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We have studied the possible existence of a supersolid phase of a two-dimensional dipolar crystal using
quantum-Monte Carlo methods at zero temperature. Our results show that the commensurate solid is not a
supersolid in the thermodynamic limit. The presence of vacancies or interstitials turns the solid into a super-
solid phase even when a tiny fraction of them are present in a macroscopic system. The effective interaction
between vacancies is repulsive making a quasiequilibrium dipolar supersolid possible.
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I. INTRODUCTION

Quantum systems with a dominant dipolar interaction
have received permanent interest from the recent achieve-
ment of a Bose-Einstein condensed state of chromium atoms
with a large dipole moment.1 The anisotropy of the dipole-
dipole interaction leads to exciting quantum phases that have
been recently observed in fully quantum systems.2 The ex-
perimental confirmation of these predicted phases and the
collapses induced by the attractive part of the interaction can
be even better realized if the permanent dipole moment of
the particles becomes larger. A promising system for this
goal is a stable gas of ultracold heteronuclear molecules.3

If the quantum dipoles are confined in a two-dimensional
�2D� plane and all the dipole moments are perpendicular to
the plane, the interaction is always repulsive and therefore
the system is stable at any density. Under such spatial and
orientational restrictions one looses relevant features that can
emerge when the attractive collapse is approached but, on the
other side, the stability of the 2D geometry allows for the
possible observation of a gas-solid quantum-phase transition
at high densities.4,5 A 2D environment is currently devised in
the field of cold quantum gases by very anisotropic traps
where the confinement in one direction is so tight that the
transverse motion is frozen to zero-point oscillations.6 An-
other physical system where this 2D setup is relevant is the
one of indirect excitons composed by electrons and holes
physically separated using two-coupled quantum wells.7–10 If
the distance between the electron and hole layers is signifi-
cantly smaller than the electron-electron and hole-hole dis-
tances the resulting excitons can be modeled as composite
bosons with a dipole-dipole interaction.11,12

Recent quantum Monte Carlo calculations at zero4 and
finite temperature5 have shown that a 2D homogeneous
phase of dipoles experiments a gas-solid phase transition
when the density increases. The equation of state of this solid
phase, which forms a triangular lattice as well as its main
structure properties are already reported in these previous
works. However, relevant questions such as the possible su-
perfluid signal and/or condensate fraction of the zero-
temperature dipolar crystal were not addressed so far. In fact,
there is at present a renewed interest in the search of super-
solid phases where off-diagonal long-range order and spatial-
solid order are simultaneously present.13 Recently, nonclas-

sical rotational inertia, measured in torsional-oscillator
experiments with solid 4He, has been interpreted as super-
solid signatures.14

Within the framework of Bose-Hubbard Hamiltonians su-
persolid phases of dipolar-lattice bosons have already been
predicted. Danshita and Sá de Melo15 identify exotic phases
as checkerboard and striped supersolid phases by including
in the model Hamiltonian the attractive part of the dipole-
dipole interaction and Trefzger et al.16 find a pair-supersolid
phase in a bilayer configuration. The emergence of super-
solid states when dipolar bosons are confined in two-
dimensional optical lattices is probably favored by the free
tuning of the localization strength of the external lattice po-
tential included in the model Hamiltonian. A different con-
cern is the possible formation of a supersolid phase in a
continuum system where a solid is formed at high density
without the presence of any external localization potential. In
this work, we present the study of supersolidity in 2D dipolar
bosons at zero temperature using quantum-Monte Carlo
methods that rely merely on the microscopic Hamiltonian.

In Sec. II, we review the quantum-Monte Carlo method
used in this study and specific details of the numerical simu-
lations carried out. The main results obtained, with special
attention to the role of defects on the supersolid properties of
the dipolar crystal, are contained in Sec. III. Finally, Sec. IV
comprises the summary of our work and concluding remarks.

II. METHOD

The triangular crystal phase of dipolar bosons is studied
by means of the diffusion-Monte Carlo �DMC� method that
it is nowadays a standard tool for achieving ground-state
solutions of many-boson systems at zero temperature.17 The
starting point of the DMC method is the Schrödinger equa-
tion written in imaginary time

− �
���R,z�
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= �H − Er���R,t� �1�

with an N-particle Hamiltonian

H = −
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In Eq. �1�, Er is a constant acting as a reference energy
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and R��r1 , . . . ,rN� is a walker in Monte Carlo terminology.
In order to reduce the variance to a manageable level and fix
the symmetry of the system, it is a common practice to use
importance sampling by introducing a trial wave function
��R�. Then, the Schrödinger equation is rewritten for the
wave function ��R ,z�=��R ,z���R� and solved in a sto-
chastic form. In the limit z→� only the lowest energy eigen-
function, not orthogonal to ��R�, survives and then the sam-
pling of the ground state is effectively achieved. Apart from
statistical uncertainties, the energy of a N-body bosonic sys-
tem is exactly calculated.

As all the dipole moments are perpendicular to the plane,
the dipole-dipole potential is

V�r� =
Cdd

4�

1

r3 . �3�

The constant Cdd depends on the nature of the dipole-dipole
interaction and increases proportionally to the square of the
individual dipole moment. As in previous work, we define
characteristic units of length r0=mCdd / �4��2� and energy
E0=�2 / �mr0

2� in such a way that the properties of the system
are governed by a dimensionless density nr0

2 with n as the
particle density. In a previous work,4 the crystal phase of
dipoles was studied using for � a nonsymmetric model
�Nosanow-Jastrow �NJ�� since the focus was the determina-
tion of the equation of state and the phase-transition point,
issues in which implicit symmetrization is much less rel-
evant. Obviously, the NJ trial wave function cannot be used
in the present study since our goal is the determination of
superfluid signals in the solid and that is only possible as-
suming particle indistinguishability. To this end, in the
present work we use a symmetric model

��R� = �
i�j

N

f�rij��
I=1

Ncr ��
i=1

N

g�rIi�	 �4�

that was first introduced in the study of solid 4He at zero
temperature.18 In Eq. �4�, R= 
r1 , . . . ,rN�, f�r� is a two-body
Jastrow correlation factor chosen as in Ref. 4, g�rIi�=exp�
−	�ri−rI�2� and Ncr is the number of lattice sites of the tri-
angular crystal structure. This model wave function in Eq.
�4� makes compatible the spatial solid order and the symme-
try under the interchange of particles avoiding the numeri-
cally unworkable use of permanents on top of the NJ wave
function.

Coherence phenomena in the dipolar solid have been
studied by calculating the one-body density matrix 
1�r� and
the superfluid fraction ns /n. The function 
1�r� approaches a
constant at long distances, which is the condensate fraction
N0 /N=limr→� 
1�r� /n, if off-diagonal long-range order ex-
ists in the system. In DMC, the function 
1�r� cannot be
calculated using a pure estimator and therefore some bias
induced by the trial wave function � remains. To reduce this
bias as far as possible the variational parameters entering in
� have been optimized in such a way that the variational and
DMC �mixed� estimations of N0 /N are coincident within
their statistical errors. On the other hand, the superfluid den-
sity is computed by extending the winding-number tech-
nique, used in path-integral Monte Carlo simulations at finite

temperature, to zero temperature.19 Explicitly

ns

n
= lim

�→�
	�Ds���

�
	 , �5�

where 	=N / �4D0� with D0=�2 / �2m�, and Ds���= ��RCM���
−RCM�0��2
 with RCM the center of mass of the particles and
� the imaginary time. Differently from the estimation of

1�r�, the measure of the superfluid density in Eq. �5� is
unbiased �pure estimator�.

III. RESULTS

DMC results for the perfect 2D triangular solid are re-
ported in Fig. 1. In all the simulations, carried out with dif-
ferent number of particles N, the one-body density matrix
shows a plateau at long distances and therefore a finite con-
densate fraction. However, N0 /N decreases significantly with
N making the condensate fraction vanishingly small in the
thermodynamic limit N→�. If the calculation is carried out
with a nonsymmetric trial wave function �Nosanow-Jastrow
model�, 
1�r� does not show off-diagonal long-range order
for any value of N �see Fig. 1�. We show in the same figure
results for the superfluid density, plotting the function 	Ds���
�Eq. �5�� as a function of the imaginary time �; the slope of
this function is directly ns /n. As one can see, the slope be-
comes zero within our numerical resolution for values N
�30 pointing to the absence of supersolidity in the perfect
crystal in the thermodynamic limit. The lack of supersolid
signatures in the commensurate solid is observed at any den-
sity, starting on the melting one nmr0

2=290�30� shown in Fig.
1.

The presence of defects or imperfections in a crystal has
been suggested as a plausible explanation of the supersolid
signals observed experimentally in torsional oscillator mea-
surements of solid 4He. Whereas there are still open discus-

FIG. 1. �Color online� �a� One-body density matrix of the per-
fect 2D crystal at a density nr0

2=290 and as a function of the num-
ber of particles N used in the simulation; the solid line corresponds
to a nonsymmetric trial wave function. �b� The function 	Ds���, Eq.
�5�, at the same density and as a function of N; the thin straight line
corresponds to ns /n=1 and the solid line to the nonsymmetric case,
ns /n=0.
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sions about the existence or not of vacancies in the ground
state of bulk solid 4He,13 it seems very reasonable to think on
the presence of vacancies or interstitials in a 2D crystal of
dipoles. Indeed, indirect excitons or trapped atoms or mol-
ecules with high-dipole moments can be easily produced
with a fraction of defects. We have collected in Fig. 2 DMC
results for a dipolar solid with a finite fraction of vacancies
or interstitials. Both the condensate fraction and superfluid
density are very sensitive to the presence of defects: for any
concentration of vacancies or interstitials a finite value for
ns /n and N0 /N is observed. When the fraction of vacancies is
�6% and nr0

2=290, the supersolid melts: N0 /N equals its
value in the gas phase, ns /n=1, and the peak of S�k� in the
reciprocal-lattice vector disappears. The crystal also melts
due to interstitials at a slightly higher concentration, �10%.

In Fig. 3, we show the density dependence of N0 /N, ns /n,
and height of the main peak of S�k� for the particular case of
one vacancy in a solid with Ncr=30. The condensate fraction
becomes vanishingly small at high densities and remains al-
ways a factor of three to five smaller than its value in the gas
phase, as also shown in the figure for comparison. The su-
perfluid density fraction is �50% at melting of the commen-
surate crystal and decreases with n but much more slowly
than N0 /N. On the other hand, the height of the S�k� peak
increases with density as expected and it increases with N for
a fixed n as it must be in a solid structure �not shown in the
figure�. At density nr0

2=230 the supersolid completely melts:
N0 /N becomes equal to its value in the gas, ns /n=1, and the
divergent peaks in S�k� disappear.

As we commented before, the condensate fraction shows
a significant dependence with N and therefore the estimation
of the thermodynamic limit when vacancies are present is
fundamental. For this purpose, we performed a study of the
N dependence of N0 /N for vacancy fractions 0.018

Nvac /Ncr
0.042. The DMC results obtained show a 1 /N
decrease with the number of Bose-condensed particles per
vacancy, N0 /Nvac but with a finite value in the thermody-
namic limit N→� of N0 /Nvac=0.050�8�. The number of su-
perfluid particles per vacancy, which is weakly dependent on
N, also remains finite in this limit. Also, the height of the
narrow peak in S�k� remains finite and proportional to N.
Therefore, vacancy-induced superfluidity coexists with spa-
tial solid order, i.e., a supersolid phase can exist.

A relevant concern about the stability of a small fraction
of vacancies in the solid is the nature of their mutual inter-
action. Several microscopic estimations in solid 4He show
that two vacancies tend to form a weakly bound state be-
cause their interaction is attractive.20–22 Therefore, it has
been argued that vacancies would form a cluster inside the
crystal that eventually can evaporate producing a collapse of
the crystal. In order to characterize the local structure of
vacancies in a 2D dipolar crystal we have sampled the
vacancy-vacancy two-body distribution function gvv�r�. As
vacancies are not real particles and our simulation works in a
configuration space of particle coordinates one has to define
what a vacancy position is for a given snapshot of the sys-
tem. In our procedure, we have always identified a vacancy
with one of the sites of the perfect triangular lattice in which
unambiguously none of the particles is around it within a

FIG. 2. �Color online� �a� Condensate fraction, �b� superfluid
fraction, and �c� height of the main divergent peak of �S�klatt� with
respect to the background at the reciprocal-lattice vector klatt, for a
crystal with vacancies or interstitials �N�Ncr� at density nr0

2=290.
Solid symbols with solid lines and open symbols with dashed lines
stand for the solid and gas phases, respectively.

FIG. 3. �Color online� �a� Density dependence of the condensate
fraction, �b� superfluid fraction, and �c� S�klatt� peak for a solid with
one vacancy. Solid and open points stand for the solid and gas
phases, respectively.
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cut-off radius that is close to the value of the lattice constant.
Along the evolution in imaginary time, there are configura-
tions in which we cannot identify the vacancy sites due to
intrinsic fluctuations; in these cases we do not accumulate
statistics for gvv�r�. In Fig. 4, we show a snapshot of the
system where vacancy sites are identified according to our
definition. In the same figure, the vacancy-vacancy correla-
tion function gvv�r� is shown for a setup composed by Ncr
=90 and four vacancies. The radial function gvv�r� is normal-
ized at each distance dividing what accumulated in each bin
by the corresponding output obtained in a merely random
distribution. As shown in Fig. 4�b�, vacancies repel at short
distances and this relevant feature is not only observed for
this particular set of parameters but settled at other densities
and vacancy fractions �below the threshold for melting�. The
repulsive interaction between vacancies in the 2D dipolar
solid is probably due to the monotonously repulsive interac-
tion between aligned dipoles that makes configurations to be
more stable when vacancies spread in the system in order to
effectively reduce the dipolar density. This is contrary to the
vacancy-vacancy attraction observed in solid 4He simula-
tions in which the van der Waals attraction at long distances
can explain the difference with the present results.

The ground state of the dipolar solid is a commensurate
phase, i.e., without vacancies and/or interstitials. In other
words, an activation energy is needed to create a vacancy or
interstitial. We have estimated the activation energy to create
one or more vacancies or interstitials using the DMC

method. In Fig. 5, we show the energies per particle of a
solid with defects normalized to the energy per particle of the
commensurate solid and having rescaled the simulation box
size to work at fixed density. Our results support the meta-
stability of the solid with defects with respect to the com-
mensurate solid. The activation energy for the creation of a
vacancy is higher than the corresponding one for an intersti-
tial and this is maintained when the number of defects in-
creases: the slopes of the two cases are rather different �see
Fig. 5�. It is worth noticing that this behavior is opposite to
the one observed in solid 4He where the activation energy for
an interstitial is significantly larger than for a vacancy. De-
fining the activation energy in the standard way,23 we get for
one vacancy Ev=2150�150� and for one interstitial Ei
=990�50�, both at fixed density nr0

2=290. These activation
energies are significantly larger than the Berezinskii-
Kosterlitz-Thouless temperature T=380,5 hindering thermal
activation of defects.

IV. CONCLUDING REMARKS

In the present work, we have studied the possible emer-
gence of bosonic-coherence phenomena in a two-
dimensional crystal of dipoles by calculating the condensate
fraction and superfluid density using accurate quantum-
Monte Carlo methods. To this end, we have used in this
system a trial wave function for importance sampling with
both boson symmetry and solid order. Our DMC results
show that the commensurate solid is not a supersolid since
both ns /n and N0 /N become zero in the thermodynamic limit
within our numerical resolution. The introduction of defects,
in the form of vacancies or interstitials, produces a dramatic
effect on both quantities, even with tiny concentrations. A
quasiequilibrium solid with vacancies or interstitials is
proven to be supersolid within a predicted fraction of de-
fects. If this percentage is further increased the supersolid
melts.

The effective vacancy-vacancy interaction is repulsive at
short distances, a feature that is opposite to the one of solid
4He and that can help to stabilize the dipolar supersolid
phase. The recrystallization to the ground state with a small
fraction of defects is exponentially suppressed by the tunnel-
ing barrier which stabilizes a dipolar supersolid. Possible ex-
perimental realizations of a quasiequilibrium dipolar super-
solid with defects include: �i� harmonically trapped dipolar
molecules24 or atoms25 spatially localized with an optical

FIG. 4. �Color online� �a� Snapshot of a typical spatial configu-
ration when vacancies are present. This case corresponds to Ncr

=90 and N=86; crosses are the lattice points, solid circles are par-
ticles, and open circles, vacancies. �b� Vacancy-vacancy pair distri-
bution function gvv�r� for the same Ncr and N values as in �a�; L
=�N /n is the size of the simulation box.

FIG. 5. �Color online� Energy per particle of the 2D dipolar
solid as a function of the number of vacancies or interstitials, at
density nr0

2=290 and Ncr=90, and normalized to the energy per
particle of the commensurate crystal.

KURBAKOV et al. PHYSICAL REVIEW B 82, 014508 �2010�

014508-4



lattice and �ii� Wannier-Mott 2D dipolar excitons in single or
coupled semiconductor quantum wells in electric and mag-
netic fields which are perpendicular to the quantum wells
plane.26 In the latter case, the finite excitation lifetime caused
by their optical recombination gives rise to a continuous ad-
dition of vacancies into the system, resulting in a macro-
scopic supersolid at low temperatures.
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