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Using continuity, we derive a renormalized Hamiltonian from the parent 7-J model to describe the properties
of underdoped cuprates. The theory is constrained to agree with the behavior at half filling, which is well
described by the Arovas-Auerbach valence bond state in which bosonic spinons are paired into singlets. Spinon
states evolve continuously into the doped region preserving their symmetry. We assume that moving holes
rapidly destroy magnetic order, which leads to a gap in the spinon spectrum and strongly renormalizes the
theory. The spin gap leads to two different types hopping terms for renormalized holes. In one, a fermionic
holon hops within the same sublattice accompanied by a singlet backflow, giving rise to a non-Fermi-liquid
normal state with novel properties. Spinon singlets condense below a pseudogap temperature 7° (< spin gap
temperature 7°), which allows holons to propagate coherently, forming a spinless Fermi liquid, but without an
observable holon Fermi surface. Above T, holons are localized. This is the so-called strange metal phase,
which is actually a new type of insulator since its resistivity would be infinite at 7=0. In the second term a pair
of holons belonging to opposite sublattices hop, accompanied by a singlet backflow. In the presence of the
singlet condensate holon pairs condense, leading to d-wave superconductivity; the symmetry is primarily
determined by the symmetry of the valence bond state at half filling. The metal and the superconductor
preserve the two-sublattice character of the valence bond state. A careful examination of the nuclear magnetic
resonance, tunneling, and transport data shows that the predictions of the theory is consistent with experimental
results. Remarkably, the existence of the spin gap provides a natural explanation for the phenomenon of two
dimensionality of the normal state in the presence of interplane hopping. The marked asymmetry between

hole-doped and electron-doped cuprates is also easily explained.

DOI: 10.1103/PhysRevB.82.014504

I. INTRODUCTION

The origin of high-temperature superconductivity in
doped cuprates' is believed to be closely linked with the
unusual behavior of the normal state, which is not a Fermi
liquid. Furthermore, in the underdoped region a pseudogap
appears below a temperature 7%, much above the supercon-
ducting temperature T..> Even before the discovery of the
pseudogap phase, Anderson argued that the non-Fermi-liquid
behavior is due to the two-dimensional (2D) nature of the
normal state,? and its proximity to the undoped phase, which
is a Mott insulator, or equivalently, a quantum antiferromag-
net. The 2D behavior is unexpected and its origin is not
understood. Anderson also proposed the resonating valence
bond (RVB) state in which spins are paired into singlets
within the insulator.> Upon doping with holes, this state
would evolve continuously into the doped region where spin-
less holons, which carry charge, would propagate coherently
and create a metal. The elementary excitations are holons
and spin-1/2 spinons. The physical electron is a composite
particle. The expectation is that the apparent spin-charge
separation would lead to non-Fermi-liquid behavior, and fur-
ther that the spin singlets would acquire charge via some
interaction with holons and become superconducting.

Theoretical studies are usually based on the large-U Hub-
bard model or, equivalently, the 7-J model on a square lattice,
where J=4>/U is the exchange coupling between spins, and
t describes nearest-neighbor (nn) hopping of electrons such
that no site is doubly occupied. For cuprates, #/J~3—4. The
constraint of no double occupancy corresponds to a U(1)
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gauge symmetry.* Much of the work has been devoted to
deriving an effective low-energy theory of propagating
spinons and holons (or pairs), coupled to a gauge field. In
principle, such a task should not be too difficult since one
can invoke continuity. The effective action would depend on
the symmetries of the underlying vacuum state, i.e., a renor-
malized version of the RVB state of paired spinons, which is
presumed to describe the insulator at half filling. After more
than two decades of intensive work, a successful theory has
not been found.

This failure is surprising since, using a mean-field (MF)
approximation, Arovas and Auerbach® have shown that the
behavior at half filling is indeed reasonably well described
by an RVB state in which singlets formed by pairing bosonic
spinons (Schwinger bosons) condense below a temperature
Tryg- (In this paper, we use the term RVB to describe any
valence bond state.) One complication is that a fraction of
spinons remains unpaired and condenses separately to give
rise to long-range antiferromagnetic order. This is not a de-
fect of the theory since it correctly describes the ground
state, which is known to be ordered.® In other words, the
system is in a mixed phase of an RVB state and a Néel state
with Tryg>Tar (in d=2, Tyr=0). Essential correctness of
the bosonic theory was later confirmed by analytical® and
numerical work.” In cuprates the AF insulating state exists up
to a hole density x of about 0.05, beyond which there is a
transition to a pseudogap metal (and a d-wave supercon-
ductor), with no long-range magnetic order of any type.
However, a seemingly straightforward extension of the
Arovas-Auerbach MF theory (with fermionic holons) to the
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doped region leads to a metallic state with spiral magnetic
order.® This failure has lead to a virtual abandonment of the
approach based on the Arovas-Auerbach RVB state and
bosonic spinons.’

Instead, RVB theories based on the slave-boson represen-
tation (spinons are fermions and holons are bosons) have
been used widely!®'? (for a review, see Lee et al.'®). But
these do not work at half filling and there are no experimen-
tal signatures of a transition to a different RVB state accom-
panied by statistical transmutation upon doping. There are
serious doubts as to their efficacy in describing the physics
of underdoped cuprates. Indeed the failure to connect with
the physics at half filling is one of the central problems in
high-T., theory.

We have solved this problem by deriving a renormalized
theory for small x which is consistent with the physics at half
filling but does not have the problems of spiral instability.
The key point is that, for the #-J model, the spiral state has
been shown to be unstable.!* We therefore assume that (1)
the spin states evolve continuously from half filling, preserv-
ing their symmetry and particle statistics, and (2) moving
holes rapidly destroy long-range magnetic order at 7=0 be-
yond some small critical concentration x,., strongly renormal-
izing the theory in the process; but the VB state survives up
to a temperature Tryg(x). These are reasonable assumptions,
and formed the basis of early gauge theories based on the
Schwinger-boson representation.'>!® But in those theories it
was assumed that the initial renormalization leads to a
sublattice-preserving #'-J model, where ¢’ is an effective
next-nearest-neighbor hopping parameter.

The actual renormalized Hamiltonian is found to be quite
different. A brief account of the theory, focusing primarily on
the pseudogap phase, and some of the results have been re-
ported earlier.!” Here we provide a detailed description, and
show that it not only accounts for the main features of the
phase diagram, but predicts novel properties of the underly-
ing states that require a major revision of our current under-
standing of the cuprate phenomenology. Additionally, the
theory provides a natural explanation for the two dimension-
ality of the normal state, as well as for the marked asymme-
try between hole-doped and electron-doped cuprates.

The continuity requirement ensures that there are exactly
the same three spinon states in the doped region as at half
filling, and holon motion do not introduce any new order
parameters for the spinons. Destruction of magnetic order
automatically leads to a gap for bosonic spinons in the other
two states: the RVB state and the nonordered state.>'® The
spin gap, not to be confused with the pseudogap, is the dis-
tinctive feature in the theory. As described in Sec. IV, the gap
allows us to renormalize away nearest-neighbor hopping (1),
and use perturbation theory to obtain a minimal Hamiltonian
involving sublattice-preserving hopping of renormalized
holes, accompanied by singlet backflows. Two types of new
hopping terms are generated: in one, a single holon hops
within the same sublattice, and in the other, a pair of holons
hop together.

We analyze the Hamiltonian in Sec. V, showing that the
one-hole term gives rise to exactly two “normal” states, as
found in cuprates, whose symmetries are determined by the
underlying spinon states (at half filling), no new order pa-
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rameter is introduced, either in the spin or the charge sector.
In the absence of singlet condensation, holons are localized.
We identify this state with the so-called strange metal phase
since it is stable above Tgryg(x). However, it is not a metal,
but a new kind of insulator since its resistivity would become
infinite when continued to 7=0. This is an important predic-
tion. Coupling to the RVB condensate allows holons to hop
coherently within the same sublattice, and create a spinless
Fermi liquid of concentration x below Tgryg(x), which we
identify with the pseudogap temperature 7°. However, gauge
invariance ensures that there is no observable (small) Fermi
surface, which is another prediction.

As shown in Sec. VI, in the presence of a RVB conden-
sate the pair-hopping term allows holon pairs to Bose con-
dense, giving rise to d-wave superconductivity. The symme-
try is largely determined by that of the underlying RVB state
known from half filling. As discussed in Sec. II, the valence
bond state has a two-sublattice property of its own: on aver-
age, singlets connect spins on opposite sublattices. This
property is predicted to be preserved in the pseudogap metal
and superconducting phases.

The absence of any new order (other than superconduc-
tivity) imposes constraints on the number and type of phases;
the resulting phase diagram is in qualitative agreement with
the experimental one. The constraints allow us to extract
many universal features from the structure of the Hamilto-
nians in various phases without detailed calculations or fine
tuning. For example, the spin gap by itself rules out a con-
ventional Fermi-liquid state for small x. In Sec. VII we care-
fully examine the existing experimental results and find
strong support for the predictions of our theory. In particular,
results from nuclear magnetic resonance (NMR), transport,
optical conductivity, and tunneling measurements, taken to-
gether, provide strong evidence for a spin gap, a nonmetallic
phase above 7%, and a spinless Fermi liquid without a Fermi
surface below. We will point out that these results cannot be
reconciled with either a Fermi liquid or earlier RVB theories.

In Sec. VIII we discuss the fundamental issue of the two
dimensionality of the normal state, which is unexpected
since the cuprates are three dimensional (3D), though layered
materials, and localization within a plane would cost too
much kinetic energy. Indeed, all the other nearby states: the
antiferromagnet in the undoped phase, the superconducting
state, and the Fermi-liquid state that appear at large doping
exhibit 3D behavior. Hence, theories that are based on the
2D model are suspect if they fail to exhibit 2D confinement
when hopping in the perpendicular direction is turned on.
Indeed, such a test will probably invalidate most of the ex-
isting theories. We show that, in our case, the spin gap pro-
vides a protective mechanism against delocalization of ho-
lons in the z direction, which is not obvious since holons are
spinless. However, the holon pairs can hop coherently, which
is essential for the observed 3D superconductivity. We solve
the 3D problem and show that condensation energy is en-
hanced due to 3D coupling.

Another issue that is not completely understood is the
significant difference between the hole-doped and electron-
doped cuprates. In Sec. IX we will argue that the difference
is due to direct intrasublattice hopping ¢, which breaks
electron-hole (e-h) symmetry in the Hubbard model. Nor-
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mally the difference is not significant, we will present results
to show that in our case it is substantially enhanced because
the nearest-neighbor hopping (¢) is renormalized away. The
issue is subtle and depends on the symmetry of the underly-
ing spinon states.

Our renormalized Hamiltonian belongs to the class of
short-range RVB models considered by Kivelson et al.'®?"
However, because of the consistency requirements the
Hamiltonian differs significantly from those proposed earlier.
The present theory is based on a paper published much ear-
lier, in which a self-consistent perturbation expansion in
powers of hopping was used to study the destruction of long-
range magnetic order and the occurrence of non-Fermi-liquid
behavior.?! The intraplane pair hopping mechanism for su-
perconductivity in the present theory was also discovered
there. An effective Hamiltonian for renormalized holons was
derived in Ref. 22 but with an (assumed) wrong (spiral) nor-
mal state. In Sec. III we review these and earlier works by
other authors that are relevant to the present derivation. We
draw attention to the early single-hole results which show
clear evidence for strong renormalization and effective
sublattice-preserving hole hopping. Our conclusions are
summarized in Sec. X.

II. MODEL AND SYMMETRIES

The physics of no double occupancy is taken into account
by representing the electron as a composite object created by
¢l =b! h;, where b} creates a spinon of spin o and h; de-
stroys a holon at lattice site i, subject to the constraints that
number of holons plus spinon at each site is one. Spin op-
erators are represented as S;:b%bii, and Sf:%(b%bﬁ
—b;\b;)). Then the -/ Hamiltonian is given by

H:—[E C;O_CjU—ZJE ALAIJ’ (1)
ij

ij,o

where the sum is over nearest neighbors, A,:jzé[bﬁbj !
—b; bj;] destroys a singlet connecting spinons on nearest-
neighbor sites. The second term describes exchange interac-
tion written in terms of A;;’s, which makes the role of the
singlets explicit. For the most part we consider the square
lattice. However, later we will need to include next-nearest-
neighbor hopping within the plane and as well as hopping
between planes.

The Hamiltonian is invariant under a local U(1) gauge
transformation,*

bi(r - biaemi’ hi(r - hi(reiﬁi' (2)

The number of spinons plus holons,
Ni=blby +blb; +hih;

is then conserved at each site. The physical model lives in
the projected subspace defined by N;=1, for each i. We can
choose any statistics for spinons and holons as long as the
statistics of the gauge-invariant quantities are correctly
given. However, in an effective theory, in which spinons (and
holons) are the low-energy excitations, we expect the system
to choose a particular statistics.
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Half-filled case. At half filling the hopping term can be
dropped. The Arovas-Auerbach RVB state is described by a
saddle point obtained by minimizing the effective action,
which is equivalent to solving a mean-field problem.'8 In the
MF approximation constraints are treated on average and
singlets condense so that the valence bond order parameter
A;;=(A;;) becomes nonzero. For dimensionality d=2, the
MF theory works well at low 7 if spinons are bosons. For the
symmetry of the order parameter we can choose,

Aij — Aei(llz)Q'(ri_rj)’ (3)

where Q is the zone corner wave vector. In d=2, Q
=(ar,m). However, for d=2 it has been shown that the
ground state is not a pure RVB state since a fraction of
spinons remains unpaired.®® Since spinons are bosons they
condense independently so that (b;,) # 0. This leads to a non-
zero value for (S;')=(bij,»l), giving rise to a two-sublattice
antiferromagnetic order (in the x direction).

The ground state is therefore a mixture two competing
phases, characterized by distinct order parameters, in which
magnetization is reduced from its classical value by the pres-
ence of the singlet condensate. The MF theory describes the
ground-state properties in d=2 rather accurately, and in d
=3, reproduces the results of Holstein-Primakoff quantum
spin-wave theory.® This success is remarkable, but not acci-
dental, since the MF equations are identical to the equations
describing the spin-wave theory.’ In fact, the latter can be
derived from the Schwinger-boson theory by integrating out
the constraints and expanding the action in powers of 1/S.
These results are confirmed by accurate numerical work.” At
finite T, AF order disappears above T (in d=2, Txr=0), but
the RVB state survives up to Tryg > Tap-

Symmetry of the RVB state. In the MF approximation,
condensation of singlets (and spinons) breaks gauge symme-
try. Similarly, coherent motion of holons lead to <hfhj>¢0
for i # j, which also breaks gauge symmetry. However, such
local symmetries cannot be spontaneously broken?® since
there is no rigidity with respect to phases of the order param-
eter A;; generated by the transformation, Eq. (2). Gauge in-
variance is restored by averaging over these gauge-
equivalent choices, which causes A; (and other gauge-
variant quantities) to vanish. In this sense there is no
condensation.

However, usually there is still a transition, since not all
phase configurations of the link variables, such as A;j, are
gauge equivalent, simply because there are more link vari-
ables than there are lattice sites. These issues have been dis-
cussed in the literature.'>?* Briefly, phase configurations are
grouped into gauge-equivalence classes: configurations
within a given class are related by gauge transformations,
Eq. (2), and thus correspond to the same physical state. For
example, our choice for the order parameter [Eq. (3)] is a
gauge related copy of that used in Ref. 5. Configurations
belonging to different classes represent different physical
states. These can be characterized by a residual phase, a
gauge field, by fixing a gauge, which picks one configuration
from each gauge-equivalence class.

The order parameter itself belongs to one particular class,
in other words, the system condenses into an entire gauge-
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equivalence class, corresponding to a single physical state.
There is a rigidity relative to other classes since fluctuations
of the gauge field (in a fixed gauge) lead to an excited state.
Such gauge fluctuations are studied via a gauge theory, as
has been done by many authors. The condensation usually
leads to certain type of gauge-invariant lattice order. For ex-
ample, the RVB state has an important two-sublattice prop-
erty (see below). Other choices of symmetry lead to flux
phases. Similarly, condensation of spinon pairs and holon
pairs lead to condensation of gauge-invariant composite en-
tities such as a electron pair, whose symmetry depends on the
symmetry of the constituents.

There is thus a transition across Txyg. In the uncondensed
state (i.e., above Tryp) both phase and amplitude fluctuations
are strong, and spinons and holons remain localized. In the
condensed phase, fluctuations are weak. In this paper we will
use the term condensation in this sense and the term symme-
try of a MF state to reflect the symmetry of the whole gauge-
equivalence class.

Although gauge fluctuations are supposed to be weak in
the ordered phase at low T, for a detailed quantitative theory
(particularly for transport properties) one has to include
them.?* Similarly, the MF theory will not work well near
Tryg Where it will be necessary to consider both amplitude
and phase fluctuations. For the 2D system, these may be
strong enough to convert the apparent second-order MF tran-
sition to a Kosterlitz-Thouless-type transition (see Ref. 12).
We will not study these issues here, but focus on the sym-
metry related properties, which can be determined by con-
tinuing each phase down to 7=0. MF approximations are
adequate for this purpose.

At half filling, the MF theory has been formally extended
by Read and Sachdev'® to situations where AF order is de-
stroyed at 7=0 by quantum fluctuations. In the ordered phase
spinons are gapless, leading to gapless spin-wave excitations.
However, once magnetic order is destroyed, a gap A, appears
in the spinon spectrum. Both cases can be described by the
same MF theory with different values of A, which acts as the
spinon chemical potential. The spinon spectrum has the form

w(k) =[N = ¢(k)*]"?, (4)

where
¢(k) = 4JA(sin k, + sin k) (5)

is the spinon “gap” function. The minima of w(k) are at
*(7/2,m/2). In the ordered state, \ is chosen so that w(k)
vanishes at these points leading to two-sublattice AF order.

In the absence of AF order, spinons are gapped since
®,,;,>0. Then, as shown by Read and Sachdev,'® gauge
fluctuations lead to a proliferation of instantons, which re-
sults in the confinement of spinons into pairs. In this case,
the Arovas-Auerbach-type state is unstable relative to a va-
lence bond solid. In our case, we do not need to worry about
this, since there is no gap due to the presence of AF order.
Away from half filling a spinon gap does appear but, as we
shall see, holon motion causes singlets themselves to hop
around, which would destabilize the VB solid.
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A. Correlation functions

Like the Néel state, the bosonic RVB state has a two-
sublattice character of its own. From Eq. (5) we see that
although (k) is not gauge invariant, it satisfies the gauge-
invariant condition,

#(k) = H(Q-Kk). (6)
Now consider the spinon correlation function B; jm
= -E (bma JU) for any two sites j and m. In the MF approxi-

matlon this is given by

8= 3 coslk (0~ 1) =12 4 o], ()
k

w(k)
where n(w) is the Bose function. Using Eq. (5), we find
Bj,, =B, cos[Q . (ry, —17)]. (8)

Therefore, B;, vanishes if j,m are on opposite sublattices.
For j,m on the same sublattice B;,, is nonzero if the singlet
condensate exists (A #0). We will call this behavior even.
S1m1larly, consider the anomalous correlation function, A; im

2<(bﬂbm¢ b; b)), again defined for any two sites j,m.
(For nearest neighbors this is the RVB order parameter.) It is
given by

A= Ssinlk (=) 502+ o] )
From which we find
Ajy==Ap, cos[Q. (ry,—1;)]. (10)

Thus A}, is zero if j,m are on the same sublattice. For j,m
on opposite sublattices, A, is nonzero as long as the singlet
condensate exists. We will call this behavior odd. These sym-
metry properties are intrinsic to the RVB state since they
hold even after long-range AF order is destroyed and for any
T<Tgryg. They are also gauge invariant, even though the
correlation functions themselves are not, and therefore have
observable consequences. Thus the spin-spin correlation
function is given by S,;, ; =(S;87)=—|A;{*+|B;|*, which, as
expected, alternates in sign.

These properties imply that, on average, RVB singlets
connect spinons on opposite sublattices. Therefore, the
bosonic RVB state is similar to the short-range RVB state
considered by Kivelson et al.'® What we have shown here is
that this RVB state has the same red-blue property even in
the presence of long-range magnetic order, i.e., even when
magnetic correlations are not short ranged.

B. Magnetically disordered phase

Away from half-filling quantum fluctuations due to hole
hopping is expected to destroy long-range AF order at 7=0,
leaving behind the RVB phase. Then bosonic spinons acquire
a gap A,, which is related to the magnetic correlation
length.>!® Near its minima the spinon energy has the form:
w(k) =[A%+ck?], where ¢;=2JA~ Ty and k is measured
relative to the minima. Then the correlation functions B;; and
A;; behave as
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1 1
B,‘j - fe_”j/zg COS|: EQ . (I‘j - ri)i| s

Tij

1 1
A” ~ ;je_rij/2§ S1H|:EQ . (rJ - I'i):| s
where r;;=[r;—r;| and £=2c/A, is the spin-spin correlation
length.

The spinon gap and the consequent exponential decay of
AF correlations are the distinctive features of the bosonic
RVB state. In contrast, spinons are gapless in a fermionic
(i.e., slave boson) RVB state, which would lead to power-law
correlations. Similarly, a Fermi liquid also has gapless spin
excitations. Also, in the latter two cases, the magnetic corre-
lations are peaked at a concentration-dependent wave vector
q, which equals Q only at half filling.

III. AWAY FROM HALF FILLING: EARLY WORK
A. One-hole physics and the #’-J model

Several authors have studied the behavior of a single hole
moving in a magnetic background by expanding in powers of
hopping and summing a selected a class of diagrams.?>?0 It
has been found that because of spin mismatch the hole can-
not hop coherently on to the opposite sublattice but it can
move coherently within the same sublattice. For large t/J,
the bandwidth corresponding to the coherent peak was found
to scale with J, reflecting strong renormalization of holes by
spin fluctuations, which makes the renormalized hole large
and heavy. The short-range incoherent hops due to ¢ leads to
an incoherent spectral background of order ¢. These results
are supported by exact numerical work on finite lattices con-
taining one hole.?” They can be used to estimate renormal-
ized parameters for a many-hole theory. However it is erro-
neous to construct a low-energy theory based on the one-hole
spectrum, since a single hole does not destroy magnetic or-
der, the presence of which leads to a pole in the electron
Green’s function.

Motivated by the single-hole results, several authors have
developed gauge theories for the many-hole system!'>!®
based on the Schwinger boson RVB states (thus hoping to
establish a connection with the Mott phase), with the as-
sumption that the short-range incoherent hops caused by in-
tersublattice hopping (7) destroys AF order and strongly
renormalizes the theory, leading to a sublattice-preserving
t'-J model, where t'~J is a renormalized next-nearest-
neighbor hopping parameter for renormalized holes.!® While
the assumptions are correct, the actual renormalized Hamil-
tonian, as we show later, is quite different.

B. Spiral and other nearest-neighbor states

One reason why Schwinger boson methods have not been
taken seriously is the fear of a spiral instability. For x>0,
moving holes are expected to rapidly destroy long-range AF
order. As a physical hole hops, it carries its spin, creating a
string of wrong (ferromagnetic) bonds, which cost energy
and cannot be easily repaired. In cuprates the AF insulating
phase disappears beyond a small x,, giving way to a metal
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with no long-range magnetic order. Now, we can obtain a
metallic state by extending the mean-field approximation to
the hopping term,® which can be written as

-t [B/D;+H.c.],
ij
where D,-j=h;h,- and Bij=%20b;(rbw. In the MF approxima-
tion, in addition to singlets and spinons, the composite
bosons created by B;; and D;; also condense, so that the hop-
ping term becomes

Z B}l h+ 2 Dib} big,

Ly L], o
where BZ:(BZ) and D;;=(D;;) are the average spinon and
holon backflows, respectively. Appropriate choices of sym-
metry for these order parameters allow holons and spinons to
hop coherently on to nearest-neighbor (nn) sites, which
mixes up the two sublattices. Different choices lead to dif-
ferent metallic states. The state with B;;=B, D;;=D, has spi-
ral magnetic order with an incommensurate wave vector. The
spiral state is energetically favored over other relevant nn
states, e.g., the flux state, the ferrimagnetic state, etc.2® Ac-
tually no sign of a spiral state (or any other nn state) has been
found in cuprates, or for that matter, in numerical treatments
of the model.

Incidentally, the slave-boson RVB theories are also based
on nn states, with a similar set of order parameters, although
interpretations are different.!’!? In both cases, the nn states
are very complex, characterized by several order parameters
(A, B, D, and (b)). This leads to a complicated phase
diagram,'"!? containing several metallic phases, more com-
plicated than that seen in cuprates. Furthermore, since slave
(or Schwinger) bosons condense, the physical electron
Green’s function has a pole, with a residue O<|(b)|2. Hence,
the normal state is in effect a Fermi liquid at low 7 with
gapless spinon and holon excitations.

Also, since slave-boson states do not work at half filling
we should see a transition accompanied by a statistical trans-
mutation upon doping. No experimental signature for such a
transition has been found. Moreover, Haldane and Levine?’
and, independently, Read and Chakraborty** have used Berry
phase arguments to show that, in the presence of short-range
RVB pairing, spinons are bosons and holons are spinless
fermions, as in our case. Finally, energetics also favor the
Schwinger-boson representation, for the simple reason that,
given the same spectrum, fermions will have much higher
energy than bosons because of the Pauli exclusion principle.
Therefore, bosonic spinons are better for the exchange term.
Interestingly, they are also found to be better for the hopping
term for x<<1/3 even if J=0.3!

Instability of spiral states. Moving holes induce ferromag-
netic correlations, which compete with antiferromagnetism.
In the spiral state the system compromises by tilting neigh-
boring spins so that the correlations are partially ferromag-
netic. While this allows the holons to delocalize and reduce
kinetic energy, there is a substantial cost in exchange energy.
Therefore such a state may not be stable. Within a Hartree-
Fock approximation, several authors have found an instabil-
ity in the 2D Hubbard model toward localization of holes in
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domain walls®? for small x. An instability toward phase sepa-
ration was earlier found by Visscher.??

By comparing the Hartree-Fock energies, Hu et al.'*
showed that spiral states are indeed unstable relative to both
phase separation and insulating domain-wall states in the en-
tire region of the parameter space of interest. The actual
region of instability is likely to be even larger since contri-
butions from RVB singlets to the exchange energy are not
included in the Hartree-Fock treatment. Similar results were
found for the 7-J model, where both antiferromagnetism and
singlets are included.”® Since the spiral state has the lowest
energy among the nn states, it follows that none of these
states are stable.

Longer-range Coulomb interaction would destabilize the
domain walls and spin-charge separated states, and at very
low doping, could stabilize a Wigner crystal of holes. How-
ever, since t>J the localized states cost too much kinetic
energy, a metal must emerge at higher doping with or with-
out such long-range repulsion. It follows that such a metal
would have a lower energy than the spiral state, and can only
appear via higher-order hopping processes by renormalized
holes, as indicated by the one-hole calculations. To derive a
renormalized Hamiltonian and for the results obtained in this
paper it is not necessary to know the details of the renormal-
ization procedure. But for the sake of consistency, and for a
more detailed theory, it is useful to consider the possible
physical processes involved.

C. Destruction of magnetic order and renormalization

Our work is based on an earlier paper?! in which a self-
consistent perturbation expansion in powers of hopping to
one-loop order was used to study the destruction of magnetic
order upon doping, which is expected to occur, but hard to
show theoretically. The point is that localization of electrons
into spins (moments) costs considerable amount of kinetic
energy. As discussed above, trying to recover the energy via
spin-charge separated nn states does not work. Another pro-
cess which always exist is the binding of spin and charge
into physical electrons (or holes). These try to propagate co-
herently and restore the Fermi liquid, which has low kinetic
energy.’!

In Ref. 21, this process has been treated by RPA, in which
the electron is treated as a collective excitation. The zeroth-
order Green’s function G is simply the convolution of the
spinon and holon Green’s function. Summing the bubbles
leads to the full electron Green’s function,?!

Gc()(k w)

T 1 - eK)G ko) (11)

G (kw)
where e(Kk) is the energy of the noninteracting electron. This
can be viewed as a generalization of the one-hole method
where a similar expansion is carried out for one hole. In the
many-hole case, the effect of the electron on the spinon and
holon self energies is also calculated, using G.. Unlike mov-
ing holons which only change the direction of the local mo-
ments, a moving electron has a much more violent effect, as
it also tends to delocalize, and hence destroy the moments. It
was found that x>x,., where x, is rather small, long-range
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magnetic order is destroyed at 7=0, i.e., there is no Bose
condensation of spinons.?!

It was also found that G. does not have a pole at low
frequencies, that is, the system is not a Fermi liquid for small
x. The reason is that in order to move an electron must avoid
other electrons of opposite spin.>' For small x and at low
dimensionality, such pathways are rare. Consequently, the
electrons (or physical holes) do not become coherent. How-
ever, spinons become gapped since long-range magnetic or-
der is destroyed. The gap shows up in G, and hence in G.>*
In contrast, in the one-hole case, the Green’s function has a
pole, which is not surprising since a single hole cannot de-
stroy long-range AF order. In either case, the holes are
strongly renormalized by the short-range incoherent hops.

Interestingly, it was also found that the presence of a RVB
condensate leads to a second-order hopping process in which
a pair of holons hop together, accompanied by a singlet back-
flow, which automatically leads to superconductivity. This is
the pairing mechanism considered below. The theory was
further developed in Ref. 22 where an effective Hamiltonian
for the renormalized holons including the pairing term was
derived. However, it was not entirely correct since the nor-
mal state was assumed to be a spiral metal, with nonzero B
and D, but without long-range magnetic order. Such a state is
not stable. Below we give a derivation which corrects this
flaw.

IV. RENORMALIZED HAMILTONIAN FOR
SMALL DOPING

The spinon gap allows us to obtain an effective Hamil-
tonian involving renormalized holes and singlets by integrat-
ing out the spinons and setting w=0 as was done in Refs. 21
and 22. Here we give a simpler derivation using the usual
continuity arguments.'®! Since the nn MF state is not stable
we have B=0 and D=0. A moving hole affects antiferromag-
netic configurations and singlets differently. In the former
case, a string of ferromagnetic bonds are created whose en-
ergy increases with the length of the path, and which cannot
be easily repaired quantum mechanically. The hole is essen-
tially forced to return, creating a renormalized hole localized
within a bag of spin excitations. This process has been con-
sidered by many authors in the context of the one-hole
problem.?>=?7 It is also the reason for localization of holes in
domain walls in the Hartree-Fock treatment of the Hubbard
model.'**? The hole moves rapidly within the bag, gaining
kinetic energy of order ¢. This would contribute an incoher-
ent (essentially k-independent) background to the electron
spectral function as well as to the optical conductivity. We
assume that disordering of the spins prevents long-range AF
order and leads to short-ranged AF correlations. The renor-
malized hole carries the spin excitations, and is thus larger
and more massive.

After this initial renormalization, the Hamiltonian would
be similar to the original one by continuity, except for the
absence of magnetic order, as long as no additional symme-
tries are broken. It will be characterized by a hopping ampli-
tude 7,4<t, and an exchange coupling J, . For small x, we
expect J i~ J. Also, one-hole calculations®7 suggest that
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FIG. 1. One hole process. A hole hops from [ to j, breaking the
singlet (ij) denoted by the solid line. Here i and [ are on sublattice
a and j is on sublattice b. The hole then hops to i and the singlet is
reconstituted at (jl)

to¢r scales with J for 1>J. Such estimates can be used since
the renormalization process involves only nearby hops, and
therefore at low-hole densities it is essentially a one-hole
problem. An important aspect of the one-hole calculations is
that the local constraints are imposed exactly. The constraints
obeyed by the renormalized particles are thus expected to be
weaker, although the renormalized Hamiltonian retains
gauge invariance.

The singlets are affected less drastically by hole motion
since the offending configurations can be repaired more eas-
ily, as discussed below. We therefore assume that the prob-
lem is already renormalized by the fast processes described
above. When a renormalized hole hops from sublattice a to b
it breaks a singlet and creates two spinons, costing, say, an
energy (1>2A_. The system relaxes by a second hop, after
which the singlet is reconstructed. In the low-frequency limit
(w<<()) these processes can be described by

2
totr _
Hiy = - Q P> cjwci(,c;g,cj(,rp, (12)

Jjlomio’

where ci,,=blTJh,<; but now all the operators correspond to
renormalized particles. Here P- - -’P means that we keep only
those terms that involve renormalized singlets and holes. Al-
though nominally similar to superexchange, the intermediate
state does not involve double occupancy which has already
been projected out. As shown below, the new interaction
terms can be rewritten in terms of singlet operators A;;. Now,
A;; and B;; decay exponentially as e™i’?4!8 where £ is the
magnetic correlation length. Therefore, to obtain a minimal
Hamiltonian, it is sufficient to retain only the short-range
hopping terms since longer range terms are exponentially
suppressed. The longer-range hopping terms also preserve
the underlying symmetries and neglecting them should not
change the physics qualitatively.

Once the singlet is broken, there are three ways to remove
the excess energy. First, the hole can hop back and the sin-
glet reconstructed. This is confining and its effect is to renor-
malize the chemical potentials. The remaining two processes
can lead to hole propagation.

(A) One-hole process. The hole hops to another site on
sublattice a and the singlet is reconstructed on a different
link (Fig. 1). Notice that this process involves successive
hopping by two electrons of opposite spin but only one ho-

lon. Projecting onto the spinon singlet subspace
[Pb;f,,bj,_(,P:O'Aij, etc.], we obtain
tY
- 5‘2 ATAGRI (1= hhy), (13)

ijl
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FIG. 2. Two hole process. A hole hops from / to j, breaking the
singlet (ij), a second hole hops from m to i and the singlet is
reconstructed at (ml).

where, A’ creates a singlet and ht creates a renormalized

2
holon, and #,= f(—;f is the effective intrasublattice hopping

parameter. Now, the term (1 —hj-h ;) arises from the interme-
diate excited state. It is gauge invariant, and for small x, can
be approximated by its average value 1—ux, leading to

t 4
- 5(1 -x) 2 ALA . (14)

ijl
This term describes hopping by a holon within the same
sublattice, accompanied by a backflow of spinon singlets.
The one-hole term above differs from the usual next-
nearest-neighbor hopping (¢'). In the early RVB-gauge theo-
ries based on similar renormalization considerations it was
assumed that the result of second-order hopping is to gener-
ate an effective ¢’ term of the form

' > ¢l e+ He.,
il

where i and [ are next-nearest neighbors. To generate such a
term from Eq. (12) would require consecutive hops by two
electrons of the same spin. This is not easily done when the
initial and final states belong to the singlet subspace, as in
our case. For after the first hop the remaining electron will
have opposite spin. Then to generate a ¢’ one has to flip both
spins via additional higher-order intermediate processes,
which are not very likely. (It can be done via J' interaction.
But for this model J' is usually much smaller than J.) Of
course the actual model that applies to real cuprates will have
at’ term to start with which, as will see later, will play a role
since it also preserves the two-sublattice character, but it
would not replace the dominant one-hole term derived
above.

(B) Two-hole process. The system also relaxes if a second
hole hops from sublattice b to a, and the singlet is reconsti-
tuted on a different link (Fig. 2). This process yields a term

—t, > Al AR, (15)

ml G
ijslm
which describes hopping by a singlet, accompanied by the
backflow of a holon pair. This is the small x form of the
interaction derived earlier’? but here the normal state is dif-
ferent because of the one-hole term above.

The full Hamiltonian also includes the renormalized ex-
change term, characterized by J, ;. For the purposes of this
paper it is sufficient to treat J, s, Z,/» and ) as phenomeno-
logical parameters. However, as discussed earlier, one-hole
calculations®’ suggest that they all scale with J. Hence the
renormalized Hamiltonian describes a strong-coupling prob-
lem. For cuprates, J~0.1 eV, and is the largest energy scale
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in the renormalized problem. If, #,;,> () numerically, then a
frequency cutoff can be used. By continuity, qualitative
physics will not be changed. As it turns out (see below), the
effective holon hopping amplitude #,7,A is ~JA~T". Since A
is only a small fraction of unity and decreases with x, a
cutoff may not be necessary, at least for some values of x.

Because of the presence of the spin gap our renormalized
Hamiltonian describes a short-range RVB model for small
x.!” However, the Hamiltonians used by earlier authors®
were different (for example, the second term which is re-
sponsible superconductivity was absent) since they were not
required to agree with Arovas-Auerbach state at half filling.
Also, holons were thought to be bosons. It was later shown
that for short-range RVB models they are actually fermions,
which agrees with our choice.?*° Our renormalized Hamil-
tonian cannot possess a conventional Fermi-liquid state since
the latter has gapless spin (and charge) excitations.

V. ANALYSIS OF THE RENORMALIZED HAMILTONIAN

The renormalized Hamiltonian has the symmetries of the
original model since the singlet variables A;; are not con-
densed yet. The Hamiltonian still describes a formidable
strong-coupling problem. However, we can obtain a number
of very important results by continuing the spinon states
from half filling, thereby fixing the spin structure. In particu-
lar, we can determine the phases in the underdoped region
that are consistent with our two basic assumptions, as well as
the nature of these phases.

A. Nonordered phase: Strange metal or insulator?

There is always a state in which no symmetry is broken
(even at the MF level). Then singlets are not condensed, i.e.,
A,-_,-:O. Hence,

T —
(hih)=0

for i #j so that there is no coherent propagation of holons.
Holons are localized due to strong gauge fluctuations. This
state has no long-range order and would always occur at
sufficiently high T (above T™ in our case). We identify it with
the so-called strange metal phase of the cuprates. Since elec-
trons are also incoherent, there are no coherent charge carri-
ers at all in this state. Thus when continued to 7=0, it would
have infinite resistivity since the electrons are also gapped.
Therefore, the strange metal is not a metal; it is a new type of
quantum insulator. In effect, this state corresponds to a
Gutzwiller projected Fermi sea; but one with strong singlet
fluctuations, which lead to the gapping of the spinons (and,
hence, the electrons), and non-Fermi-liquid behavior. In con-
trast, in other RVB theories the state above 7™ is metallic,
with gapless spin and charge excitation.!"!? In these theories
the nonordered state appears at a much higher temperature
and is ignored.

B. Pseudogap phase

To proceed further, we first do a MF decomposition of
H,;,, to obtain two separate Hamiltonians for spinons and

PHYSICAL REVIEW B 82, 014504 (2010)

holons, which breaks gauge symmetry. Then, from the one-
hole term, we get

t .
- ;(1 -x> [<A}1Aij>hil hy+ <hjhl>A}LlAij]- (16)
ijl

In principle, we can find a state for which (A;;)=0 (no singlet
condensation) but (A;'IA,-]-) #0. Such a state will not be fa-
vored energetically since the energy gained O(t,x) per bond
is low compared with JeffA2 gained from singlet condensa-
tion.

This leaves the RVB state, which becomes stable below
T* with A;;# 0. From Eq. (2) we obtain

(AJA ) =AGA; = - A2 D)

Using this in Eq. (15) we obtain an effective holon hopping
Hamiltonian,

Hy=-2> th,ijhjhj’ (17)
ij

which describes coherent holon propagation within the same
sublattice. Here 7, ;;==*1, for i,j next-nearest neighbors
along the (1, *1) diagonal direction, #,;=1,/2 for next-
next-nearest neighbors (along the x and y directions), and
t,=t,A*(1-x). The holon energy is then given by

€1 (K) == 21, + 21,(sin k, + sin k,)*. (18)

The holon band (hence, metallic conduction) appears as soon
as A #0 without additional symmetry breaking. As expected,
the spectrum has the two-sublattice character since ¢;,;(Kk)
=€, (Q-k).

We can do a similar MF decomposition of the two-hole
term [Eq. (14)], and replace the A;’s by their expectation
values, which yields a holon-holon interaction term of the
form

H, == 1A 2 [FIF, + Hell, (19)

ij;lm

where F,szh;hjT creates a holon pair on the link ij and the
sum is over plaquettes. The order of the indices follows from
the symmetry of A;; and is very important.

Once the holons are propagating, the pair-hopping term
will also contribute to the normal-state holon spectrum. Do-
ing a MF decomposition of H), ;,, we obtain a term

Hy=1,A* 2, [Dyhih,, + D, hih — DD, + H.e.l,
ij,ml

where
1 )
Dy=(hih)= ]T/E ™ e,(k) — ] (20)
k

is the average holon hopping amplitude and f as the Fermi-
Dirac function. Using the symmetry of the holon spectrum,
we find that D;=0, when [ and i are nearest neighbors. And,
D;;=*D, for [ and i along the (1, = 1) diagonal directions,
respectively, with
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D =-— ]%72 sin &, sin k[ &,(k) — u]. (21)
k

Therefore the extra diagonal hopping terms have the same
symmetry as the original ones. Furthermore, since the
minima of the holon spectrum is at i%(’ﬂ,—ﬂ), D, is posi-
tive. Using the fact that hopping along (1,1) is accompanied
by a backflow along (1,-1) the extra diagonal terms are
found to have the same signs as before. Including these, the
full holon spectrum becomes

€,=— 21, + 21,(sin k, + sin k,)* + 4D, sin k, sin k,.
(22)

The parameter D, has to be calculated self-consistently.
However, for small x, the main contribution comes from near
the minima of the spectrum [k= = (7/2,—7/2)], where we
can set sin k, sin k,=—1, which yields D, ~x.

So far we have considered only the holon part. The mo-
tion of holons (or holon pairs) is accompanied by a backflow
of singlets. The mean-field singlet Hamiltonian is then given
by H,=H;+H,;+H,,, where H; is the usual exchange term
[see Eq. (1)] with an exchange constant J,,

t,
Hy =- ;(1 —x)zl ALA(hfhy) (23)
ij
is the singlet backflow term associated with the one-hole
process and

Hy=—1,2 Al A kiR, (24)

ijslm

is that associated with the two-hole process. The last two
terms only appear below 7. They will contribute to the sin-
glet condensation energy in the pseudogap phase. They are
suggestive of the emergence of coherent singlet excitations,
which are spin-0, chargeless vector bosons. These will con-
tribute to low-T specific heat, and thermal conductivity, but
not to electronic transport. We will study them in a future
paper.

Symmetry properties of the pseudogap phase. The
pseudogap state preserves the two-sublattice (red-blue) char-
acter of the RVB state. To see this consider the correlation
functions for the renormalized particles. Using €,(k)=¢€,(Q
-Kk), we find D,-j=<h;h,-)=D,-j cos[Q. (r;—r;)], which is thus
nonzero only on the same sublattice (even). The spinon cor-
relation functions, and hence the gauge-invariant magnetic
correlation functions have the same symmetry as in the Mott
phase. The electron hopping amplitude Pij’(,:(cjocj(,):
-B;;D;;. Since B;; and D;; are both even, P;; is nonzero only
on the same sublattice. The Fourier transform of P;; is the
momentum distribution function, which thus satisfies n.(k)
=n,(Q—-Kk). In a Fermi liquid, the electron hopping amplitude
shows a power-law decay. In our case, the holon hopping
amplitude D;; shows a metallic, i.e., power-law behavior
since holons are gapless. However, since spinons are gapped,
B;, hence the full electron hopping amplitude P;; decay ex-
ponentially, reflecting non-Fermi-liquid behavior.

The metallic character of the holons can also be seen in
the gauge-invariant charge structure factor. Let pi:hjh,-
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FIG. 3. (Color online) Charge structure factor showing the two-
sublattice symmetry. The calculation is approximate. Note the sym-
metry between k=0 and k= (1, 7), which is distributed among the
four corners of the Brillouin zone. The valley region is elevated
relative to k=0. In a normal metal, the structure near () is
absent.

—(h:-rh,-) measure the excess hole density. Then the charge
structure factor is given by: S, ,;=(pip;)=—|D;|* for i#j,
and S, ;=x(1-x). This is nonzero on the same sublattice
and exhibits the long-range oscillatory structure of a metal.
In the momentum space it satisfies S,,(k)=S,,(Q-k) (Fig.
3). In contrast, S,,(k) of an ordinary metal increases from
zero at k=0 and becomes a constant for ¢ > 2kg. In our case,
an image of the behavior near k=0 appears near k=Q. Ex-
periments probe the bare correlation functions. These are
dominated by short-range incoherent processes that do not
preserve the two-sublattice property, which is therefore not
easy to see. The best candidate is S.,(k) since holon motion
is coherent. The experimental S,;,(k) would no longer vanish
at Q but there will still be a dip.

VI. SUPERCONDUCTING STATE

It is clear from the structure of the two-hole term [Eq.
(19)] that the system can lower its kinetic energy if two
holons hop as a pair. Pairs will condense, leading to Fj;
=(F;»#0. Let us define the pairing order parameter for
physical electrons as a singlet,

Cij=<(cleiT_Cchil)/2>' (25)

Then, C;j=-A;F ; #0 since the spinons are already con-
densed, giving rise to superconductivity below T.=T". The
order parameters A;; and F;; are not gauge invariant but C;; is.
The symmetries of A;; and the holon spectrum are of course
already known.

We solve the superconductivity problem by a mean-field
approximation. Since holons are fermions the holon pairing
order parameter satisfies F;,=—F,; We denote the vector
F;,, by two components: F;,,=iF, if m is to the right of j and
F;,=iF, if m is above j in the y direction. The prefactor i is
chosen so that order parameter for the electron (Cooper) pair
is real. For a uniform system, we can take |F ,«m| =F), but the

phases along x and y need not be the same. Without loss of
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FIG. 4. (Color online) Origin of d-wave symmetry. Upper panel: holon Fermi surface. Holons live within the pockets centered at
%(77,—77) and %(—77, 7). The shape of the FS is somewhat different when compared with Ref. 17 because the holon spectrum has corrections
from the two-hole term. The FS is not directly observable since under a gauge transformation it is moved and deformed. Lower panel: the
symmetry factor [sin k,+a sin k,|. It has broad maxima in the hole-rich region for a=-1, resulting in maximum condensation energy. In
contrast, the symmetry factor vanishes in this region for a=1 (s wave). Under a gauge transformation both the Fermi surface and the
symmetry factor move together to preserve these gauge-invariant results.

generality we can choose, F,=F, and F,=aF, with a=e'"’.

The choice of a==*1 leads to C,= =C,, corresponding to
s-wave (d-wave) symmetry for the electron pair wave func-
tion. But other values of « can, in principle, lead to s+id or
s+d symmetries. To find the correct symmetry we compare
the free energies for different choices. The MF Hamiltonian
is given by

1 .
Hyp= >, &K)hjhy + EAh(k)(hlih'_k +Hc), (26)
k

where &(K)=¢,(k)—u, w is the holon chemical potential, and
A, (k)=21,F(k) is the holon gap function with

F(k) = 2F(sin k, + a sin k,). (27)
The holon spectrum ¢€,(k) is assumed to contain the Hartree
contribution from the interaction term. The Hamiltonian is
diagonalized by the Bogulyubov transformation. The self-
consistent equations for the order parameters are then given
by
tanh[ BE(k)/2]

E(k) ’

(28)

< . . .
F,= W% sin k,(sin k, + e sin k,)

where 7=(x,y), and
E(k) =[£(k) +[4,(K)]]".
Since F, is real we find that solutions exist only for sin 6

=0, i.e., for a= = 1. Combining the equations for F and F,
we obtain

S =
z =

tanh[ BE(K)/2]

E(Kk) > (29)

% W(K)(sin k, + a sin k)

W(K) is a suitably chosen cutoff function.

To find the symmetry let us consider the 7=0 case, for
which tanh[ BE(Kk)/2]=1. We have solved this equation nu-
merically with and without a cutoff function. Quite generally,
we find that a=-1, (i.e., d wave) is favored, as it leads to the

largest F,,, and hence the largest condensation energy. The
origin of this result can be understood from the following
simple considerations. The dominant contribution to the sum
comes from the region where |&(k)|=|e,(k)—u,| is small,
and the symmetry factor [sin k,+a sin k| is large. As shown
in Fig. 4, the holon Fermi surface is in the second and fourth
quadrant, exactly where sin k,+« sin k, has maxima for «
=-1 (d wave) and vanishes for a=1 (s wave). Hence, d
wave always wins. Thus the symmetry of the superconduct-
ing order parameter is determined by the symmetry of the
underlying RVB state.

Note that since F(k)=F(Q-k), the two-sublattice prop-
erty is also preserved in the superconducting state. The holon
pairing function is odd since for any two i,j, it satisfies F;
=—F;; cos Q.(r;—r;). Since A;; is also odd, the electron pair-
ing function C;;=-A;F ;'} is also odd. Similarly, the symme-
tries of n.(k) and spin-spin correlation function remain un-
changed in the superconducting state. The charge structure
factor, however, picks up an additional contribution: S ;;
=|F;|*~|D;j|, and is no longer restricted to the same sublat-
tice; but like the spin-spin correlation function, it oscillates
in sign.

Note that the renormalized Hamiltonian describes a
strong-coupling problem since the one-hole and two-hole
terms are essentially governed by the same energy scale f,.
The holon wave functions depend on x but not on #,. Hence,
the BCS-type MF approximation is expected to work only
for T<T,. In particular, treatment of the transition region
and the calculation of T.(x) will require strong-coupling
techniques. Similarly, MF approximations would not work
near T*, where fluctuations will be strong. The phase dia-
gram shown in Fig. 5 is thus only schematic. The main point
is, unlike earlier RVB theories, the number and type of
phases for small x are similar to those in cuprates. Moreover,
as discussed below, the qualitative behavior of various
phases can be easily understood. Given the numerous un-
usual properties of the cuprates, and the highly constrained
nature of the renormalized Hamiltonian, the predictions can
be put to severe experimental tests. So far we have found no
contradictions.
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FIG. 5. Schematic phase diagram. The state above T* is a novel
insulator and is unordered. The pseudogap metallic state is a spin-
less Fermi liquid. Except for the strange insulator, the remaining
phases are characterized by RVB order parameter A # 0

VII. COMPARISON WITH EXPERIMENTS

Clearly, the present theory is consistent with the important
features of the experimental phase diagram. By construction,
it is consistent with the physics at half filling. The normal
state has spin-charge separation and is not a Fermi liquid.
There is a transition from a strange phase to a pseudogap
metal below T*. As discussed later in Sec. VIII, these phases
are two dimensional, whereas the superconducting state ex-
hibits 3D behavior. However, the phases themselves are pre-
dicted to have novel characteristics that defy conventional
wisdom. The key ones are: (1) there is a true spin gap ()
which exists in all three phases and which is distinct from the
pseudogap that appears below T%, (2) holons are confined
above T so that the strange phase is an insulator rather than
a metal; (3) below T holons form a spinless Fermi liquid of
concentration x without an observable (small) Fermi surface.
The pseudogap metal and the superconductor are character-
ized by the RVB order parameter and the two-sublattice
property, whereas the strange phase does not have any order.
These results are robust as they follow from symmetry and
particle statistics. A large number of important conclusions
can be drawn from the very structure of the effective Hamil-
tonian in each phase, which do not require detailed calcula-
tions, and which can be tested against experiments. We now
examine recent experimental data to show that there is very
strong evidence in support of these predictions. We separate
the experimental findings into three groups: the spin sector,
the charge sector, and the electron sector.

A. Spin sector

The presence of the spin gap implies the existence of an
additional temperature scale 70~ (/k. In the pseudogap re-
gion the AF correlation length &, is expected to be short,
no more than a few lattice spacings, due to strong renormal-
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FIG. 6. (Color online) Paramagnetic susceptibility for a two-site
problem. Note the maximum at 7°, the spin-gap scale. The line on
the right below 7™ is schematic, showing how singlet condensation
at T* for a many-site problem would further depress Xqq-

ization processes implicit in our theory. Then, ~J,(x).
On the other hand, T*~J ;A <T° since A is only a fraction
of unity (from the MF theory). At half filling, RVB ordering
arises from long-range singlet-singlet interactions mediated
by gapless spinons. In the doped region, this interaction is
weaker and short ranged because of the gap. However, now
the renormalized hopping terms favor singlet condensation
since holons can propagate coherently only if singlets are
correlated. The qualitative behavior is easy to understand.
Above T° we expect free spins to dominate. Then the
uniform paramagnetic susceptibility x,,,, should be Curie
type, i.e., decrease with increasing 7. Below 7° singlets will
form and x,,,, will start decreasing with decreasing T. Note
that there is no transition at 7°; it is just a broad crossover
scale. Hence, we can associate it with the maximum of x,,,.
With decreasing 7, there will be more singlets and they will
become increasingly more correlated, and eventually con-
dense at 7. Below T, X, Will decrease much more rap-
idly, and vanish as T—0 (because of the gap), even in the
absence of superconductivity. The magnetic behavior above
T* is determined by fluctuating singlets correlated over a
distance &,0015(T), together with weakly correlated free
spins. The behavior near T° and above, where singlets are
weakly correlated, can be crudely understood in terms of a
one singlet (two-site) problem, for which x,,,, is given by

B

XparaZ = 3+ eﬁjeff.

This has gap Q=J,;, and it vanishes exponentially as e~err
as T—0, shows a Curie-type 1/T behavior at large 7 with a
maximum at 7°=~0.62J,./k. Figure 6 Shows X, as a
function of T.

The pseudogap has been observed in cuprates by using
nuclear magnetic resonance (NMR) techniques.>>-3° There is
a rapid decline in Y, as measured by the Knight shift,
below T*, which is far above T.. A similar downturn is seen
in the spin-lattice relaxation rate, 1/7;. More interestingly,
the higher crossover temperature 7° was also found in many
of these materials (for a review, see Ref. 2). That 7° has not
been seen in some materials is more a matter of not going to
high enough temperatures. For example, 70 was not seen in
initial measurements on YBa,Cu,Og up to 400 K. Curro
et al*® extended the measurement to 715 K and found a
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broad maximum at 7~ 500 K with Xpara decreasing slowly
on both sides of 7°. In this material T* is about 240 K and
T.~81 K. It is interesting to note that 7, and 7" vary
roughly the same way, decreasing with increasing x, consis-
tent with the theoretical expectation that they are propor-
tional to the same energy scale J,(x).

Our theory also predicts that y,,,, would vanish in the
normal state as 7— 0. This is harder to confirm since super-
conductivity intervenes. However, as discussed in Ref. 2, in
highly underdoped systems such as Y;Ba,Cu;O¢5_67 (Ref.
35 and 36) and YBa,Cu,Og,*! there is almost no sign of a
superconducting transition in the NMR data at 7., indicating
that there is no additional spin pairing at 7., although x,,,,
continues to decrease. Similar results have also been seen in
moderately underdoped Bi,Sr,CaCu,Og (Bi-2212) (Ref. 36)
by Walstedt ef al. who argue that the lack of any effect at 7',
indicates that the gap is unrelated to superconductivity, and
represents spin-charge separation.

B. Electron sector: Tunneling DOS

Further support for the theory comes from tunneling ex-
periments, which probe the electron spectra (charge plus
spin). Unlike magnetic properties, tunneling density of states
(DOS) (Refs. 42 and 43) shows a sizable effect near T, in
underdoped Bi2212. For T<<T,, there is a gap in the DOS,
with well-developed conductance peaks at =A,,, except that
2A,./kT, is much larger than the BCS value. As T ap-
proaches T, from below, conductance peaks decrease in
height and disappear at T,, as does the zero-bias peak origi-
nating from the Josephson current. This is what is expected.
However, while the gap decreases as T, is approached, it
does not close; instead a gaplike structure with a depressed
DOS continues to exist above T,. Although, sometimes it is
referred to as the pseudogap in the tunneling literature, the
gap actually exists far above 7" (as measured in the NMR
experiments), that is, it also exists in the strange phase up to
high temperatures, i.e., it is the spin gap. Such a behavior
cannot be understood in terms of nn (e.g., slave-boson) states
or a Fermi liquid.

The tunneling data are clearly consistent with our theory
in which the spin gap exists in all three phases. The gap and
the singlet condensation qualitatively account for the NMR
data in the normal state. Superconductivity arises from a
pairing of spinless holons. Since there is spin-charge separa-
tion X, and 1/T would largely be unaffected below T, as
seen in the experiments. However, tunneling experiments
measure the DOS of the electron, containing both spin and
charge. At the MF level this is a convolution of spinon and
holon DOS. Above T, holons are gapless, so the gap in the
electron Green’s function reflects the spin gap. This is why
tunneling gap exists far above T*. Below T, a gap also opens
up in the charge spectrum, as holons pair; this explains the
increase in the total gap size with decreasing 7, and the
appearance of the conductance peaks. Also, experimentally
the 7=0 gap increases with decreasing x, mirroring the be-
havior of 7° associated with the much larger spin gap, as
expected from the theory.

Experimental observation of a spin gap far above T™ rules
out a mechanism based on pre-existing electron pairs, carry-
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ing both spin and charge. To account for the gap, such pairs
should be formed near 7° and presumably condense below
T.. It is then hard to explain T*. There are other difficulties.
The condensation at 7. must increase the binding energy of
the Cooper pairs, enough to cause the large depletion ob-
served in the DOS below T,, and the observed increase in the
size of the gap. However, since electrons forming a Cooper
pair also carry spin, such a large increase will be accompa-
nied by a large change in x,,,, and 1/T; below T, a behav-
10r not seen In experiments.

C. Charge sector

Strange insulator. A key prediction of our theory is that
holons are confined (nonpropagating) above 7" since A=0.
Furthermore, since electrons are incoherent and gapped, the
“strange metal” is not a metal but a new type of insulator. A
strong evidence for this comes from the measured in-plane
dc resistivity, p. In a metal, p is supposed to saturate at the
Mott value. Actually, while the linear 7 dependence of the
p(T) has received most of the attention, it has been pointed
out by many authors that p shows no sign of saturation, and
in the underdoped regime, far exceeds the Mott value.*+-46
The fact that p(T) increases with T does not make the system
a metal since p also increases in a disorder-induced (Ander-
son) localized insulator as long as inelastic mean-free path
€pe(T) is less than the localization length, &,.. A quantita-
tive theory is beyond the scope of this paper; but the quali-
tative behavior can be understood, as follows. In the case of
Anderson localization, &, is independent of T; then p(7)
would show an upturn at low T, as £, exceeds &,,.. In our
case, the appropriate localization length is the distance over
which holons can move coherently, which is the singlet-
singlet correlation length &,.,.,(T) (not the shorter AF cor-
relation &,;,). Since &;,q(T) increases with decreasing T
and becomes infinite at 7* (at the MF level) where €,,,; is
finite. Hence there cannot be a low-T upturn, which is con-
sistent with experiments. On the other hand, since there is no
coherent holon motion in the perpendicular direction the
c-axis resistivity should show an upturn, as seen.

A clear indication is also obtained from the frequency-
dependent conductivity o(w) which, for a metal, should ex-
hibit a Drude peak. But in our case there would be no such
peak above T*. Recent experiments in La,_,Sr,CuO, (LSCO)
(Ref. 46) and Bi-2212 (Ref. 47) show that such a peak does
not exist for small x. Instead, one has nearly a flat spectrum
over a range of frequencies of order 1 eV. The lack of a
Drude peak indicates the absence of coherent charge carriers.
The flat spectrum would come from incoherent hopping. At
higher doping, a broad peak develops, which is not surpris-
ing since in this case the physical electron comes into play as
one approaches the Fermi liquid.

Pseudogap state: emergence of metallic conduction. The
theory predicts that below T* holons become coherent and
form a spinless Fermi liquid of concentration x. Therefore,
p(T) should drop rapidly with decreasing T and become me-
tallic. Indeed, experimentally p(T) is found to drop faster
than linearly***%4% below a temperature which approxi-
mately agrees with 7* obtained from NMR experiments.>*’

014504-12



CONSISTENT THEORY OF UNDERDOPED CUPRATES.:...

At lower T, p(T) becomes metallic and has a residual impu-
rity contribution,*3#6° as expected of a metal. At low-T,
p(T) = T? due to fermion-fermion scattering,**>! also as ex-
pected. For LSCO, one also finds that p does show an upturn
at very low 7, which is believed to be due to disorder-
induced localization.**

Recent experiments’'*? in underdoped LSCO and
Y,Ba,Cu;0, show that the Hall coefficient Ry is indepen-
dent of T and proportional to 1/x in the pseudogap regime,
as expected of a metal. This should be compared with the
strong T dependence in the “strange” insulator phase. With
increasing temperature, p(7) is seen to deviate from the 72 to
eventually a linear-T behavior above T™.

Strong evidence also comes from optical conductivity
o(w), which shows a Drude peak at low 7, with an integrated
area (spectral weight) ox.>23 It is characterized by a small
plasma frequency, consistent with a small bandwidth, or
heavy holons, as in our theory. With increasing 7, o(w)
broadens, but at a rate too large to be attributed to thermal
effects in a Fermi liquid, and merges into the incoherent
background above T+ 404732

These transport properties, taken together, strongly sup-
port the view that the charge carriers are holes, rather than
electrons, and they form a Fermi liquid below 7%, and when
combined with the NMR data, they suggest that these holes
are spinless, supporting our view. They also suggest that at
small x there are no coherent charge carriers above T~

Lack of a Fermi surface

If the pseudogap state is a Fermi liquid of concentration x
as the transport experiments suggest, where is the corre-
sponding, presumably, small Fermi surface? This is a real
puzzle. Attempts to understand this®' in terms of the “Fermi
arc” found in the photoemission experiments®*> does not
make sense for many reasons. First, there are no quasiparti-
cles associated with the Fermi arc. The electron Green’s
function is completely incoherent in the normal state; there
are no sharp peaks in the photoemission spectrum. Therefore,
the Fermi liquid is not formed by electrons. Furthermore, as
discussed earlier, neither the NMR data nor the gap in the
tunneling spectra is consistent with an electron Fermi liquid.

In contrast, our theory predicts that the holon Fermi sur-
face is unobservable, even in principle. This is because the
holon Green’s function, and thus the holon spectrum, are not
gauge invariant. Hence, the holon Fermi surface can be de-
formed and moved around by a gauge transformation. The
holon Fermi surface does not exist when averaged over all
the gauge-equivalent copies. This is why experiments do not
see it.

Another prediction is that since x,,, decreases rapidly
below T, and eventually vanishes as T— 0, the fotal uniform
magnetic susceptibility of pseudogap metal would become
more diamagnetic with decreasing 7 due to the orbital mo-
tion of holons. The effect should be small near 7" but should
become more prominent in the metallic region (at lower 7).
Unfortunately, superconductivity intervenes. Note that the
diamagnetic response discussed here should not be confused
with strongly T-dependent response found by Wang et al.”®
considerably above T.. The latter is presumably due to pair-
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ing above T.. Such strong-coupling effects are not ruled out
by our theory but its treatment would require more sophisti-
cated techniques. We point out that in the analysis of Wang et
al. the normal-state diamagnetic contribution appear to have
been subtracted out along with other weakly temperature-
dependent terms. Therefore more experimental work will be
needed to see the effect in the normal state.

In our theory superconductivity appears via a pairing of
holons. Since both terms in the effective Hamiltonian arises
from hopping, condensation energy is C><—tf/ t,, which causes
a reduction in the kinetic energy, as observed.’”>® Our mean-
field treatment implies that spin-charge separation continues
to exist in the superconductor. For small x, there is some
evidence for this since x,,, is essentially unaffected at T,
but more work is needed to clarify this issue.

VIII. ORIGIN OF TWO DIMENSIONALITY

In this section we consider the origin of two dimension-
ality of the normal state, which is central to the occurrence of
high-T, superconductivity in cuprates. These are highly an-
isotropic 3D materials. Ordinarily the metallic state would
show 3D behavior below some 7’| since confinement within
a plane would cost too much kinetic energy. For cuprates,
this would imply 7', <T,, which is small at low doping, and
actually vanishes at some critical x. In other words, the nor-
mal state appears to remain two dimensional as 7— 0 (in the
absence of superconductivity). On the other hand, the other
phases in cuprates: the AF state at half filling, the supercon-
ducting state, and the Fermi liquid state at large x are all
three dimensional, as one would expect.

In theoretical studies, the 2D nature of the normal state is
usually assumed, not established. One simply analyzes the
2D Hamiltonian. The question arises: does the corresponding
normal state remain two dimensional when hopping is turned
on in the perpendicular direction? If it does not, the theory
should be discarded. This requirement, seldom tested, pro-
vides a powerful constraint on any theory.

Out-of-plane hopping can be modeled by adding

- ILE [c,T(,(z)c,»U(z +1)+H.c.]
1254

to the original model, where ¢, <f; and for simplicity we
consider a tetragonal lattice. Suppose we put U=0 and treat
the anisotropic hopping model as an effective model for the
Fermi liquid state. Obviously, this would show 3D behavior.
The same is true if the particles are bosons, as in a supercon-
ductor or a quantum magnet. Similarly, the nn (e.g., the spi-
ral or the slave-boson) states should be three dimensional
since they are modeled by similar effective MF Hamilto-
nians, in which fermions and bosons hop “freely” in all three
directions. The issue of confinement has been studied for
coupled one-dimensional Luttinger chains, which have gap-
less excitations.>

In our theory, the gapping of the spin excitations provides
a protective mechanism for 2D confinement. This is far from
obvious since, as we have seen, holons can delocalize in the
plane even though spinons are gapped. So why not in the z
direction? First, note that a nonzero ¢, leads to an exchange
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interaction J | :4f2¢/ U=J(t,/1)*<J. Since a spin can belong
to only one singlet at a given time it follows that the spin
singlets are formed only on the x-y plane in the ground state.
In order to form them along the z direction one has to break
singlets in the plane, which will cost an energy of order J-J |
per singlet, as long as spin excitations are gapped.

Now, suppose a hole (or a projected electron) hops on to
the adjacent layer, breaking a singlet, which creates two un-
paired spinons, one in each plane. The cost in energy is ~(),
which cannot be removed by the hole hopping on to a third
layer since that would create two more unpaired spinons
costing more energy. A singlet can be reconstructed between
the two unpaired spins in the intermediate layer if they are in
opposite direction, which happens half the time. But that still
leaves two unpaired spins. The other 50% of the time there
will be four unpaired spins. Thus, broken singlets proliferate
as the hole hops farther and farther in the z direction.

Now, there are only two processes by which the system
can relax. The hole can come back to the original layer,
which means that the normal state is two dimensional. The
second one is the two-hole process similar to the one dis-
cussed earlier, that is, a second hole follows the first. As in
the plane, the pair hopping is accompanied by a singlet back-
flow. Therefore superconductivity is three dimensional,
which explains the 3D enhancement of 7.

Although this interlayer holon pair hopping is nominally
similar to the interlayer pair tunneling (ILT) mechanism,®
the physics is quite different. In the ILT theory, electron pairs
tunnel. It plays the primary role; there is no intralayer pair
hopping. The spinon spectrum is gapless, the interlayer hop-
ping matrix is diagonal in k,,, i.e., long ranged. In our case,
the hopping is localized in real space. The primary mecha-
nism for superconductivity is the intralayer holon pair hop-
ping, which contributes the main part of the condensation
energy. The interlayer hopping process makes superconduc-
tivity three dimensional and enhances T..

Superconductivity in the 3D system. The second process
described above contributes the following interplane pair
hopping term

Hiper== 1,2 [Fj@)Fyc+ D +Hel,  (30)
1,2

where 7,,>0 is an effective pair hopping amplitude which is
(<t,), the intraplane pair hopping amplitude. In this paper
we will treat it as free parameter. Note that the vector fields
F;;=(h;h;) lie on the plane. Furthermore, this term does not
modify the normal holon spectrum at the Hartree-Fock level.
The MF problem for the superconducting state is again
reduced to a 2D problem with an additional pairing term.
The equation for the order parameter (with d-wave symme-

try) now becomes

1
fo+t

s zs

tanh[ BE(K)/2]
E(K) ’

1
= sz (sin k, - sin k) (31)
k

where, as before,
E(k) = [£(Kk) +]A,(K)[]"

but with a modified gap function
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FIG. 7. 3D enhancement of superconducting condensation en-
ergy: order parameter vs interplane pair hopping amplitude f,,
which is the same as 7. in the text. It is enhanced in the actual case
(dotted line). However, it is reduced if the sign of the interaction is
reversed by hand (bottom line).

Ah(k) = 4(ts + tzs)Fo(Sin kx —sin ky) (32)

The equation for x is unaffected. As shown in Fig. 7, F
increases with ¢, for given values of #,, the effect increasing
slowly with increasing x. Note that the sign of ¢, is deter-
mined by the symmetry of the underlying RVB state, and is
of considerable importance since, as seen from the figure, F,
actually decreases if the sign is reversed by hand (bottom
line).

IX. ELECTRON DOPING VS HOLE DOPING

High-T,. superconductivity also occurs in electron-doped
systems. This is expected theoretically since the square-
lattice Hubbard (or 7-J) model has an electron-hole symme-
try about half filling. The symmetry is realized by the trans-
formation: ¢;,— ¢ on one sublattice and ¢;,— —c}, on the
other. If we assume that the orbital structure in the CuO,
plane is roughly the same for the two cases, an electron-
doped system at an electron concentration 1+x should ex-
hibit roughly the same behavior as a hole-doped system at a
concentration 1 —x. Experimentally this is not found to be the
case. In the electron-doped system the superconducting state
occupies a much smaller region in the parameter space and
T,’s are also much smaller. The AF insulator phase occupies
a much larger region.

In a real system there will always be an asymmetry since
one has to include an intrasublattice hopping term in the
original model,

H =t'>, ¢l c;p+He., (33)
il

where i and [ are next-nearest neighbors, and this term
changes sign under the e-h transformation. A rough estimate
from angle-resolved-photoemission data and electronic-
structure calculations is: #'/t=~(0.1-0.3).°" The ¢’ term
would generate a J'=4t'2/U, which is very small since
J'1J=(t'/1)?, and can be neglected. In general, ¢’ should not
change the physics qualitatively; and for a Fermi liquid or a

014504-14



CONSISTENT THEORY OF UNDERDOPED CUPRATES.:...

nn state the quantitative difference should not be too large
since physics is dominated by the ¢ term. The observed dif-
ference is much larger than what is expected.

In our case the difference can be significant since ¢ is
renormalized away, and the hopping parameter ¢, that char-
acterizes renormalized intrasublattice hopping [see Eqgs. (17)
and (18)] is only ~J. It should be noted this term does not
change under the e-h transformation. Therefore, the effect of
t' is to increase the net intrasublattice hopping amplitude in
one case and decrease it in the other. Of course, ¢’ will also
be renormalized to te’ff, but renormalization effect will be
smaller since this term moves an electron within the same
sublattice, which has ferromagnetic correlations. Now, in the
MF approximation H' becomes

H =- t;ffz [2B;hh+ D2 blbi,+Hel,  (34)
ij o

which generates intrasublattice holon hopping. Here B;;
=(bl b o) and D,-j=(h;hi) are the average hopping amplitudes
for spinons and holons along the diagonal. Above T this
term does not contribute since B;;=0=D;;. We assume that
t;ﬁ- is small so that it does not by itself break gauge symme-
try and generate coherent hopping of holons above T*.

The situation is quite different below T* since the diago-
nal holon hopping amplitude D;; # 0 in the pseudogap metal;
and the diagonal B;; is also nonzero in the presence of the
singlet condensate. The symmetry of BZ is easily calculated
from the MF theory, and we find BZ: * B,, along the diag-
onal (1, = 1) directions, where

B, = %}% sin k, sin kyﬁ{l/Z +n[w(k)]}. (35)

Since the spinon spectrum has minima at k=(7/2,7/2),
B,>0. Thus the ¢’ term contributes

€,(k) = — 41, sin k, sin k, (36)

to the holon spectrum, where t,’l=t;ffBz. Therefore, the extra
holon hopping term in the diagonal direction has the same
symmetry as the earlier one; except that the sign is opposite
for the hole-doped case for which, #;,>0. As shown in Fig. 8
(upper panel), the extra term has maxima at = (7/2,-7/2),
where the original spectrum is a minimum, making the band
shallower and holons heavier (and increases the holon DOS).
Since ¢’ term does not contribute to the pairing interaction,
the net effect is to reduce pair breaking, which increases Fj
and T.. This is seen in Fig. 9 where we plot F vs x at T
=0.

The problem of an electron-doped system at an electron
density of 1+x is the same as that of a hole-doped system at
a hole density of x, except that the sign of ¢, (and hence, that
of #;) is now changed. In this case, the total holon hopping
amplitude along the diagonal add. The extra term has minima
at the minima of the original spectrum (Fig. 8, lower panel),
making the band steeper, which making holons lighter and
thus decreases the DOS. As shown in Fig. 9, F; is now
smaller, as one would expect. We stress that these effects are
amplified because the pairing interaction and holon hopping
are of the same order of magnitude.
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FIG. 8. (Color online) The origin of electron-hole asymmetry:
the holon spectrum in the second quadrant in the presence of next-
nearest-neighbor hopping #,,= * 0.2t For positive t,;, (hole-
doped case) the minimum becomes shallower (upper panel), which
would to lower Fermi velocity and higher F. For the electron-
doped case, téff is negative, and minimum deepens (lower panel),
which would lead to higher Fermi velocity and lower F,.

Interestingly the theory also provides a straightforward
explanation for why the size of the AF region is larger for the
electron-doped case simply on the basis of the symmetry of
the RVB state. The point is that average spinon hopping am-
plitude B;; measures ferromagnetic correlations between sites
i and j. It is nonzero when i and j are on the same sublattice,
and has the largest value when the system has long-range AF
order. This can be verified from Eq. (35) which shows that
right-hand side is largest when the spinon energies w(k) are
smallest, i.e., when the spectrum is gapless (corresponding to
long-range AF order). We also see from Egs. (20) and (21)
that D;;==*D, with D;>0 along the (1,=1) directions.
Hence, the contribution of the #’ term to the energy per bond
is t;ffBle which has the same sign as ¢'. It follows that AF
ordering will be opposed by this term for the hole-doped
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FIG. 9. Electron-hole asymmetry: the condensation energy vs
the effective diagonal hopping amplitude 7;, for fixed x. The hole-
doped case (dotted line) corresponds to #,>0 and the electron-
doped case (broken line) corresponds to #;,<0.

case (¢#'>0) and will be favored for the electron-doped case
(t' <0).

X. CONCLUSION

In this paper, we have shown that assumptions of conti-
nuity from half filling and renormalization give rise to the
number and type of phases that are seen in the experimental
phase diagram. The theory makes three major predictions: a
spin gap which plays a pivotal role in all three phases; a
spinless Fermi liquid below 7* but one without a Fermi sur-
face; and a state above 7" which is not a metal but a novel
quantum insulator. Except for superconductivity, the motion
of holons do not introduce any new order, other than those at
half filling. The normal states are predicted to be rather dif-
ferent when compared with other theories. We have pre-
sented a careful review of the old and new experimental
results in the charge, spin, and electron sectors, and found
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very strong evidence in support of these predictions.

Superconductivity also occurs naturally, via pair hopping
of holons, driven by the existence of previously paired
spinons. It is found that the possible symmetries of the su-
perconducting order parameter are severely restricted be-
cause the symmetry of the spin part of the electron pair is
already determined at half filling. We have shown that this
leads to a robust d wave. Remarkably, the theory provides a
natural explanation for the two dimensionality of the normal
state and also of the pronounced difference between hole-
doped and electron-doped cuprates. Most of results follow
from the type and symmetry of the renormalized Hamilto-
nians, detailed calculations are not necessary.

The theory provides a basis for future calculations of
finite-temperature properties, which would require careful
treatment of fluctuations, including gauge fluctuations, sepa-
rately for each phase. In particular, because of the low di-
mensionality, and since the energy scales of all the terms in
the renormalized Hamiltonian scale with J and are compa-
rable, the mean-field approximation would not work near the
transitions. For this reason, probing the nature of the transi-
tion near T°, and the calculation of T,.(x) or, possibility of a
Nernst effect, would require a more sophisticated treatment.
We also do not discuss the issue of collective modes, the
treatment of which would require going beyond the MF ap-
proximations. There are a number of such collective excita-
tions. An important one is the physical electron itself, which
can be probed by the photoemission spectrum. Experimen-
tally one sees something like a Fermi surface above T, and
a Fermi arc in the pseudogap normal state, although there are
no quasiparticle excitations associated with these. One im-
portant issue is the possible appearance of sharp peaks in the
gap region of the superconducting state. Our theory does not
rule out the emergence of a more conventional Fermi-liquid
state at large x, where the physical electron would appear as
a collective excitation via spin-charge recombination.?!
These and other issues would be discussed in a future paper.
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