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Superconductivity in the extended two-dimensional Hubbard model:
Strong-coupling regime and hybridization effects

E. S. Caixeiro™® and A. Troper
Centro Brasileiro de Pesquisas Fisicas, R. Xavier Sigaud 150, Rio de Janeiro 22290-180, RJ, Brazil
(Received 2 July 2009; revised manuscript received 7 May 2010; published 1 July 2010)

In this work we have considered a two-dimensional two-band Hubbard model (extended Hubbard model) to
study the effect of the nonlocal hybridization V) on the superconductivity. In the strong-coupling regime and
for a d-wave superconducting gap, we have obtained the superconducting critical temperature 7. and the
zero-temperature superconducting gap A for different hybridizations. We have adopted hopping parameters
suitable to describe the high-temperature superconductor materials. The results show that for a fixed value of
the hybridization and the intraband d-d attractive potential U, the gap increases for low temperatures and
diminishes as the temperatures increase toward 7. As the hybridization increases both, Ay and 7, diminish.
For each hybridization, the quantity 2A/kgT.. increases and saturates in a particular value as U increases. The
relation between applied pressure P and hybridization in the strong-coupling regime is also discussed.
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I. INTRODUCTION

The hybridization effects on superconductivity have been
discussed in the literature in several works.'"® A two-band
mechanism for superconductivity was proposed by Suhl et
al.,' and Kondo,? and later investigated by several others.3”’
In particular, in Ref. 5 it was studied the influence of an
one-body hybridization on superconductivity in two-band
systems through a sp-d model of overlapping bands close to
the Fermi level. The physical meaning of the hybridization’
was to create, in the normal state, new bands with mixed
features, while the Hubbard potential U was treated within
the Bardeen-Cooper-Schrieffer (BCS) (Ref. 8) theory, i.e., a
weak correlation regime.’

On the other hand, with the discovery of the high-
temperature superconductors (HTSC) (Ref. 9) a lot of new
systems have been considered. In particular, the cuprates
have been extensively studied,'® but a great number of ques-
tions related to them remain to be answered, e.g., it is ob-
served that the magnetic H-T phase diagram of the HTSC
exhibits, in certain cases, an unusual behavior: a positive
curvature for the upper critical field H,,(T), with no evidence
of saturation at low temperatures.” Also, the existence of a
pseudogap, i.e., a preformed gap in the density of states at
temperatures above the superconducting critical temperature
T., has been verified by several different experimental
techniques'®'? in many HTSC, but with no agreement on
such basic facts as to its nature and origin. It is recognized
that the electrons which move in the CuO, planes are the
most relevant to describe the cuprate superconductivity. In
particular, there is no doubt that the d electrons play a fun-
damental role in the onset of superconductivity:'>!* as
stressed by Beenen and Edwards,'? much of the experimental
evidence in HTSC cuprates leads inevitably to a d,2_2 pair-
ing, which is the one considered in the present work. More-
over, a d-p hybridization between d electrons and the O un-
correlated p states should also be considered. Therefore, we
adopt throughout this work a two band (p- and d-) Hubbard
model, which is often associated with HTSC.> The simplest
way to discuss strong d-electrons dynamics is the Hubbard-I
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approximation.!> So we focus our attention in this work in
the interplay between strong d-d attractive U and d-p hybrid-
ization V.

We stress that we consider degenerate p bands. Although
p, and p, hybridize slightly different with the d orbital (i.e.,
with d-band states) and thus this simplification may miss
some features in a quantitative calculation of some thermo-
dynamic properties of high-7. superconductors, the main
point tackled here concerns the interplay of one-body d-p
hybridization and d-d superconductivity. Throughout this
work, it will be shown that d-p hybridization acts in detri-
ment of d-d superconductivity. For that matter the existence
of different p orbital is not specially relevant. Besides, as
will be presented in the self-consistent calculation, the mi-
croscopic d-p hybridization parameter is related to macro-
scopic applied pressure and again, for this relation, the exis-
tence of different p orbital is not particularly relevant.

We consider a d-wave gap symmetry and the hopping
parameters are those known to reproduce well HTSC phase
diagrams.'®!'” To develop the calculations we consider a
Green’s-function method'>'® in order to calculate the zero-
temperature superconducting gap A, and the superconduct-
ing critical temperature 7., with both, a k-dependent hybrid-
ization and a local one (a mean value over the Brillouin
zone) which turns out to be constant. The paper is organized
as follows: Sec. II presents the model and general formalism
leading to the main equations within the Hubbard-I approxi-
mation, which is beyond the usual first-order BCS mean-field
treatment.’ In Sec. III the numerical results are presented
whereas in Sec. IV the conclusions and final comments are
made.

II. MODEL AND GENERAL FORMALISM

In order to study the dynamics of the carriers with corre-
lations and the basic attractive interaction we consider a two-
bandlike Hubbard Hamiltonian,
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where cifg(c ») and dT (d;;) are the fermionic creation (anni-
hilation) operator at site r; for the p and d electrons, respec-
tively, and spin o={1]}. n?0=dj'(rdw is the density operator, tflj
and tfj are the hopping integrals between sites i and j, nearest
neighbors and next-nearest neighbors, for the d and p elec-
trons. U is the attractive potential between the d electrons,
which can result from the elimination of the electron-phonon
coupling through a canonical transformation or, as suggested
by Hirsch and Scalapino,'® it may be provided by the com-
petition between on-site and nearest-neighbor sites Coulomb
interaction for some range of parameters. V;; is the nearest-
neighbors hybridization of the p and d bands, which may be
k dependent, arising from a nonlocal character of the mixing.
If one considers the special case of a local hybridization, the
hybridization becomes constant (V) representing an average
over the Brillouin zone).

As mentioned in Sec. I, the physical meaning of one-body
hybridization is to create in the normal-state new bands with
mixed features, as pointed out in Ref. 5. The Hamiltonian
[Eq. (1)] is used to consider the formation of the d-d Cooper
pairs and to obtain the self-consistent equations for the cal-
culation of both, the critical temperature 7. and supercon-
ducting gap Ay, as a function of attractive potential U and the
hybridization V). It should be noticed that in our case of
mixed bands, we maintain the hybridization parameter, since
external pressure can be associated to it, causing a rearrange-
ment of the mixed states, and therefore we can discuss the
effect of pressure on T., A, and other thermodynamical
quantities. Also, in this work we assume that the main con-
tribution for the density of states at the Fermi level E is due
to the d electrons, and therefore we consider the d-d pairs as
being the most relevant for superconductivity. Clearly, we
could have also taken into account a p-d interband attractive
G (described by G2<ij>onff Unj-{_a, G <0) thus obtaining also
p-d pairs. However, it has been shown by Continentino and
Padilha®® that quite generally, interband pairing leads to nor-
mal first-order phase transitions, which is not the case in-
volving the systems we are describing throughout this work.

To obtain the superconductor order parameter, we apply
the Green’s-function method'>!8 to calculate the equations of
motion of the propagator ((dig;d;lf)) and ((dl U,dll))w.
Therefore, in the site (Wannier) representation

w<<dz(r’dl(r>> - 2_ l+ E tlj<< jo"dl(r>>u)
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Now, following the Hubbard-I approach,'> we calculate
again the equations of motion of new generated terms

((n‘i_gd,-(,;dlfa))w and ((n;{adi_g;dfg»w. Therefore,
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where A;=U(d},d!_,), and we have considered the mean-
field decoupling

(nSod] o3 di Mo = (5] i diNe (8)

with similar equations for the operators ¢ and c¢. We have
also applied the Hubbard-I approximation, '3

2 tjlm«[d;ra-dma a-d/ O']dl —o> a'>>w ~ 0. (9)

Performing the sum in “;” in Egs. (6) and (7), and consider-
ing the decoupling
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with 2,(n? y=(n?y=(n?) and U=2U(n?), one obtains, by the
substitution of the resulting equations in Egs. (2) and (3), the
equations for the propagator in the Fourier space,

~ 2
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In Egs. (11) and (12) the superconducting gap is given by
A= %A, (13)
s

with 6= *aX, *ay the vector which connects site i to its
nearest-neighbor j in a two-dimensional lattice, with r;=r;
+d and a is the lattice parameter. Here, A;;=A; for transla-
tional invariance. Equation (13) can account for a supercon-
ducting gap in an extended-s-wave symmetry (|Agl=|Ag]), a
d-wave symmetry (|Ag|=—|Ay]), as well as a mixed s-d
(|Ag[ #[A;]) one?! In the d-wave channel Eq. (13) is given
by21

Ay =2A"|cos(k,) — cos(k,)

) (14)

where A"*=A is the maximum gap amplitude and it is in-
dependent of momentum, and a=1. In the same way, the
k-dependent hybridization is given by

Vie= >, kv, (15)
5

For nearest neighbors, and considering the same magnitude
of hybridization in both X and y directions, Eq. (15) becomes

Vi =2V[cos(k,) + cos(k,)]. (16)

In this work calculations with constant hybridizations (Vy
=V) were also made in the same way as in Ref. 5.

From Egs. (11) and (12) we find the following expression
for the anomalous propagator:
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i
(g o3 =— —Akw(o+€q)
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where
, &+U VNE+0)+44
E . =— + s 18
1.2k 2 2 (18)
§k=2f]5ck— ck€dk > (19)
& =U-(€x+€n). (20)
and
P(w) = 0® + Ayw* + Byw® + Cy, (21)
with
Ak:2‘7k_g12(’ (22)
By = Vi +4AL07, (23)
Cy=4A 20Viey — (0P, + V)], (24)
and
Vie= €aceac— Vi~ Uea. (25)

The roots of the polynomial P(w) determine the excitation
energies of the system

A
E1k=\/—?k+2\/h;—k|cos%, (26)
A +
Eys= \/— ?k -214/ |p3—k|cos%7 (27)

9k

with

COoS Py = — —F—7—, (28)

2V(|pyl13)?

3B, - A2
P= ——*, (29)
3

24} ABy
=Cp+— - 30
9k kt 27 3 (30)

We now consider the Zubarev method'® which relates the
propagator ((dfk’_a;dio))w with the thermal average
(df ,d"\ _,), which defines the superconducting gap in the
momentum space (Ak=U<le(’(rdjk’_0)). Therefore,

+00
. . dw
= tim [ (s

~(d g i s, (31)
where B=1/kgT (kg is the Boltzmann constant). From Eq.
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(31) one obtains the self-consistent temperature-dependent
gap equation within a d-wave symmetry,

1 1 .
= A = dT !
N% K N% U( k,ad—k,—a>

3

i : =,
=202 X Ap2Ey [ Fy + Gytanh(BEy/2)],
N A Sik
(32)
where N is the number of sites in the lattice and
— Sik
= e y (33)
2En(Ef - E3) (T - E3)
— Sox
Eok = , (34)
2Exn(E3) — EN)(E3 - E3y)
— S3ic
Bk = (35)
2E3(E3 — EL)(E3 — E3)
with
Y = |cos(k,) — cos(k,)| (36)
for the d-wave channel. Also,
Fu=Ey[El\ + E5y — €4 — €xEEy. (37)
Gu= EalEX — €l E}y + Es ] + E|ED]. (38)

To obtain A, and T for a specific value of U and V, Eq. (32)
is solved self-consistently in the first Brillouin zone of a
square lattice, together with the dispersion relation

€. = — 2 cos(k,) + cos(k,)] + 41, cos(k,)cos(k,) + €.
(39)

Here, t is the hopping integral for the nearest neighbors
and 1, the hopping integral for the next-nearest neighbors. €,
is an adjustable parameter. Also, we may introduce now the
homothetic relation concerning the dispersion relation for ¢
and d electrons,?%

€ k = €k, (40)

where « is a phenomenological parameter less than unity and
plays a role of an effective-mass relation between ¢ and d
electrons. In this work we will take bands €. and € to be
centered at the Fermi level (the symmetric case), which cor-
responds to take the chemical potential u equal to zero.> In
the next section we show the results of our calculations.

II1. NUMERICAL RESULTS

The results shown in this work are all for half-filled bands
with (n?)=(n)=1.0. In Fig. 1 we plot the gap curves for
three different values of the constant «: 0.10, 0.15, and 0.20.
In all curves the nearest-neighbor hopping integral r was
taken as the energy unity. The attractive potential applied
was U=8.0r (strong-coupling limit) and hybridization
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FIG. 1. (Color online) The gap curves for three different values
of the constant a: 0.10, 0.15, and 0.20. We see that, as « increases
both, Ay and 7., diminish.

strength V=1.4¢. The next-nearest-neighbor hopping integral
was 1,=0.55¢, which is a value known to reproduce well the
HTSC phase diagrams.!”-?*?> These results of Fig. 1 are for a
k-dependent hybridization. We have observed the same be-
havior for constant hybridization (V,,=V).

From Fig. 1 we see that as « increases both A, and T,
diminish. Also, we observe for low temperatures the gap
raises and, by further increasing 7, the gap begins to shrink
due to the destruction of superconductivity, until it entirely
vanishes at a certain value, which we define as the supercon-
ducting critical temperature 7. This is an unexpected result
and is independent of the hybridization since we have a gap
for V=0 [see Egs. (30) and (31)]. This behavior is a direct
consequence of the Hubbard-I approximation employed in
the correlation U term. A similar behavior was obtained re-
cently by Aryanpour et al.:*® they have considered a
negative-U Hubbard model approach with real-space
Bogoliubov-de Gennes (BdG) local equations, to obtain the
superconducting phase diagram in an inhomogeneous two-
dimensional medium. In their analysis they concluded that
the anomalous increase in the gap curve was an actual fea-
ture and was believed to be related to the gradual destruction
of the charge-ordered phase due to temperature, leading to an
intermediate superconducting phase. Also, in a earlier work?’
they have employed a Monte Carlo mean-field technique as
an independent examination for the validity of their BdG
approach and the agreement between the two techniques was
clearly confirmed. On the other hand, from experimental
results?® one can observe the same anomalous behavior for
the gap curve for an overdoped Bi2212 HTSC sample, ob-
tained from angle-resolved photoemission spectroscopy
(ARPES), one of the most experimental direct probes of the
electronic structure. Also in Ref. 29 the gap curve exhibits
the anomalous behavior on an ARPES study of the electronic
structure of the trilayer HTSC Bi2223. We should mention
that in all the above cited articles,”®?° the superconducting
gaps are all consistent with a d-wave gap symmetry.

In Fig. 2 we can see the effect of changing the hybridiza-
tion strength V for a k-dependent hybridization. From the
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d-wave

<n>=1.0 U=8.0t t,=0.55t £=0.45U/0. 0=0.15
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FIG. 2. (Color online) In this figure we can see the effect of
changing the hybridization strength V for a k-dependent hybridiza-
tion. For increasing V, each superconducting gap A, and critical
temperature 7, diminishes.

figure we observe that as V increases, each superconducting
gap A, and critical temperatures T, diminishes, indicating a
destruction of the superconductivity of the system. The same
behavior is observed for a constant hybridization. The con-
stant « is the same employed in earlier works.>??>30 Also,
from inspection of Fig. 2 we have found that a critical hy-
bridization V., above which there is no more superconduc-
tivity, is proportional to the square root of a (V,« «!?). This
behavior was observed earlier by Ramunni et al.>° and Japi-
assu et al.,”? indicating a common behavior between our
present approach and the previous BCS calculations.?>* In
Fig. 3 one can see the results of Fig. 2 for the quantity
2A/kgT,, and also the same for a constant hybridization
(open symbols). Figure 3 shows that when V increases,
2A,/kgT, diminishes and goes to zero.

d-wave
<n>=1.0 U=8.0t t,=0.55t &,=0.45U/o.
0.06 :
®- - 00=0.10
®--90=0.15
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FIG. 3. (Color online) The change in 2A,/kgT. for a k depen-
dent and a constant hybridization (open symbols). The figure shows
that for increasing V, 2Aq/kpT,. diminishes, and goes to zero at
different values of a.
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FIG. 4. (Color online) The same as in Fig. 2 but changing the
attractive potential U. The figure shows that as U increases, both A
ant 7, increase.

At this point let us make a comment about the effect of
applied pressure in the HTSC system. It is generally claimed
that the hybridization V increases with applied pressure P.
So, our results (see Fig. 2) show that both A and T, decrease
with P (at least in the range where electronic effects domi-
nate) since as V increases both A, and 7, also diminishes. In
fact, experiments in HTSC materials have shown that they
present a complicate dependence on P, e.g., they can exhibit

dr,

positive or negative slope —, due to the competing effects
dr;

associated with the lattice v1brat10ns Wthh gives -5 >0 and

the electronic dependence, which gives d—P <0.3!

The d-p hybridization can be viewed also as an effective
d-p hopping and since the d electronic states in our model
constitute a degenerate d band, it is natural in this framework
to consider also the p states as being degenerate. Besides the
variation in the hybridization, it is important to see the be-
havior of Ay and 7. when the attractive Hubbard potential U
changes. Figure 4 shows the gap curves for different U val-
ues, for a k-dependent hybridization. When U decreases, A,
and T, also decrease, which is correct since U originates the
superconductivity of the system. Notice that the anomalous
behavior of the gap curves does not disappear when U di-
minishes, and there is a different value of A, and 7. for each
U, in the same way of V in Fig. 2. The same behavior was
observed for a constant hybridization. It is also important to
verify the dependence of 2Ay/kgT, on U for this Hubbard-I
approximation. According to the BCS mean-field theory, the
superconducting gap is weakly temperature dependent at low
temperatures but falls off rapidly to zero around 7. In Fig. 5
we plot the dependence of 2Ay/kgT,. on U for a k-dependent
hybridization, for different values of the hybridization
strength V. From the figure we see that for low values of U,
2Ay/kgT. is quite low and, as U increases, 2A,/ kT, seems
to saturate in different values, depending on V. Therefore we
conclude that as U increases, one goes from a region where
2A/kgT. varies significantly (low values of U), to a region
where 2A,/kpT,. saturates and becomes a constant. We
should mention that for HTSC it is known that 2Ay/kgT,
varies widely.*?
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FIG. 5. (Color online) The dependence of 2A/kgT, on U for a
k-dependent hybridization, for different V values. From the curve
we observe that as U increases 2A,/kgT, seams to saturate. Again
one can see that as the hybridization strength V increases, the su-
perconductivity diminishes.

From all the results above, we may conclude that both A,
and 7, depend on «, and also on U. Figure 6 shows the
dependence of A on U. The results show that for a k depen-
dent there is an almost linear dependence of A, on U, al-
though the gap curves of Figs. 1, 2, and 4 exhibit an anoma-
lous behavior. Therefore, we may conclude that the
anomalous behavior of the gap curves do not affect A.
Moreover, one sees that it is needed a higher value of U to
obtain superconductivity as long as hybridization increases.

Figure 7 shows the behavior of the critical temperature 7,
renormalized to zero hybridization temperature 7,.(0) [T.(V
=0)=T,(0)]. One has initially a small decrease in T,/T,(0)
with hybridization and a pronounced decrease when T,/ T,(0)
approaches V., where T, goes to zero. Finally, Fig. 8 shows
the behavior of the renormalized gap Ay/Ay(0), where
Ay(V=0)=A(0). From the figure one sees an almost mono-
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FIG. 6. (Color online) The dependence of Ay/t on U for a
k-dependent hybridization.
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FIG. 7. (Color online) The dependence of the renormalized criti-
cal temperature 7./ T.(0) on V for a k-dependent hybridization.

tonic decrease in the renormalized gap for increasing hybrid-
ization until the V, value, in the similar way of Fig. 3.

IV. CONCLUSIONS AND FINAL COMMENTS

We have applied the Hubbard-I approximation' to study
the two-dimensional two-band attractive Hubbard model, in-
vestigating some thermodynamical properties of this ex-
tended model, as well as obtaining the equations for the criti-
cal temperature 7, and the gap (order parameter) A,
involving explicitly the d-d coupling U, the hybridization
strength V, and the parameter «, which accounts for the ratio
of the effective masses of the d and p bands.

We have pointed out throughout the present work the role
of the one-body and nonlocal hybridization V), which is to
create in the normal state new bands with mixed features. In
the case of a local hybridization the mixing turns out to be a
constant one and can be interpreted as being a mean value of

d-wave
<n>=1.0 U=8.0t t,=0.55t £,=0.45U/0 0=0.15
14 F 1
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FIG. 8. (Color online) The dependence of the renormalized gap
Ay/A(0) on V for a k-dependent hybridization.
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the hybridization over the Brillouin zone. The one-body hy-
bridization can be tuned by the application of external pres-
sure. When the hybridization is increased, we have verified
from the self-consistent calculations that there is a critical
value V,, proportional to Va for which T, and A vanish.

We have focused on intraband d-d Cooper pairing since
the main contribution for the density of states at the Fermi
level is due to the d band. Therefore we have assumed that
this pairing is the most relevant for superconductivity.

As commented in Sec. II, interband pairing could also
arise. The most typical physical systems for the occurrence
of this kind of pairing appear in some heavy fermions, such
as CeCu,Si,. Heavy fermions are intermetallic systems con-
taining unstable f-shell elements, mostly Yb, Ce, and U.*
Several experiments involving Ce band compounds have
shown the existence of a large density of states at the Fermi
level. Band calculations have also indicated the delocalized

PHYSICAL REVIEW B 82, 014502 (2010)

nature of the f states in these metallic systems. It is then
natural to expect the Ce 4f atoms to have a certain degree of
itineracy and, therefore, f-d pairing may be important in the
description of the CeCu,Si, superconductivity. In fact, in
Ref. 34 a mean-field BCS description with a hybrid d-f pair-
ing was used to calculate the critical temperature of
CeCu,Si,. For a set of reasonable parameters, it was obtained
T.~0.4 K in a good agreement with the experimental value
T.=0.5 K. However, a more consistent calculation using an
f-d Hubbard band model considering strong attractive f-d
pairing is needed. This work is now in progress.

ACKNOWLEDGMENTS

The authors would like to thank M. A. Continentino for
helpful discussions. Also, we gratefully thank the support
from CNPq and FAPERJ (Brazilian agencies).

*Deceased.
TH. Suhl, B. T. Matthias, and J. R. Walker, Phys. Rev. Lett. 3, 552
(1959).
2J. Kondo, Prog. Theor. Phys. 29, 1 (1963).
30. L. T. de Menezes, Solid State Commun. 56, 799 (1985); 57,
825 (1986).
4J. Zielinski and P. Zawadski, Z. Phys. B: Condens. Matter 72,
261 (1988).
3G. M. Japiassi, M. A. Continentino, and A. Troper, Phys. Rev. B
45, 2986 (1992).
OW. Wiethege, P. Entel, and B. Miihlschlegel, Z. Phys. B: Con-
dens. Matter 47, 35 (1982).
70. Entin-Wohlman and Y. Imry, Physica C 153-155, 1323
(1988).
8]. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev. 106,
162 (1957).
°J. G. Bednorz and K. A. Miiller, Z. Phys. 64, 189 (1986).
10T, Timusk and B. Statt, Rep. Prog. Phys. 62, 61 (1999).
11y Ando, G. S. Boebinger, A. Passner, L. F. Schneemeyer, T.
Kimura, M. Okuya, S. Watauchi, J. Shimoyama, K. Kishio, K.
Tamasaku, N. Ichikawa, and S. Uchida, Phys. Rev. B 60, 12475
(1999).
12J. L. Tallon and J. W. Loram, Physica C 349, 53 (2001).
13]. Beenen and D. M. Edwards, Phys. Rev. B 52, 13636 (1995).
I4E. S. Caixeiro and A. Troper, J. Appl. Phys. 105, 07E307
(2009).
15J. Hubbard, Proc. R. Soc. London, Ser. A 276, 238 (1963).
I6E. V. L. de Mello, E. S. Caixeiro, and J. L. Gonzdlez, Phys. Rev.
B 67, 024502 (2003).
I7E. S. Caixeiro, J. L. Gonzilez, and E. V. L. de Mello, Phys. Rev.
B 69, 024521 (2004).
18D, N. Zubarev, Usp. Fiz. Nauk 71, 71 (1960) [Sov. Phys. Usp.
3, 320 (1960)].
193, E. Hirsch and D. J. Scalapino, Phys. Rev. B 32, 5639 (1985).
20M. A. Continentino and 1. T. Padilha, J. Phys.: Condens. Matter
20, 095216 (2008).
21G. G. N. Angilella, R. Pucci, and F. Siringo, Phys. Rev. B 54,

15471 (1996); T. Yoshida, X. Zhou, D. Lu, S. Komiya, Y. Ando,
H. Eisaki, T. Kakeshita, S. Uchida, Z. Hussain, Z. Shen, and A.
Fujimori, J. Phys.: Condens. Matter 19, 125209 (2007).

22G. M. Japiassu, M. A. Continentino, and A. Troper, J. Appl.
Phys. 73, 6648 (1993).

23R. Kishore and S. K. Joshi, Phys. Rev. B 2, 1411 (1970).

24E. V. L. de Mello and E. S. Caixeiro, Phys. Rev. B 70, 224517
(2004).

23E. S. Caixeiro, A. Troper, and E. V. L. de Mello, Physica C 459,
37 (2007).

20K, Aryanpour, T. Paiva, W. E. Pickett, and R. T. Scalettar, Phys.
Rev. B 76, 184521 (2007).

27K. Aryanpour, E. R. Dagotto, M. Mayr, T. Paiva, W. E. Pickett,
and R. T. Scalettar, Phys. Rev. B 73, 104518 (2006).

28M. R. Norman, H. Ding, M. Randeria, J. C. Campuzano, T.
Yokoya, T. Takeuchi, T. Takahashi, T. Mochiku, K. Kadowaki, P.
Guptasarma, and D. G. Hinks, Nature (London) 392, 157
(1998).

2D. L. Feng, A. Damascelli, K. M. Shen, N. Motoyama, D. H. Lu,
H. Eisaki, K. Shimizu, J.-i. Shimoyama, K. Kishio, N. Kaneko,
M. Greven, G. D. Gu, X. J. Zhou, C. Kim, F. Ronning, N. P.
Armitage, and Z.-X. Shen, Phys. Rev. Lett. 88, 107001 (2002).

30V, P. Ramunni, G. M. Japiasst, and A. Troper, Physica C 364-
365, 190 (2001).

31]. T. Markert, J. Beille, J. J. Neumeier, E. A. Early, C. L. Sea-
man, T. Moran, and M. B. Maple, Phys. Rev. Lett. 64, 80
(1990).

32M. Oda, N. Momono, and M. Ido, Supercond. Sci. Technol. 13,
R139 (2000).

33]. D. Thompson and J. M. Lawrence, in Handbook on the Phys-
ics and Chemistry of Rare Earths, Lanthanides/Actinides:
Physics-11, edited by K. A. Gschneider, Jr., L. Eyring, G. H.
Lander, and G. R. Choppin (Elsevier Science Publishers, B.V.,
1994), Vol. 19, Chap. 133, p. 383.

34E. C. Valadares, A. Troper, and O. L. T. de Menezes, J. Magn.
Magn. Mater. 47-48, 400 (1985).

014502-7


http://dx.doi.org/10.1103/PhysRevLett.3.552
http://dx.doi.org/10.1103/PhysRevLett.3.552
http://dx.doi.org/10.1143/PTP.29.1
http://dx.doi.org/10.1016/0038-1098(85)90312-6
http://dx.doi.org/10.1007/BF01312143
http://dx.doi.org/10.1007/BF01312143
http://dx.doi.org/10.1103/PhysRevB.45.2986
http://dx.doi.org/10.1103/PhysRevB.45.2986
http://dx.doi.org/10.1007/BF01686181
http://dx.doi.org/10.1007/BF01686181
http://dx.doi.org/10.1016/0921-4534(88)90302-4
http://dx.doi.org/10.1016/0921-4534(88)90302-4
http://dx.doi.org/10.1103/PhysRev.106.162
http://dx.doi.org/10.1103/PhysRev.106.162
http://dx.doi.org/10.1007/BF01303701
http://dx.doi.org/10.1088/0034-4885/62/1/002
http://dx.doi.org/10.1103/PhysRevB.60.12475
http://dx.doi.org/10.1103/PhysRevB.60.12475
http://dx.doi.org/10.1016/S0921-4534(00)01524-0
http://dx.doi.org/10.1103/PhysRevB.52.13636
http://dx.doi.org/10.1063/1.3063667
http://dx.doi.org/10.1063/1.3063667
http://dx.doi.org/10.1098/rspa.1963.0204
http://dx.doi.org/10.1103/PhysRevB.67.024502
http://dx.doi.org/10.1103/PhysRevB.67.024502
http://dx.doi.org/10.1103/PhysRevB.69.024521
http://dx.doi.org/10.1103/PhysRevB.69.024521
http://dx.doi.org/10.1070/PU1960v003n03ABEH003275
http://dx.doi.org/10.1070/PU1960v003n03ABEH003275
http://dx.doi.org/10.1103/PhysRevB.32.5639
http://dx.doi.org/10.1088/0953-8984/20/9/095216
http://dx.doi.org/10.1088/0953-8984/20/9/095216
http://dx.doi.org/10.1103/PhysRevB.54.15471
http://dx.doi.org/10.1103/PhysRevB.54.15471
http://dx.doi.org/10.1088/0953-8984/19/12/125209
http://dx.doi.org/10.1063/1.352542
http://dx.doi.org/10.1063/1.352542
http://dx.doi.org/10.1103/PhysRevB.2.1411
http://dx.doi.org/10.1103/PhysRevB.70.224517
http://dx.doi.org/10.1103/PhysRevB.70.224517
http://dx.doi.org/10.1016/j.physc.2007.04.219
http://dx.doi.org/10.1016/j.physc.2007.04.219
http://dx.doi.org/10.1103/PhysRevB.76.184521
http://dx.doi.org/10.1103/PhysRevB.76.184521
http://dx.doi.org/10.1103/PhysRevB.73.104518
http://dx.doi.org/10.1038/32366
http://dx.doi.org/10.1038/32366
http://dx.doi.org/10.1103/PhysRevLett.88.107001
http://dx.doi.org/10.1016/S0921-4534(01)00739-0
http://dx.doi.org/10.1016/S0921-4534(01)00739-0
http://dx.doi.org/10.1103/PhysRevLett.64.80
http://dx.doi.org/10.1103/PhysRevLett.64.80
http://dx.doi.org/10.1088/0953-2048/13/11/201
http://dx.doi.org/10.1088/0953-2048/13/11/201
http://dx.doi.org/10.1016/0304-8853(85)90450-0
http://dx.doi.org/10.1016/0304-8853(85)90450-0

