltonian. The two superconducting reservoirs have the
same phase and thus constitute a single terminal.
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nihilates a Cooper pair. Local AR and AR contribute to trans-
port if the separation between the interfaces is much larger
than � and in two-terminal configurations where the super-
conductor is not connected to ground.

Other quantum processes appear in a three-terminal con-
figuration if the distance between the contacts is comparable
to the coherence length: CAR and EC. However, nonstand-
ard types of “nonlocal” processes can be also obtained by
merging AR at the interface NaS to AR at the interface SNb,
forming what is called here AR-AR �see Fig. 2�b��. Physi-
cally, AR-AR would correspond to the synchronized trans-
mission of two pairs from electrodes Na and Nb into the
superconductor, which can be seen as double CAR. How-
ever, this process does not contribute to nonlocal transport at

zero temperature. Conversely, AR at interface NaS might be
associated to AR at interface SNb, leading to AR-AR. The
corresponding nonlocal resistance is independent of the
value of interface transparency in the tunnel limit.12,13 Quali-
tatively, AR-AR can also be seen as double EC.

The nonstandard nonlocal process AR-AR involving pairs
appears naturally when expanding diagrammatically13 the
nonlocal conductance to order t8 with t the hopping ampli-
tude at the interfaces. As it is shown below, AR-AR plays a
central role in understanding the positive28 current-current
cross-correlations for highly transparent contacts, in a regime
which is not described by perturbation theory in t.

A very recent preprint52 points out the possibility of “syn-
chronized Andreev transmission” in the current-voltage char-
acteristics of a SNS junction array. Synchronization mani-
fests itself in this work as specific features in the current-
voltage characteristics of the two-terminal SNS junction
array. We arrive here at the conclusion that synchronization
of Andreev processes is also possible if the separation be-
tween the NS interfaces is comparable to the coherence
length. The dominant channel AR-AR is shown to result in
positive current-current cross-correlations.

As mentioned in the introduction, experiments on current-
current cross-correlations in NSN structures have already
started.39 A few basic questions regarding current-current
cross-correlations for highly transparent contacts have not
yet received a satisfactory explanation.

First what is the physics behind the positive28 linear dif-
ferential current-current correlations dSa,b /dV for a highly
transparent NSN beam splitter? It is shown that dSa,b /dV
�0 is not an evidence for CAR �which would prevail26 for
tunnel contacts in the absence of Coulomb interactions�. An
interpretation in terms of AR-AR is proposed.

Second, how do current-current cross-correlations depend
on the sample geometry? Current-current cross-correlations
decay with the geometry-dependent coherence length, as it
will be obtained from microscopic calculations in Sec. IV.

Third, what is the value of cross-correlations at interme-
diate transparencies? Experimentalists can realize tunnel or
highly transparent contacts, by oxidizing or not the sample
during fabrication. Intermediate values of interface transpar-
ency are more difficult to control but it is nevertheless useful
to quantify how “perfectly transparent” the NS contacts
should be in order to obtain AR-AR. A crossover from posi-
tive to negative dSa,b /dV is found in Blonder-Tinkham-
Klapwijk �BTK� calculations53 as the normal-state transmis-
sion coefficient TN is reduced below a value typically of
order TN
1 /2.

Fourth, do the predictions established with a ballistic su-
perconductor hold also for a disordered superconductor? It is
shown at the end of Sec. IV that, for strong inverse proximity
effect, AR-AR is responsible for positive cross-correlations
also in the case of a disordered superconductor in the regime
where the elastic mean-free path is shorter than the coher-
ence length.

III. HOMOGENEOUS SUPERCONDUCTING GAP:
BTK CALCULATION

The BTK approach53 allows calculations of the current-
voltage characteristics of a NS point contact with arbitrary
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FIG. 2. �Color online� Two independent local AR processes are
shown on panel �a�, for two interfaces separated by a distance R
much larger than the coherence length �. The labels 1 and 2 on the
diagram correspond to electrons and holes, respectively. For each
AR process, an electron impinging from the normal electrode onto
the interface is converted into a hole and a pair is transmitted into
the superconductor. If R
�, the two AR processes can be coupled
coherently by nonlocal propagation in the superconductor �see
panel �b�� with a quartet as an intermediate state and penetration of
a charge 4e into the superconductor, which is qualitatively equiva-
lent to double CAR. Panel �c� shows independent AR and AR pro-
cesses at the two interfaces, supposed to be far apart. Panel �d�
shows AR-AR for R
�, which is qualitatively equivalent to double
EC.
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interfacial scattering potential. It was first generalized in Ref.
12 and later in Ref. 17 to the case of nonlocal transport.
Useful physical informations can be obtained even though
the gap is not self-consistent in the BTK calculation. We will
consider a one-dimensional geometry, as shown in Fig. 1�a�.

The current Ii at the interface with the normal electrode
Ni, and the current-current correlations Si,j between the two
normal electrodes Ni and Nj are expressed21 in terms of the
scattering matrix s as

Ii =
e

h
� d	 �

j,�,

sgn�����i,j��,
 − �si,j

�,
�2�f
�	� , �4�

Si,j =
2e2

h
� d	 �

k,l,�,
,�,�
sgn���sgn�
�Ak�,l��i,�,	�

�Al�,k��j,
,	�f��	��1 − f��	�� �5�

with

Ak�,l��i,�,	� = �i,k�i,l��,���,� − si,k
�,�†si,l

�,�. �6�

Latin labels i , j ,k , l run over a, b, referring to the two normal
electrodes Na and Nb. Greek labels � ,
 ,� ,� denote elec-
trons or holes in the superconductor. The notation fe�	�
=
�eV−	� stands for the distribution function of electrons at
zero temperature, and fh�	�=
�−eV−	� is the one of holes,
where 
�x� is the Heaviside step function. In Eqs. �4� and �5�,
sgn���=+1 if �=e and sgn���=−1 if �=h.

The elements of the s matrix are evaluated from the BTK
approach �see Appendix A� for a one-dimensional NaSNb
junction �see Fig. 1�a��. Step-function variation in the super-
conducting gap at the interfaces is assumed. A repulsive scat-
tering potential V�x�=H���x�+��x−R�� is introduced at the
interfaces. The transparency of the interfaces is related to the
BTK parameter Z=H /�vF with the Fermi velocity vF. The
interface transparency is characterized by the value of the
normal state transmission coefficient TN=1 / �1+Z2�. Highly
transparent contacts correspond to TN=1, and tunnel contacts
correspond to TN�1.

In the one-dimensional model considered in this section,
current and noise are highly sensitive to the length R of the
superconducting region: they oscillate as a function of R with
a period equal to the Fermi wavelength �F�R. These oscil-
lations can be interpreted as Friedel oscillations where the
contacts with the normal electrodes play the role of impuri-
ties. In a more realistic higher dimensional model with more
than one transmission mode, the oscillations in the different
modes are independent and thus are averaged out. In order to
simulate qualitatively multidimensional behavior with a one-
dimensional system, current and noise are averaged over one
oscillation period6,8,28

Ii
av�R� =

1

�F
�

R−�F/2

R+�F/2

drIi�r� , �7�

Si,j
av�R� =

1

�F
�

R−�F/2

R+�F/2

drSi,j�r� . �8�

In the studied limit of small applied voltage eV��, the en-
ergy dependence of the scattering matrix elements can be
neglected and si,j

�,
�	�
si,j
�,
�	=0�. Using this approxima-

tion, it is possible to perform these integrals analytically.
In this limit, the current Ii through the normal lead Ni is

obtained as

Ii
av =

2	2e2VTN
2 �2 − TN�cosh�R/��sinh�R/��2

h�2�2 − TN�2cosh�R/��2 − 8�1 − TN��3/2 . �9�

The local current-current correlations Sii at the interface NiS
and the current-current cross-correlations Sij between the in-
terface NiS and the interface SNj are

Sii
av =

64	2e3VTN
2 sinh�R/��2sech�R/��

h�2 − TN�3�2�2 − TN�2cosh�R/��2 − 8�1 − TN��7/2

��− 128�1 − TN�4 + 2�2 − TN�2�1 − TN��96 − TN

��192 − TN�116 − TN�20 − 3TN����cosh�R/��2

− �2 − TN�4�72 − TN�144 − TN�82 − TN�10

+ TN����cosh�R/��4 + 8�2 − TN�6�1 − TN�cosh�R/��6�
�10�

and

Si�j
av =

64	2e3VTN
2 sinh�R/��2sech�R/��

h�2 − TN�3�2�2 − TN�2cosh�R/��2 − 8�1 − TN��7/2

��128�1 − TN�4 − 2�2 − TN�2�1 − TN��2 + TN�

��2 − 3TN��8 − �8 − TN�TN�cosh�R/��2 + �2 − TN�4

��8 − TN�16 + TN�2 − TN�10 + TN����cosh�R/��4� .

�11�

The linear conductance dIa
av /dV, the autocorrelations

dSa,a
av /dV, and the cross-correlations dSa,b

av /dV given by these
formulas are shown in Fig. 3 as a function of the normal
transmission coefficient TN, for different values of the dis-
tance between the contacts. As it is expected, the conduc-
tance increases with interface transparency for R /��1. The
conductance depends on the ratio R /� while R is smaller than
the coherence length � but it does almost not vary as R is
increased above �. For R /��1, the conductance is nonmo-
notonous when plotted as a function of TN �see Fig. 3 top
left�. An explanation for the nonmonotonous behavior is the
enhanced transmission due to the finite size of the
superconductor.54

Starting from tunnel contacts, the linear differential auto-
correlation dSa,a

av /dV first increases with interface transpar-
ency as larger current leads to larger noise. The differential
noise reaches a maximum and almost vanishes for perfect
transparency if R��, as it is expected for a single NS
junction.38 Differential current-current cross-correlations
dSa,b

av /dV are positive for R /��1 in the extreme cases of
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very high and very low interface transparency, and take
negative values in between, as shown in Figs. 3 �right�, and
in the insert of Fig. 3 �bottom right�.

The Fano factors Fa,a=Sa,a
av /2eIa

av and Fa,b=Sa,b
av /2eIa

av cor-
respond to the noise normalized to the current, which allows
to get rid of the trivial effect that, at low transparency, the
noise increases when the current increases. The variations in
Fa,a and Fa,b feature local minima at intermediate values of
TN. In the insert of Fig. 4 �bottom right�, the Fano factor Fa,b
is shown for different R /��1. As it can be seen, for R /�
�1 the Fano factor is independent of R /� after normalizing
to its value for TN=1. The Fano factor Fa,b is positive outside
the region of the minima. For R /��1, Fa,a takes the value
Fa,a�2 for TN�1, and the value Fa,a�0 for TN=1.

We first make some remarks in order to confirm the va-
lidity of our calculation. Expected behavior is recovered in
some known limiting cases: �i� for tunnel contacts �TN�1�,
the Fano factors are given by Fa,a
2− 1

2sech�R /�� and Fa,b


 1
2sech�R /��, which is in agreement with the expected lim-

iting values Fa,a=2 and Fa,b=0 for R /�→�. This corre-
sponds to the doubling of the effective charge for Andreev
reflection at a single NS interface in the tunnel limit.55,56 �ii�
For highly transparent interfaces �TN
1�, the Fano factors
vanish exponentially with increasing R /� as Fa,a=Fa,b

sech�R /��, as it is expected for a single highly transparent
NS interface. �iii� dSa,b

av /dV and Fa,b are positive and very
small for R /��1 and TN�1, in agreement with Ref. 26.
Only CAR contributes to current-current cross-correlations
for TN�1. �iv� As it can be seen in Fig. 3 �top left�, the linear
conductance dIa

av /dV is suppressed for R /��1 because the
number of normal states within the gap energy is 
R /� for
this geometry. For a three-dimensional grain it is propor-
tional to 
kF

2R3 /�, which can be much larger than unity even
for R /��1. The suppression of Andreev processes at high
transparency for R /��1 is thus not expected to occur in the
case of a three-dimensional superconducting grain.

The Schottky limit is realized for low values of interface

transparencies, which lead to ���Îa−�Îb�2�av=4eIa
av. On the

other hand ���Îa+�Îb�2�av=4e�Ia
av+ Ib

av�. One concludes that
Fa,a�3 /2 and Fa,b�1 /2, in agreement with the plateau ob-
tained in Figs. 4 �top� for the dependence on TN of the Fano
factor. Equations �9�–�11� reproduce these values in the limit
R /�→0 and TN�1.

For highly transmitting interfaces TN=1, we obtain Fa,a
=Fa,b. These values can be confirmed by a more simple cal-
culation in the limit R /��1 �see Appendix B�. The identity

Fa,a=Fa,b implies that Îa
av− Îb

av is noiseless for TN=1, inde-
pendent of R /�
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=Sa,a
av /2eIa

av �top panels� and Fa,b=Sa,b
av /2eIa

av �bottom panels� as a
function of the normal interface transparency TN, for the values of
R /� indicated in the figures. A single-channel one-dimensional BTK
calculation is used �see Fig. 1�a��. The ratio between the gap �0 and
the Fermi energy �F is �0 /�F=10−4 in this simulation. The insert of
bottom right panel shows the variations in the normalized crossed
Fano factor �Fa,b�TN�� / �Fa,b�TN=1��. The data corresponding to
R /�=2,3 ,4 ,5 superimpose after rescaling.
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� d����Îa�t� − �Îb�t����Îa�t + �� − �Îb�t + ����av

=
1

2
�Sa,a

av + Sb,b
av − 2Sa,b

av � =
Ia

av

2
�Fa,a + Fb,b − 2Fa,b� = 0.

�12�

By comparison, in a fermionic beam splitter with highly
transparent contacts, a charge e transmitted from the source
to Na means no charge transmitted from the source to Nb.

Thus, for fermions, it is the sum Îa+ Îb that is noiseless.
We can see from Fig. 3 that the linear differential cross-

correlations of current noise dSa,b
av /dV are positive for TN

�1 and TN�1 while they take negative values in between
these two limiting cases. For TN�1, the positive dSa,b

av /dV
can be explained by the presence of CAR processes. This is
in agreement with perturbative calculations carried out in
Ref. 26. However, for perfectly transmitting interfaces TN
�1, CAR processes do not occur, as the elements of the
scattering matrix describing CAR �e.g. sa,b

e,h� equal zero for
TN=1 �see Appendix B�. In Appendix B we obtain in the
limit R /��1

dSa,b
av

dV
= 8

e3

h
��sa,a

e,h�2 for R/� � 1

�sa,b
e,e �2 = TEC for R/� � 1

� �13�

and

TCAR = �sa,b
e,h�2 = 0. �14�

In Sec. IV, we will use a microscopic model in order to
obtain an understanding of the processes contributing to the
noise and to explain dSa,b

av /dV�0 in the absence of CAR.
To summarize this section, we have obtained analytical

expressions for the current and noise in the one-dimensional
BTK model. It was shown that dSa,b

av /dV�0, and that Eq.
�13� holds for R /��1 and for TN�1. Cooper pair splitting
dominates for small normal transmission coefficient TN�1
while what will be interpreted in Sec. IV as AR-AR domi-
nates for TN�1. These two processes are suppressed for in-
termediate TN, resulting in negative cross-correlations in this
parameter range.

IV. MICROSCOPIC CALCULATIONS

The current-current cross-correlations for highly transpar-
ent interfaces can be further investigated in the two-
dimensional tight-binding setup shown in Fig. 1�b�. First,
using analytic calculations, we analyze the different contri-
butions to the noise Sa,b and show the absence of contribu-
tions due to CAR processes. The positive contributions are
attributed to processes which we refer to as AR-AR �this
notation stands for Andreev reflection and inverse Andreev
reflection�, a denomination which is motivated by the micro-
scopic analysis. Second, numerical calculations are per-
formed, which take into account the inverse proximity effect
by determining the gap in a self-consistent manner. In addi-
tion, disorder will be included in the calculation. As in the
last section, we restrict our study to the case where the same
voltages Va=Vb=V are applied on both normal leads and V is
small compared to the gap �.

The expression of current-current cross-correlations Sa,b
can be decomposed as a sum of six contributions according
to the types of transmission modes in the superconductor

Sa,b = SCAR + SEC + SAR-AR + SAR-AR + S� + SMIXED,

�15�

where the expression and the meaning of the different con-
tributions are provided in Appendix D. SCAR contains the
noise attributed to crossed Andreev reflections, which con-
tains transmission modes in the electron-hole channels. SEC,
the noise due to elastic cotunneling, contains transmission
modes in the electron-electron or hole-hole channels. With
AR-AR, we refer to synchronous local Andreev reflections at
both interfaces while AR-AR links a local Andreev process
at one interface to a local inverse Andreev process at the
other one �see Fig. 2�.

The Andreev reflection is highly local17 �compare with the
BTK calculations in Sec. III, where it vanishes exactly�. This
motivates the assumption �G�,


1,2 �� �G�,

1,1 �, which is confirmed

by our numerical calculations also in the presence of the
inverse proximity effect �see Fig. 5�. Using this simplifica-
tion, one obtains SCAR=SAR-AR=0. The terms S� and SMIXED
vanish after integration over the energy 	. Thus the total
current-current cross-correlation Sa,b depends only on the
term SAR-AR.

In order to understand what type of microscopic processes
are described in AR-AR, we start from the formula giving
the current-current cross-correlations in terms of the Keldysh

Green’s functions Ĝ+,− and Ĝ−,+

Sa,b�	� = Tr�Ĝb,a
+,−Ĝ�,


−,+ + Ĝ
,�
+,−Ĝa,b

−,+ − Ĝb,�
+,−Ĝa,


−,+ − Ĝ
,a
+,−Ĝ�,b

−,+� ,

�16�

where the trace is carried out over the Nambu labels and the
different transmission modes at the interfaces. It can be
shown that all terms in SAR-AR are obtained from the anoma-
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FIG. 5. �Color online� The anomalous Green’s function G�n,
m

1,2

is small compared to the normal Green’s function G�n,
m

1,1 . As the
elements G�n,
m

�between site n on the left interface and site m on
the right interface� decay exponentially with d= �yn−ym�, we have
evaluated the mean values ��G�n,
m

��n,m of the elements with the
same value of d. The main contribution to nonlocal transport comes
from small values of d. While the main frame shows the results
obtained for a constant gap �, the inset shows the corresponding
data with the self-consistent gap.
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lous contributions of the type G+,−,1,2G−,+,2,1 and
G+,−,2,1G−,+,1,2. Let us consider one of these terms as an ex-
ample �the same conclusions are obtained for all terms� and
suppose again that G�,


A,1,2=0 if � and 
 are on different in-
terfaces �that is, crossed Andreev reflection does not contrib-
ute�, and that a symmetric bias voltage is applied on the two
normal electrodes. One has

Gb,a
+,−,2,1�t,t��G�,


−,+,1,2�t�,t� = �ca,↓�t��cb,↑�t���c
,↑
+ �t��c�,↓

+ �t�� .

�17�

This equation can be understood as a relation between initial
and final states, as it is shown in Fig. 6. In general, these
states can be connected by many different processes. How-
ever, the microscopic formula for the current-current cross-
correlations �see Eq. �D4�� shows that the initial and final
states are related by an Andreev process at interface NaS,
and, at the same time, by an inverse Andreev process at
interface SNb �see Fig. 6�. In an Andreev process, an electron
is converted into a hole and a pair of electronlike quasipar-
ticles is transmitted into the superconductor. In an inverse
Andreev process, a hole is converted into an electron and a
pair of holelike quasiparticles is transmitted into the super-
conductor. The pair of electronlike quasiparticles annihilates
with the pair of holelike quasiparticles and the remaining
electron and the hole are exchanged between the two inter-
faces. This results in dSAR-AR /dV�0.

In addition to the analytic calculation, we performed nu-
merical simulations in order to analyze a more realistic
model. Details about the used method20 are presented in Ap-
pendix C. The self-consistent simulations presented below
take into account the inverse proximity effect corresponding

to the reduction in the superconducting gap within a distance

� from the contacts. Self-consistency is equivalent to cur-
rent conservation for the electrons injected from the normal
reservoirs and transmitted into the superconducting ones.

The values for the linear differential cross-correlations
dSa,b /dV, and for the EC and CAR transmission coefficients
TEC and TCAR are plotted as functions of the length N of the
superconductor in Figs. 7 and 8. The notations TEC and TCAR
refer to the transmission modes in the superconductor
�advanced-advanced or retarded-retarded modes not ex-
changing electrons and holes for TEC, and advanced-retarded
Green’s functions exchanging electrons and holes for TCAR�.
TEC and TCAR are given by

TEC = W2Tr�G�,

A,1,1G
,�

R,1,1 + G�,

A,2,2G
,�

R,2,2� , �18�

TCAR = W2Tr�G�,

A,1,2G
,�

R,2,1 + G�,

A,2,1G
,�

R,1,2� , �19�

where W is the hopping amplitude in the bulk and at the
interfaces, and �n and 
m run, respectively, over all the sites

Na NbS

|eα↓〉 |hb↑〉

ARAR

−1

|hα↑〉 |eb↓〉
|eβ↓〉

|eα↓〉
|ea↓〉 |hβ↑〉

time t

time t′

FIG. 6. �Color online� Schematic representation of how AR-AR
couples to current-current cross-correlations. The initial state con-
sists of �i� a spin-down electron created at � at time t, on the
superconducting side of the NaS interface, and of �ii� a spin-up
electron destroyed at time t at b, on the normal side of interface
SNb. The final state consists of a spin-down electron destroyed at
time t� at a, on the normal side of interface NaS, and of a spin-up
electron created at time t� at 
, on the superconducting side of
interface SNb. To the AR-AR process shown on Fig. 2�d�, the per-
mutation of two fermions is added. Taking into account the result-
ing minus sign leads to positive current-current cross-correlations.
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FIG. 7. �Color online� The figure shows dSa,b /dV as a function
of N for highly transmitting interfaces �for N see Fig. 1�b��. In
agreement with the BTK calculations dSa,b /dV�0. The exponential
decay is described by the coherence length which increases with M,
in agreement with Ref. 20. The values M =20 �red squares�
and M =25 �blue circles� are used. Strong deviations from the
exponential decay �red lines� appear for N�M �see Ref. 20�.
The data points are obtained from Eq. �C4�. The decay is
�exp�−2Na0 /��M��.

10−5

10−4

10−3

10−2

10−1

T
E
C
,
T
C
A
R

10 15 20 25 30 35 40

N

TEC, M = 20
TCAR, M = 20
TEC, M = 25
TCAR, M = 25

FIG. 8. �Color online� The exponential decay of the EC
transmission coefficient TEC �Eq. �18�, open red squares for
M =20 and open blue circles for M =25�, and of the crossed An-
dreev transmission coefficient TCAR �Eq. �19�, filled green squares
for M =20 and filled purple circles for M =25� is shown. The decay
is �exp�−2Na0 /��M�� with ��20�=8a0 and ��25�=9a0.
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on the superconducting side of the NaS and SNb interfaces.
The notation Gi,j

A�R�,ni,nj stands for the Nambu component
�ni ,nj� of the advanced �retarded� Green’s function connect-
ing i to j.

The dependence on M of the coherence length was al-
ready found in a previous work.20 The differential cross-
correlations dSa,b /dV are positive, which is in agreement
with the preceding BTK calculation. Differential cross-
correlations dSa,b /dV show exponential decay �see Fig. 7� as
a function of N because the two normal electrodes Na and Nb
are coherently coupled by evanescent states in the supercon-
ductor. The BCS coherence length as obtained from the fits
fulfills Rx /��1 in a wide range of simulation parameters.
This is the range in which the BTK calculation leads to
dSa,b

av /dV=8 e3

h TEC.
For a highly transparent NS contact, one has

G�n,�n

2,1 G
m,
m

1,2 �1 /4W2 where W is the hopping amplitude in
the normal and superconducting electrodes, and at the inter-
face �see Appendix E�. The identity TAR-AR

A,A �TEC holds if
�G�,


1,2 �� �G�,

1,1 � �see Appendix E� with

TAR-AR
A,A = − W2Tr�G�,


A,1,1G
,�
A,2,2 + G�,


A,2,2G
,�
A,1,1� , �20�

where the superscript “A ,A” refers to an advanced-advanced
transmission mode where electrons and hole are conserved.

With these assumptions, the total noise can be written as

dSa,b

dV
� 8

e3

h
TAR-AR

A,A , �21�

TAR-AR
A,A � TEC. �22�

Considering the numerical data, plots of dSa,b /dV as func-
tions of TEC and TCAR �see Fig. 9�, and a comparison be-
tween TAR-AR

A,A and TEC confirm Eqs. �21� and �22� and show
in addition

dSa,b

dV
� 50

e3

h
TCAR. �23�

Comparing with the previous BTK calculation, it is sug-
gested that Eq. �23� is model-dependent because TCAR=0 for
the BTK model while TCAR is finite but small in the self-
consistent microscopic calculation. On the other hand, Eq.
�21�, which is obtained also for the BTK model, is expected
to be a fundamental relation.

Until now, we only studied perfect systems without disor-
der. The numerical calculations based on microscopic
Green’s functions give us however the additional possibility
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FIG. 9. �Color online� Relation between dSa,b /dV and the transmission coefficients TEC and TCAR: panel �a� shows the relation between
dSa,b /dV and TEC and panel �b� shows the relation between dSa,b /dV and TCAR. The data are the same as in Fig. 7. The different points
correspond to different lengths N along Ox axis �see N in Fig. 1�b��. The blue dashed lines show the linear fits dSa,b /dV=8TEC and
dSa,b /dV=50TCAR.
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FIG. 10. �Color online� Relation between dSa,b /dV and the transmission coefficients TEC and TCAR in the presence of weak disorder
�V /W=1 and V /W=1.25�: panel �a� shows the relation between dSa,b /dV and TEC and panel �b� shows the relation between dSa,b /dV and
TCAR. The figure is obtained by averaging over the contributions between the combinations of all different transverse sites xn and xm in the
two normal leads. The width of the model is given by M =20 �see M in Fig. 1�b��.
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to add disorder to the model, which is an unavoidable ingre-
dient to describe experiments.

Eq. �21� remains approximately valid in the presence of
weak disorder �see Fig. 10�, introduced in the form of a
random on-site potential uniformly distributed in the interval
�−V ,V� with elastic mean-free path le
�W /V�2a0 smaller
than the ballistic coherence length 
�W /��a0 but not small
compared to the Fermi wavelength. The parameter W is the
hopping amplitude in the bulk of the superconductor, taking
the same value at the interfaces because of highly transparent
contacts.

The coherence length is reduced as the strength of disor-
der increases. The coherence lengths are fitted to �
=3.8a0 ,3.6a0 for V /W=1.00,1.25, as compared to �=8a0
with V /W=0 in the ballistic limit. The coherence length in
the presence of disorder becomes smaller than its ballistic
value, as for a superconductor in the dirty limit. Within error
bars, Eq. �21� is fulfilled also in the presence of weak disor-
der while the coefficient in Eq. �22� is changed, resulting in

dSa,b

dV
� 40

e3

h
TCAR. �24�

It is concluded that TCAR�TEC implies that Sa,b�Sa,b
AR-AR and

that Eq. �21� is fulfilled. Thus, it was shown that, in this
parameter regime, dSa,b /dV�0 is evidence for AR-AR, not
for CAR.

The BTK approach and the microscopic calculations lead
to positive dSa,b /dV�0, which is due to the exchange of
fermionic quasiparticles �see Fig. 6�. This is the main physi-
cal result of our article: dSa,b /dV�0 at high transparency is
not due to CAR. It is due to pairs of electronlike quasiparti-
cles, pairs of holelike quasiparticles, and exchange of fermi-
ons.

V. CONCLUSIONS

The paper was already summarized in Sec. II B and thus
we conclude with a brief overview and final remarks. We
have evaluated current-current cross-correlations in a NSN
structure with a homogeneous superconductor �without self-
consistency in the order parameter� and with strong inverse
proximity effect �with self-consistent microscopic calcula-
tions for a two-dimensional three-terminal setup�. For both
approaches, the linear differential cross-correlations
dSa,b /dV are positive for highly transparent contacts and de-
cay exponentially with a characteristic length set by the co-
herence length. Positive dSa,b /dV arises in this setup not be-
cause of CAR but because of what is identified as the
correlated penetration of pairs of electronlike quasiparticles
and pairs of holelike quasiparticles into the superconductor
in the form of AR-AR. The positive sign of dSa,b /dV is due
to the additional exchange of two fermions. It is emphasized
that the proposed mechanism does not involve quartets in the
superconductor because AR-AR does not contribute to the
current-current cross-correlations. Direct evaluation of
dSa,b /dV leads to dSa,b /dV=4�e3 /h�TAR-AR

A,A , and to TAR-AR
A,A

�TEC, which holds also for a superconductor with weak dis-
order and with elastic mean-free path shorter than the coher-
ence length.

Finally, correlations between pairs of Andreev pairs were
discussed57,58 in connection with noise in an Andreev inter-
ferometer. Future studies of this class of setups might include
the effect of arbitrary applied voltages and quantitative ef-
fects of three-dimensional geometry.
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APPENDIX A: DETAILS ON THE SCATTERING
APPROACH

The elements si,j
�,
 of the scattering matrix are calculated

within the BTK approach53 using two-component wave func-
tions describing electrons and holes, respectively. The indi-
ces i , j refer to the normal electrodes Na and Nb while � ,

run over the two components describing the electrons and
holes.

For example, the wave functions for an electron incoming
from electrode Na take the form

�a�x� = �1

0
��eiq�+�x + sa,a

e,ee−iq�+�x� + sa,a
h,e�0

1
�eiq�−�x, �A1�

�S�x� = �u0

v0
��c1eik�+�x + c1�e

−ik�+��x−R�� + �v0

u0
��d1e−ik�−�x

+ d1�e
ik�−��x−R�� , �A2�

�b�x� = �0

1
�sb,a

h,ee−iq�−��x−R� + �1

0
�sb,a

e,eeiq�+��x−R�, �A3�

where �a�x�, �S�x�, and �b�x� are the parts of the wave func-
tions in the electrodes Na, S, and Nb respectively �see Fig.
1�a��. The notations q�+�, q�−�, k�+�, and k�−� stand for the wave
vectors in the normal and superconducting electrodes

k��� = kF � i/� , �A4�

q��� = kF, �A5�

with kF��1.
The elements sa,a

e,e , sa,a
h,e, sb,a

h,e, and sb,a
e,e can be determined

using the continuity of the wave functions at the interfaces
��a�0�=�S�0� and �S�R�=�b�R�� and the boundary condition
for the derivatives ��S��0�−�a��0�=H�a�0� and �b��R�
−�S��R�=H�b�R��. The BTK parameter Z is defined by Z
=H /�vF.

The remaining elements of the scattering matrix can be
obtained from the other possible scattering processes �e.g., a
hole incoming from electrode Nb� by analogous calculation.

By comparing the different equations, the symmetry
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sa,a
e,h�	� = sb,b

h,e�− 	� �A6�

of the scattering matrix can be obtained.
The BCS coherence factors u0 and v0 appearing in these

equations are given by

u0
2 = 1 − v0

2 =
1

2
�1 +

		2 − �2

	
� . �A7�

The coherence factors u0 and v0 are interchanged under com-
plex conjugation and changing sign of the real part of energy
�a small imaginary part is supposed to be added to 	�.

APPENDIX B: CURRENT-CURRENT CROSS
CORRELATIONS FOR THE BTK MODEL IN THE LIMIT

Z¶0

For highly transparent interfaces �Z�0�, the expressions
obtained for si,j

�,
 simplify considerably, local reflections
�si,i

�,�=0�, and nonlocal Andreev reflections �si,j
�,
=0 with i

� j ,��
� are suppressed.17 Thus, only local Andreev re-
flection �si,i

�,
 with ��
� and transmission without branch
crossing �si,j

�,� with i� j� can occur. The nonzero elements of
the scattering matrix are given by

sa,a
h,e = u0v0

eR/� − e−R/�

v0
2eR/� − u0

2e−R/� , �B1�

sb,a
e,e = e−ikFR u0

2 − v0
2

u0
2e−R/� − v0

2eR/� . �B2�

Assuming s�	� to be constant in the range �−eV ,eV� �we
study the case eV���, Eqs. �4� and �5� can be written as

Ia =
4e2

h
V�sa,a

e,h�2, �B3�

Sa,b = −
4e3

h
�V��sa,b

h,h†sb,b
h,esb,a

e,esa,a
e,h† + sa,a

h,e†sa,b
e,esb,b

e,hsb,a
h,h†� �B4�

for i� j. In the limit R /��1, the elements of the scattering
matrix �evaluated for 	→0� are given by

sa,a
h,e = sb,b

e,h � i
R

�
, �B5�

sb,a
e,esa,b

h,h � 1 �B6�

leading to

Sa,a = Sa,b =
8e3

h
�V��R

�
�2

� 0. �B7�

The result for Sa,a is obtained by an analogous calculation.
Combining Eq. �B3� for Ia with Eq. �B7� for Sa,a and Sb,b

leads to Fa,a�Fb,b�1 for eV��0, TN=1, and R /��1.

APPENDIX C: TECHNICAL DETAILS ON MICROSCOPIC
CALCULATIONS

The microscopic calculations are based on the following
tight-binding Hamiltonian on a square lattice

HS = − W �
�n,m�

�
�

�cn,�
+ cm,� + cm,�

+ cn,��

+ �
n

�n�cn,↑
+ cn,↓

+ + cn,↓cn,↑� − �
n,�

Vncn,�
+ cn,� �C1�

with the hopping amplitude W between nearest-neighbor
sites n and m separated by a distance a0. The normal elec-
trodes are described by an analogous Hamiltonian with no
pairing term and no disorder. Highly transparent contacts
with interfacial hopping equal to W are used in Sec. IV. The
parameter �n is the superconducting order parameter at site
n. It is determined self-consistently in Sec. IV on the basis of
the recursive algorithm developed in Ref. 20. The gap in the
superconducting reservoirs takes the fixed value �0. Disorder
is introduced at the end of Sec. IV in the form of a random
on-site potential Vn on each tight-binding site, uniformly dis-
tributed in the interval �−V ,V�. The gap and phase profiles in
the superconducting island are shown in Fig. 11 in order to
illustrate the output of the part of the code performing the
self-consistent calculation. Because of disorder, the gap fluc-
tuates strongly from one tight-binding site to the next. The
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FIG. 11. �Color online� The figure shows the gap profile in panel �a�, the phase profile in semilog scale in panel �b�, for a given realization
of disorder with V /W=1. See the text for the meaning of the parameters V and W. The x and y axis are the same as in Fig. 1�b�. This figure
is obtained with the self-consistent algorithm developed in Ref. 20 for the ballistic case. The phase in panel �b� is small but nonzero because
the algorithm takes into account nonequilibrium effects.
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phase profile shows a smooth exponential decay from the NS
interfaces. The accuracy of the self-consistent calculation
gives access to variations of the phase over almost two or-
ders of magnitude.

The average current in Eq. �1� is evaluated from the
Keldysh Green’s function59

Ia,� =
2e

h
�
m
� d	�t̂am,�m

Ĝ�m,am

+,− �	� − t̂�m,am
Ĝam,�m

+,− �	��1,1.

�C2�

Zero frequency noise �see Sec. II� is obtained from Sa,a
=2e2t2 /h�d	Sa,a�	� and Sa,b=2e2t2 /h�d	Sa,b�	�, with

Sa,a�	� = �
n,m

Tr�Ĝam,an

+,− �	�Ĝ�n,�m

−,+ �	� + Ĝ�m,�n

+,− �	�Ĝan,am

−,+ �	�

− Ĝam,�n

+,− �	�Ĝan,�m

−,+ �	� − Ĝ�m,an

+,− �	�Ĝ�n,am

−,+ �	�� ,

�C3�

Sa,b�	� = �
n,m

Tr�Ĝbm,an

+,− �	�Ĝ�n,
m

−,+ �	� + Ĝ
m,�n

+,− �	�Ĝan,bm

−,+ �	�

− Ĝbm,�n

+,− �	�Ĝan,
m

−,+ �	� − Ĝ
m,an

+,− �	�Ĝ�n,bm

−,+ �	�� .

�C4�

The trace is evaluated over the Nambu labels. Equation �C4�
is a generalization of Ref. 60 to two interfaces with many
channels. The numerical calculations presented in the main
body of the paper are based on Eqs. �C2�–�C4�.

APPENDIX D: MICROSCOPIC CALCULATIONS FOR
THE NOISE FORMULA

In this Appendix we provide the complete formula for the
noise Sa,b�	� given by Eq. �C4� for subgap voltage ��	�
�eV���. This allows considerable simplification of the ex-
pression of Sa,b because the Keldysh Green’s function g+−

=0 in the isolated superconductor, as there exist no single-
electron states. The total noise can be decomposed into dif-
ferent terms according to the types of transmission modes in
the superconductor as

Sa,b�	� = SCAR + SEC + SAR-AR + SAR-AR + SMIXED + S�.

�D1�

In the normal lead N, the Keldysh Green’s functions read
gNN

+−,11=2i��NnF�	−eV�, gNN
+−,22=2i��NnF�	+eV�, gNN

−+,11

=2i��NnF�−	+eV�, and gNN
−+,22=2i��NnF�−	−eV�, where

�N is the density of states at the interface in the normal lead,
and, at zero temperature, nF�x�=
�−x�, with 
�x� being the
Heaviside step function. This gives gN,N

+−,11gN,N
−+,22=gN,N

+−,22gN,N
−+,11

=0, leading to further simplification of the expression for
Sa,b.

The contribution SCAR is given by the advanced-advanced
or retarded-retarded transmission modes in the electron-hole
channel, in the form of the combinations of the type
G�


A,12G
�
R,21. Physically, these microscopic processes can be

interpreted as Cooper pair splitting as appearing in CAR. The
expression for SCAR is as follows:

SCAR = 2t4�+ gbb
−+,11gaa

+−,22G�

R,21G
�

R,12�1 + 2iG��
A,22�t2�a��1

+ 2iG


A,11�t2�b� + gbb

−+,22gaa
+−,11G�


R,12G
�
R,21�1

+ 2iG��
A,11�t2�a��1 + 2iG



A,22�t2�b�

− gaa
−+,22gbb

+−,11G�

A,21G
�

A,12�i + 2G��
R,22�t2�a��i

+ 2G


R,11�t2�b� − gaa

−+,11gbb
+−,22G�


A,12G
�
A,21�i

+ 2G��
R,11�t2�a��i + 2G



R,22�t2�b�� , �D2�

where t is the hopping amplitude at the interfaces.
The contribution SEC contains advanced-advanced and

retarded-retarded transmission modes in the electron-electron
or hole-hole channel, in the form of the combinations of the
type G�


A,12G
�
A,21. This is the contribution to the noise of nor-

mal electron transmission in the form of EC. The expression
reads

SEC = 2t4�+ gbb
−+,11gaa

+−,11G�

R,11G
�

R,11�i − 2G��
A,11�t2�a��i

− 2G


A,11�t2�b� + gbb

−+,22gaa
+−,22G�


R,22G
�
R,22�i

− 2G��
A,22�t2�a��i − 2G



A,22�t2�b�

+ gaa
−+,11gbb

+−,11G�

A,11G
�

A,11�i + 2G��
R,11�t2�a��i

+ 2G


R,11�t2�b� + gaa

−+,22gbb
+−,22G�


A,22G
�
A,22�i

+ 2G��
R,22�t2�a��i + 2G



R,22�t2�b�� . �D3�

Now we consider processes that do not appear in lowest
order perturbation theory. First the contribution SAR-AR con-
tains advanced-advanced and retarded-retarded transmission
modes, in the form of the combinations of the type
G�


A,11G
�
A,22. Physically, this can be interpreted as the contri-

bution to the noise of synchronized Andreev and inverse An-
dreev processes �AR-AR� with the exchange of two fermions
at the same time, thus leading to dSa,b /dV�0 �see Fig. 6�.
This contribution dominates the current-current cross-
correlations dSa,b /dV in the considered setup. This contribu-
tion reads

SAR-AR = − 8�2t8�a�b�+ gbb
−+,22gaa

+−,11G��
A,12G



A,21G�

R,22G
�

R,11

+ gbb
−+,11gaa

+−,22G��
A,21G



A,12G�

R,11G
�

R,22

+ gaa
−+,11gbb

+−,22G�

A,11G
�

A,22G��
R,21G



R,12

+ gaa
−+,22gbb

+−,11G�

A,22G
�

A,11G��
R,12G



R,21� . �D4�

Another contribution not appearing in lowest order con-
tains processes involving electron-hole conversion both at
the interfaces and during propagation in the superconductor.
The transmission modes in the superconductor are of the
type G�,


A,12G
,�
A,12. These terms correspond to the synchroniza-

tion of two Andreev processes �AR-AR�. The corresponding
expression reads

SAR-AR = 8�2t8�a�b�+ gbb
−+,22gaa

+−,22G��
A,21G



A,21G�

R,12G
�

R,12

+ gbb
−+,11gaa

+−,11G��
A,12G



A,12G�

R,21G
�

R,21

+ gaa
−+,22gbb

+−,22G�

A,21G
�

A,21G��
R,12G



R,12

+ gaa
−+,11gbb

+−,11G�

A,12G
�

A,12G��
R,21G



R,21� . �D5�
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Another contribution contains transmission modes of the
type G�,


A,11G
,�
A,12. These terms read

S� = 8�2t8�a�b�+ gaa
+−,11G��

A,11�gbb
−+,22G



A,21G�

R,12G
�

R,11

− gbb
−+,11G



A,12G�

R,11G
�

R,21�

+ gaa
+−,11G��

A,12�gbb
−+,22G



A,22G�

R,22G
�

R,21

− gbb
−+,11G



A,11G�

R,21G
�

R,11�

+ gaa
+−,22G��

A,21�gbb
−+,11G



A,11G�

R,11G
�

R,12

− gbb
−+,22G



A,22G�

R,12G
�

R,22�

+ gaa
+−,22G��

A,22�gbb
−+,11G



A,12G�

R,21G
�

R,22

− gbb
−+,22G



A,21G�

R,22G
�

R,12�

+ gaa
−+,22G�


A,21�gbb
+−,11G
�

A,11G��
R,12G



R,11

− gbb
+−,22G
�

A,22G��
R,22G



R,12�

+ gaa
−+,22G�


A,22�gbb
+−,11G
�

A,12G��
R,22G



R,21

− gbb
+−,22G
�

A,21G��
R,12G



R,22�

+ gaa
−+,11G�


A,11�gbb
+−,22G
�

A,21G��
R,11G



R,12

− gbb
+−,11G
�

A,12G��
R,21G



R,11�

+ gaa
−+,11G�


A,12�gbb
+−,22G
�

A,22G��
R,21G



R,22

− gbb
+−,11G
�

A,11G��
R,11G



R,21�� + 4i�t6�a

�+ gaa
−+,22G��

R,12�gbb
+−,11G�


A,21G
�
A,11 − gbb

+−,22G�

A,22G
�

A,21�

+ gaa
−+,11G��

R,21�gbb
+−,22G�


A,12G
�
A,22 − gbb

+−,11G�

A,11G
�

A,12�

+ gaa
+−,11G��

A,12�gbb
−+,11G�


R,21G
�
R,11 − gbb

−+,22G�

R,22G
�

R,21�

+ gaa
+−,22G��

A,21�gbb
−+,22G�


R,12G
�
R,22 − gbb

−+,11G�

R,11G
�

R,12��

+ 4i�t6�b�+ gbb
−+,22G



A,21�gaa
+−,22G�


R,22G
�
R,12

− gaa
+−,11G�


R,12G
�
R,11� + gbb

−+,11G


A,12�gaa

+−,11G�

R,11G
�

R,21

− gaa
+−,22G�


R,21G
�
R,22� + gbb

+−,22G


R,12�gaa

−+,11G�

A,11G
�

A,21

− gaa
−+,22G�


A,21G
�
A,22� + gbb

+−,11G


R,21�gaa

−+,22G�

A,22G
�

A,12

− gaa
−+,11G�


A,12G
�
A,11�� . �D6�

The last term involves advanced-retarded transmission
modes

SMIXED = 8�2t8�a�b�+ gaa
−+,22gaa

+−,11�G��
A,11G��

R,12 − G��
A,12G��

R,22�

��G�

A,21G
�

R,11 − G�

A,22G
�

R,21�

+ gaa
−+,11gaa

+−,22�G��
A,21G��

R,11 − G��
A,22G��

R,21��G�

A,11G
�

R,12

− G�

A,12G
�

R,22� + gbb
−+,22gbb

+−,11�G
�
A,11G�


R,12 − G
�
A,12G�


R,22�

��G


A,21G



R,11 − G


A,22G



R,21�

+ gbb
−+,11gbb

+−,22�G
�
A,21G�


R,11 − G
�
A,22G�


R,21��G


A,11G



R,12

− G


A,12G



R,22�� − 4i�t6�a�+ gbb
−+,11gbb

+−,22�G


A,12

+ G


R,12��G
�

A,21G�

R,11 − G
�

A,22G�

R,21�

− gbb
−+,22gbb

+−,11�G


A,21 + G



R,21��G
�
A,11G�


R,12

− G
�
A,12G�


R,22�� − 4i�t6�b�+ gaa
−+,22gaa

+−,11�G��
A,12

+ G��
R,12��G�


A,21G
�
R,11 − G�


A,22G
�
R,21�

− gaa
−+,11gaa

+−,22�G��
A,21 + G��

R,21��G�

A,11G
�

R,12

− G�

A,12G
�

R,22�� . �D7�

APPENDIX E: EVALUATION OF THE GREEN’S

FUNCTION Ĝ�,� CONNECTING TWO INTERFACES

It will be shown that, at small energy compared to the
gap, the advanced-advanced AR-AR transmission mode
�G�,


A,1,1G
,�
A,2,2�av can be replaced by the opposite of the

advanced-retarded EC transmission mode −�G�,

A,1,1G
,�

R,1,1�av.
The Green’s function is expanded in powers of the exponen-
tial coefficient exp�−Rx /�� appearing in ĝ�,
, giving8

Ĝ�,

A = M̂�,�

A ĝ�,

A N̂
,


A + O��g�,

A �3� , �E1�

M̂�,�
A = �Î − ĝ�,�

A t̂�,aĝa,a
A t̂a,��−1, �E2�

N̂
,

A = �Î − t̂
,bĝb,b

A t̂b,
ĝ
,

A �−1. �E3�

This expansion leads to

Ĝ�,

A =

1

4
�g�,


A,1,1 − g�,

A,2,2 + i�g�,


A,1,2 + g�,

A,2,1� i�g�,


A,1,1 + g�,

A,2,2� + g�,


A,1,2 − g�,

A,2,1

i�g�,

A,1,1 + g�,


A,2,2� + g�,

A,2,1 − g�,


A,1,2 − g�,

A,1,1 + g�,


A,2,2 + i�g�,

A,1,2 + g�,


A,2,1�
� . �E4�

One has ĝ�,

A = ĝ�,


R � ĝ�,
 for energies within the gap. The
off-diagonal Nambu components are vanishingly small if 	
��. It is deduced that

�G�,

A,1,1G
,�

A,2,2�av = − ��g�,

1,1 − g�,


2,2 �2�av − ��g�,

1,2 + g�,


2,1 �2�av,

�E5�

�G�,

A,1,1G
,�

R,1,1�av = ��g�,

1,1 − g�,


2,2 �2�av + ��g�,

1,2 + g�,


2,1 �2�av

�E6�

leading to the identification of the advanced-advanced
AR-AR transmission coefficient to the opposite of the
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advanced-retarded EC transmission coefficient, for small en-
ergy compared to the gap and for Na0��. Equation �E5� has
no imaginary part because �g�,


1,2 g�,

2,2 �av=0 at small energy

compared to the gap.

The fully dressed local Green’s function can be evaluated

approximately by inverting the Dyson equation Ĝ�,�= ĝ�,�

+ ĝ�,�t̂�,aĝa,at̂a,�Ĝ�,�, leading to G�,�
A,1,2=G�,�

A,2,1=1 /2W at en-
ergy small compared to the gap.
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